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ABSTRACT

We consider inference in a general data-driven object-based model
of multichannel audio data, assumed generated as a possibly under-
determined convolutive mixture of source signals. Each source is
given a model inspired from nonnegative matrix factorization (NMF)
with the Itakura-Saito divergence, which underlies a statistical model
of superimposed Gaussian components. We address estimation of
the mixing and source parameters using two methods. The first one
consists of maximizing the exact joint likelihood of the multichan-
nel data using an expectation-maximization algorithm. The second
method consists of maximizing the sum of individual likelihoods of
all channels using a multiplicative update algorithm inspired from
NMF methodology. Our decomposition algorithms were applied to
stereo music and assessed in terms of blind source separation perfor-
mance.

Index Terms— Multichannel audio, nonnegative matrix factor-
ization, nonnegative tensor factorization, underdetermined convolu-
tive blind source separation.

1. INTRODUCTION

Assume J signals (the sources) have been convolutively mixed
through I noisy channels to produce I signals (the mixtures). Pro-
vided the filter lengths are “significantly” shorter than the analysis
window size, the generative model may be formulated in the Short-
Time Fourier Transform (STFT) domain such that

xi,fn =
∑J

j=1
aij,f sj,fn + bi,fn, (1)

where xi,fn is the complex-valued STFT of the i-th mixture (i =
1, . . . , I , f = 1, . . . , F is a frequency bin index, n = 1, . . . , N
is a time frame index), sj,fn is the STFT of the j-th source (j =
1, . . . , J), aij,f is a frequency-dependent complex-valued mixing
coefficient and bi,fn is residual noise. Eq. (1) can be rewritten in
matrix form, such that

xfn = Af sfn + bfn, (2)

where xfn = [x1,fn, . . . , xI,fn]T , sfn = [s1,fn, . . . , sJ,fn]T ,
bfn = [b1,fn, . . . , bI,fn]T and Af = [aij,f ]ij ∈ C

I×J .
Many convolutive blind source separation (BSS) methods have

been designed under model (1). Typically, an instantaneous ICA
algorithm is applied to data {xfn}n=1,...,N in each frequency sub-
band f , yielding a set of J source subband estimates per frequency
bin. This approach is usually referred to as frequency-domain ICA
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(FD-ICA). The source labels remain however unknown because of
the ICA standard permutation indeterminacy, leading to the well-
known FD-ICA permutation alignment problem. Many a posteriori
alignment techniques relying on various source characteristics have
been designed with various degrees of success, see e.g., [1] and ref-
erences therein. The permutation ambiguity arises from the indi-
vidual processing of each subband, which implicitly assumes mu-
tual independence of one source’s subbands. This is not the case
in this work where our frequency-dependent source model implies a
coupling of the frequency bands, and joint estimation of the source
parameters and mixing coefficients frees us from the permutation
alignment problem.

More precisely, our source model is inspired from NMF, and
more specifically from NMF with the Itakura-Saito (IS) divergence
which underlies a statistical model of superimposed latent Gaus-
sian components, as described in [2] and summarized in Section 2.
Section 3 addresses two inference methods in our proposed multi-
channel model. The first method, described in Section 3.1, consists
of maximizing the exact joint log-likelihood of the multichannel
data using an expectation-maximization (EM) algorithm [3]. This
approach draws parallels with [4, 5], where source frames are as-
signed a Gaussian mixture model (GMM). However, our NMF
model might be considered more suitable for musical signals than
the GMM, and the computational complexity of exact inference in
our model grows linearly with the number of components while the
GMM’s complexity grows combinatorially. The second method, de-
scribed in Section 3.2, consists of maximizing the sum of individual
log-likelihoods of all channels using a multiplicative update (MU)
algorithm inspired from NMF literature. This approach relates to
recent nonnegative tensor factorization (NTF) techniques applied to
multichannel music signals [6]. However, in contrast to standard
NTF which implicitly assumes instantaneous mixing, our approach
addresses a more general convolutive structure and does not require
any post-processing binding step consisting of grouping the NTF el-
ementary components into J sources. Section 4 reports BSS results
of stereo music data and Section 5 provides conclusive remarks.

2. MODELS

2.1. Sources

Let K ≥ J and {Kj}J
j=1 be a non-trivial partition of K = 1, . . . , K .

We assume the complex random variable sj,fn to be a sum of #Kj

latent components, such that

sj,fn =
∑

k∈Kj

ck,fn with ck,fn ∼ Nc(0, wfkhkn) (3)
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where wfk, hkn ∈ R
+ and Nc (μ,Σ) is a proper complex Gaussian

distribution with probability density function (pdf)

Nc (x|μ,Σ) = |π Σ|−1 exp−(x − μ)H Σ−1 (x − μ). (4)

The components are assumed mutually independent and individually
independent across frequency and frame. It follows that

sj,fn ∼ Nc

(
0,

∑
k∈Kj

wfkhkn

)
. (5)

Denoting Sj the F × N STFT matrix [sj,fn]fn of source j and in-
troducing the matrices Wj = [wfk]f,k∈Kj and Hj = [hkn]k∈Kj ,n

respectively of dimensions F ×#Kj and #Kj ×N , it can easily be
shown [2] that the log-likelihood of the parameters describing source
j writes

− log p(Sj |WjHj) =
∑

fn
dIS(|sj,fn|2|[WjHj ]fn) + const.

where dIS(x|y) = x/y−log(x/y)−1 is the IS divergence. In other
words, maximum likelihood (ML) estimation of Wj and Hj given
source STFT Sj is equivalent to NMF of the power spectrogram
|Sj |2 into WjHj , where the IS divergence is used. MU and EM
algorithms are respectively described in [7, 8] and [2] for this task;
in essence, this paper describes a generalization of these algorithms
to a multichannel multisource scenario. Finally, we introduce the
notation Pj = Wj Hj , i.e., pj,fn = E{|sj,fn|2}.

2.2. Noise

In the most general case, we may assume noisy data and the follow-
ing algorithms could accommodate estimation of noise statistics un-
der Gaussian independent assumptions and given covariance struc-
tures such as Σb,fn = Σb,f or Σb,n. In this paper we assume for
simplicity Σb,fn = σ2

b II , where II is the identity matrix of size I
and σ2

b is a small and fixed noise variance. The noise component can
account for both the quantization noise (if any) and possible model
discrepancy in (1), and is required to prevent from potential numeri-
cal instabilities as discussed later.

2.3. Convolutive mixing model revisited

The mixing model (2) can be recast as:

xfn = �Af cfn + bfn (6)

where cfn = [c1,fn, . . . , cK,fn]T ∈ C
K×1 and �Af is the “ex-

tended mixing matrix” of dimension I × K, with elements defined
by �aik,f = aij,f if and only if k ∈ Kj . Thus, for every frequency
bin f our model is basically a linear mixing model with I channels
and K elementary Gaussian sources ck,fn, with structured mixing
coefficients (i.e., subsets of elementary sources arrive from same di-
rections). Subsequently, we will note Σc,fn = diag

(
[wfkhkn]k

)
the covariance of ck,fn.

3. METHODS

3.1. Maximization of exact likelihood with EM

3.1.1. Criterion

Let θ = {A,W,H} be the set of all parameters, where A is the
I × J × F tensor with entries aij,f , W is the F × K matrix with
entries wfk and H is the K ×N matrix with entries hkn. Under the

previous assumptions, data xfn has a zero-mean proper Gaussian
distribution with covariance Σx,fn(θ) = AfΣs,fnAH

f + σ2
b II ,

where Σs,fn = diag ([pj,fn]j) is the covariance of sfn. ML esti-
mation is consequently shown to amount to minimization of 1

C1(θ) =
∑

fn
trace

([
xfn xH

fn

]
Σ−1

x,fn

)
+ log detΣx,fn. (7)

The noise term σ2
b II is here necessary to prevent from ill-conditioned

inverses that may occur if one diagonal term of Σs,fn is close to
zero, or if I > J .

3.1.2. Indeterminacies

Criterion (7) suffers from scale, phase and permutation indetermina-

cies. Concerning scale and phase, let θ̂ = {{Af}f , {Wj}j , {Hj}j}
be a minimizer of (7) and let {Df}f and {Λj}j be a sets of respec-
tively complex and nonnegative diagonal matrices. Then, the set
θ̃ = {{Af D−1

f }f , {diag
(
[|djj,f |2]f

)
Wj Λ−1

j }j , {Λj Hj}j}
leads to Σx,fn(θ̂) = Σx,fn(θ̃), i.e., same likelihood value. Sim-
ilarly, permuted diagonal matrices would also leave the criterion
unchanged. In practice, we remove the scale and phase ambiguity
by imposing

∑
i |aij,f |2 = 1 and a1j,f ∈ R

+ (and scaling the rows
of Wj accordingly) and by imposing

∑
f wfk = 1 (and scaling the

rows of Hj accordingly).

3.1.3. Algorithm

We derive an EM algorithm [3] based on the complete data {X,C},
where C is the K × F × N STFT tensor with coefficients ck,fn. It
can be shown that the family {p(X,C|θ)}θ is an exponential fam-
ily [3] and the complete data statistics Rxs,f =

∑
n xfnsH

fn/N ,

Rss,f =
∑

n sfnsH
fn/N and uk,fn = |ck,fn|2 form a natural (suf-

ficient) statistics [3] for this family. Thus, one iteration of EM con-
sists of computing the expectation of the natural statistics condition-
ally on the current parameter estimates (E step) and re-estimating
the parameters using the updated natural statistics, which amounts
to maximizing the conditional expectation of the complete data like-
lihood Q(θ|θ′) =

∫
log p(X,C|θ)p(C|X, θ′)dC (M step). These

steps are detailed in Algorithm 1.2

It can be easily checked that when the noise variance σ2
b tends

to zero, the resulting update rule for Af tends to Af ← Af . Sim-
ilarly, the convergence of Af is very slow for small values of σ2

b .
To overcome this difficulty we use a simulated annealing strategy
consisting of artificially and linearly decreasing the noise variance
over the iterations, from an arbitrary large value to the small, correct
value used in criterion (7).

1For a fixed f , the BSS problem described by Eq. (2) and (7), and the
following EM algorithm, is reminiscent of works by Cardoso, see, e.g.,
[9], where a grid of the representation domain is chosen, in each cell of
which the source statistics are assumed constant. This is not required
in our case where we instead solve F parallel linear instantaneous mix-
tures tied across frequency by the source model. In [9] the ML criterion
can be nicely recast as a measure of fit between observed and parameter-
ized covariances, where the measure of deviation writes D(Σ1|Σ2) =

trace(Σ1 Σ−1
2 ) − log detΣ1 Σ−1

2 − I and Σ1 and Σ2 are positive def-
inite matrices of size I × I (note that the IS divergence is obtained in the
special case I = 1). Unfortunately this formulation cannot be used in our
case because Σ1 = xfn xH

fn is singular.
2Equation (14) only ensures Q(θm+1|θm) ≥ Q(θm|θm) so that our

algorithm is strictly speaking only a generalized EM (GEM) algorithm.
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Algorithm 1 EM algorithm (one iteration)

• E step. Conditional expectations of natural statistics:

R̂xs,f =
1

N

∑
n

xfnŝH
fn (8)

R̂ss,f =
1

N

∑
n

ŝfnŝH
fn + Σs,fn − Gs,fnAfΣs,fn (9)

ûk,fn =
[
ĉfnĉH

fn + (Σc,fn − Gc,fn
�AfΣc,fn)

]
k,k

(10)

where

ŝfn = Gs,fnxfn, Gs,fn = Σs,fnAH
f Σ−1

x,fn, (11)

ĉfn = Gc,fnxfn, Gc,fn = Σc,fn
�AH

f Σ−1
x,fn, (12)

with �Af , Σc,fn, Σs,fn, and Σx,fn from Sec. 2.3 and 3.1.1.

• M step. Update the parameters:

Af = R̂xs,fR̂
−1
ss,f , (13)

wfk =
1

N

∑
n

ûk,fn

hkn
, hkn =

1

F

∑
f

ûk,fn

wfk
. (14)

• Normalize A, W and H according to Section 3.1.2.

3.1.4. Reconstruction of the sources

Wiener reconstructions of the source STFTs are retrieved from
Eq. (11). Time-domain sources may then be obtained through in-
verse STFT using an adequate overlap-add procedure with dual
synthesis window. By conservativity of Wiener reconstruction the
spatial images of estimated sources and the estimated noise sum
altogether to the original mix in STFT domain, i.e., Âf , ŝfn and

b̂fn = σ2
bΣ

−1
x,fnxfn satisfy Eq. (2). Thanks to linearity of the

inverse-STFT, the reconstruction is conservative in time domain as
well.

3.2. Maximization of individual likelihoods with MU rules

3.2.1. Criterion

We now consider a different approach consisting of maximizing the
sum of individual channel likelihoods

∑
i log p(Xi|θ), hence dis-

carding mutual information between the channels. This is equiva-
lent to setting the off-diagonal terms of xfn xH

fn and Σx,fn to zero
in criterion (7), leading to minimization of

C2(θ) =
∑

ifn
dIS(|xi,fn|2|v̂i,fn), (15)

where v̂i,fn is the variance structure defined by

v̂i,fn =
∑

j
qij,f

∑
k∈Kj

wfk hkn (+σ2
b ), (16)

with qij,f = |aij,f |2. For a fixed channel i, v̂i,fn is basically the
sum of the source variances modulated by the mixing weights.

3.2.2. Indeterminacies

Criterion (15) suffers from same scale, phase and permutations am-
biguities as criterion (7), with the exception that ambiguity on the

phase of aij,f is now total as this parameter only appears through
it squared-modulus. In the following, the scales are fixed as in Sec-
tion 3.1.2.

3.2.3. Algorithm

We describe for the minimization of C2(θ) an iterative MU algo-
rithm inspired from NMF methodology. Continual descent of the
minimized cost function under this algorithm was observed in prac-
tice. The algorithm simply consists of updating each scalar param-
eter θl by multiplying its value at previous iteration by the ratio of
the negative and positive parts of the derivative of the criterion wrt
this parameter, namely θl ← θl.[∇θlC2(θ)]−/[∇θlC2(θ)]+, where
∇θlC2(θ) = [∇θlC2(θ)]+ − [∇θlC2(θ)]− and the summands are
both nonnegative [2]. This ensures nonnegativity of the parameter
updates, provided initialization with a nonnegative value. The re-
sulting parameter updates are described in Algorithm 2, where “.”
indicates element-wise matrix operations, 1N×1 is a N -vector of

ones, qij the F × 1 vector [qij,f ]f and Vi (resp. V̂i) the F × N
matrix [|xi,fn|2]fn (resp. [v̂i,fn]fn).

Algorithm 2 MU rules (one iteration)

qij ← qij .

[
V̂.−2

i .(WjHj).Vi

]
1N×1[

V̂.−1
i .(WjHj)

]
1N×1

(17)

Wj ← Wj .

∑I
i=1 diag(qij)(V̂

.−2
i .Vi)H

T
j∑I

i=1 diag(qij)V̂
.−1
i HT

j

(18)

Hj ← Hj .

∑I
i=1(diag(qij)Wj)

T (V̂.−2
i .Vi)∑I

i=1(diag(qij)Wj)T V̂.−1
i

(19)

Normalize Q, W and H according to Section 3.2.2.

3.2.4. Reconstruction of the source images

An image sim
ij,fn of source j in channel i is reconstructed through

ŝim
ij,fn = (qij,fpi,fn/v̂i,fn) xi,fn, i.e., through Wiener filtering of

each channel. A noise component (if any) can similarly be recon-

structed as b̂i,fn = (σ2
b/v̂i,fn) xi,fn. Overall the decomposition is

conservative, i.e.,
∑

j ŝim
ij,fn + b̂i,fn = xi,fn.

4. RESULTS

4.1. Test material

We produced J = 3 musical sources (drums, lead vocals and pi-
ano) using original separated tracks from the song “Sunrise” by
S. Hurley (http://ccmixter.org/shannon-hurley). We
selected 17 seconds-excerpts, that were converted to mono and
downsampled to 16 kHz. The musical sources were mixed into a
stereo recording using filters from the Source Separation Evaluation
Campaign SiSEC 2008 development dataset 3 (http://sisec.
wiki.irisa.fr/tiki-index.php). The test material, sepa-
ration results and separation examples from original CD recordings
are available at http://perso.telecom-paristech.fr/

˜ozerov/demos.html#icassp09.

3The reverberation time is 130 ms, distance between the two microphones
is 1 m, distance between sources and the center of the microphone pair is
about 1 m and the angles of arrival are -50, -10, and 15 degrees.
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4.2. Simulations

We have run 5000 iterations of both methods (EM and MU) from 10
random initializations of θ, with K = 12 components equally dis-
tributed between the 3 sources (i.e., #Kj = 4). Figure 1 plots the
cost values C1(θ) and C2(θ) along iterations for the 10 runs. Note
that because of the simulated annealing (Sec. 3.1.3) the EM’s cost
C1(θ) is not always decreasing (C1(θ) is always computed with the
small arbitrarily fixed noise variance σ2

b , while the noise variance
used in the EM algorithm changes with iterations). However, Fig-
ure 1 shows that the final value of C1(θ) is always minimal.
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Fig. 1. 10 runs of EM and MU from random initializations. In our
MATLAB implementation, 1000 iterations of EM (resp. MU) take
about 80 min (resp. 20 min).

Source images were reconstructed from the set of parameters
obtained at the end of every run and source separation evaluation
criteria were computed from the original and reconstructed images:
the Signal to Distortion Ratio (SDR), the Image to Spatial distortion
Ratio (ISR), the Source to Interference Ratio (SIR), and the Sources
to Artifacts Ratio (SAR) [10]. For each method and every run, all
evaluation criteria values were averaged over J = 3 sources. Ta-
ble 1 displays for each method the evaluation criteria corresponding
to (i) the best average SDR value obtained among the 10 runs, (ii)
the best (i.e., minimal) cost value, along with reference values (in
braces) computed from sources estimates as reconstructed from the
corresponding randomly initialized parameters θ(0).

Algorithm EM algorithm MU rules

Condition best SDR best cost best SDR best cost

Av. SDR 4.3 (-1.0) 0.2 (-1.4) 3.6 (1.6) 0.4 (1.7)

Av. ISR 8.1 (2.4) 3.8 (2.5) 8.0 (3.5) 4.6 (3.8)

Av. SIR 6.5 (-3.1) 0.0 (-2.3) 6.9 (-2.7) 1.8 (-1.8)

Av. SAR 10.0 (9.9) 9.2 (7.6) 7.3 (15.4) 7.6 (15.0)

Table 1. Source separation evalution criteria (dB).

5. DISCUSSION AND CONCLUSION

Table 1 shows that both methods are very sensitive to initialization,
and, unfortunately, the best value of the cost does not correspond
to the best separation performance. However, the perceptual differ-
ences between the sources estimates are not always noticeable, and
the numerical differences may be due to the nature of the criteria it-
self. Moreover, among only 10 random initializations at least one is
leading to satisfying separation results. We are currently looking for
better (non-random) initialization schemes.

Let us compare the two proposed methods. As compared to
MU, the EM algorithm has the following advantages: (i) its con-
vergence to a stationary point is theoretically proved, (ii) in contrast
to the maximization of individual likelihoods, the maximization of
the exact likelihood allows to better exploit the statistical dependen-
cies between different channels, (iii) the EM algorithm allows for
the estimation of the complex-valued mixing coefficients, while MU
only estimate the absolute values of these coefficients 4. As com-
pared to EM, the MU algorithm has the following advantages: (i)
convergence is faster (both in iterations and CPU time), (ii) the gen-
eralization of MU to other divergences used in NMF (e.g., Euclidean
distance or Kullback-Leibler divergence) is straightforward.

The new probabilistic framework presented in this paper ad-
dresses the representation of multichannel audio, under possibly un-
derdetermined and noisy convolutive mixing. While we have as-
sessed the validity of our model (with corresponding inference tech-
niques) in terms of BSS, our model more generally provides a data-
driven object-based representation of multichannel audio and could
be relevant to other problems such as audio transcription and index-
ing. As such, it would be interesting to investigate the semantics
revealed by the learnt dictionary W and corresponding activation
patterns H; we leave this for future work.
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