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Multichannel Nonnegative Matrix Factorization in
Convolutive Mixtures for Audio Source Separation
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Abstract—We consider inference in a general data-driven ob-
ject-based model of multichannel audio data, assumed generated
as a possibly underdetermined convolutive mixture of source
signals. We work in the short-time Fourier transform (STFT)
domain, where convolution is routinely approximated as linear
instantaneous mixing in each frequency band. Each source STFT
is given a model inspired from nonnegative matrix factorization
(NMF) with the Itakura–Saito divergence, which underlies a
statistical model of superimposed Gaussian components. We
address estimation of the mixing and source parameters using two
methods. The first one consists of maximizing the exact joint likeli-
hood of the multichannel data using an expectation-maximization
(EM) algorithm. The second method consists of maximizing the
sum of individual likelihoods of all channels using a multiplicative
update algorithm inspired from NMF methodology. Our decom-
position algorithms are applied to stereo audio source separation
in various settings, covering blind and supervised separation,
music and speech sources, synthetic instantaneous and convolutive
mixtures, as well as professionally produced music recordings.
Our EM method produces competitive results with respect to
state-of-the-art as illustrated on two tasks from the international
Signal Separation Evaluation Campaign (SiSEC 2008).

Index Terms—Expectation-maximization (EM) algorithm,
multichannel audio, nonnegative matrix factorization (NMF),
nonnegative tensor factorization (NTF), underdetermined convo-
lutive blind source separation (BSS).

I. INTRODUCTION

N ONNEGATIVE matrix factorization (NMF) is an unsu-
pervised data decomposition technique with effervescent

popularity in the fields of machine learning and signal/image
processing [1]. Much research about this topic has been driven
by applications in audio, where the data matrix is taken as the
magnitude or power spectrogram of a sound signal. NMF was
for example applied with success to automatic music transcrip-
tion [2], [3] and audio source separation [4], [5]. The factoriza-
tion amounts to decomposing the spectrogram data into a sum of
rank-1 spectrograms, each of which being the expression of an
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elementary spectral pattern amplitude-modulated in time. How-
ever, while most music recordings are available in multichannel
format (typically, stereo), NMF in its standard setting is only
suited to single-channel data. Extensions to multichannel data
have been considered, either by stacking up the spectrograms of
each channel into a single matrix [6] or by considering nonneg-
ative tensor factorization (NTF) under a parallel factor analysis
(PARAFAC) structure, where the channel spectrograms form
the slices of a 3-valence tensor [7]. These approaches inher-
ently assume that the original sources have been mixed instan-
taneously, which in modern music mixing is not realistic, and
they require a posterior binding step so as to group the elemen-
tary components into instrumental sources. Furthermore they do
not exploit the redundancy between the channels in an optimal
way, as will be shown later.

The aim of this work is to remedy these drawbacks. We for-
mulate a multichannel NMF model that accounts for convolutive
mixing. The source spectrograms are modeled through NMF
and the mixing filters serve to identify the elementary compo-
nents pertaining to each source. We consider more precisely
sampled signals ( , ) generated
as convolutive noisy mixtures of point source signals

such that

(1)

where is the finite-impulse response of some (causal)
filter and is some additive noise. The time-domain mixing
given by (1) can be approximated in the short-time Fourier trans-
form (STFT) domain as

(2)

where , and are the complex-valued STFTs of
the corresponding time signals, is the complex-valued dis-
crete Fourier transform of filter , is a fre-
quency bin index, and is a time frame index.
Equation (2) holds when the filter length is assumed “signifi-
cantly” shorter than the STFT window size [8]. Equa-
tion (2) can be rewritten in matrix form, such that

(3)

where , ,
, and .
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Fig. 1. Representation of convolutive mixing system and formulation of Multichannel NMF problem.

A key ingredient of this work is to model the power
spectrogram of source as a product of
two nonnegative matrices and , such that

(4)

Given the observed mixture STFTs , we
are interested in joint estimating the source spectrogram fac-
tors and the mixing system , as illustrated
in Fig. 1. Our problem splits into two subtasks: 1) defining suit-
able estimation criteria, and 2) designing algorithms optimizing
these criteria.

We adopt a statistical setting in which each source STFT
is modeled as a sum of latent Gaussian components, a model
introduced by Benaroya et al. [9] in a supervised single-channel
audio source separation context. A connection between full
maximum-likelihood (ML) estimation of the variance param-
eters in this model and NMF using the Itakura–Saito (IS)
divergence was pointed out in [10]. Given this source model,
hereafter referred to as NMF model, we introduce two estima-
tion criteria together with corresponding inference methods.

• The first method consists of maximizing the exact joint
log-likelihood of the multichannel data using an expecta-
tion-maximization (EM) algorithm [11]. This method fully
exploits the redundancy between the channels, in a statis-
tically optimal way. It draws parallels with several model-
based multichannel source separation methods [12]–[18],
as described throughout the paper.

• The second method consists of maximizing the sum of in-
dividual log-likelihoods of all channels using a multiplica-
tive update (MU) algorithm inspired from NMF method-
ology. This approach relates to the above-mentioned NTF
techniques [6], [7]. However, in contrast to standard NTF
which inherently assumes instantaneous mixing, our ap-
proach addresses a more general convolutive structure and

does not require the posterior binding of the elementary
components into sources.

The general multichannel NMF framework we describe
yields a data-driven object-based representation of multi-
channel data that may benefit many tasks in audio, such as
transcription or object-based coding. In this article we will
more specifically focus on the convolutive blind source sepa-
ration (BSS) problem, and as such we also address means of
reconstructing source signal estimates from the set of estimated
parameters. Our decompositions are conservative in the sense
that the spatial source estimates sum up to the original mix.
The mixing parameters may also be changed without degrading
audio quality, so that music remastering is one potential ap-
plication of our work. Remixes of well-known songs retrieved
from commercial CD recordings are proposed in the results
section.

Many convolutive BSS methods have been designed under
model (3). Typically, an instantaneous independent component
analysis (ICA) algorithm is applied to data in
each frequency subband , yielding a set of source subband
estimates per frequency bin. This approach is usually referred
to as frequency-domain ICA (FD-ICA) [19]. The source labels
remain however unknown because of the ICA standard permuta-
tion indeterminacy, leading to the well-known FD-ICA permu-
tation alignment problem, which cannot be solved without using
additional a priori knowledge about the sources and/or about the
mixing filters. For example in [20] the sources in different fre-
quency bins are grouped a posteriori relying on their temporal
correlation, thus using prior knowledge about the sources, and
in [21], [22] the sources and the filters are estimated assuming a
particular structure of convolutive filters, i.e., using prior knowl-
edge about the filters. The permutation ambiguity arises from
the individual processing of each subband, which implicitly as-
sumes mutual independence of one source’s subbands. This is
not the case in our work where our source model implies a cou-
pling of the frequency bands, and joint estimation of the source
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parameters and mixing coefficients frees us from the permuta-
tion alignment problem.

Our EM-based method is related to some multichannel
source separation techniques employing Gaussian mixture
models (GMMs) as source models. Univariate independent
and identically distributed (i.i.d.) GMMs have been used to
model source samples in the time domain for separation of
instantaneous [12], [13] and convolutive [12] mixtures. How-
ever, such time-domain GMMs are not of the most relevance
for audio as they do not model temporal correlations in the
signal. In [14], Attias proposes to model the sources in the
STFT domain using multivariate GMMs, hence taking into
account temporal correlations in the audio signal, assumed
stationary in each window frame. The author develops a source
separation method for convolutive mixtures, supervised in the
sense that the source models are pre-trained in advance. A
similar approach with log-spectral domain GMMs is developed
by Weiss et al. in [15]. Arberet et al. [16] propose a multivariate
GMM-based separation method for instantaneous mixing that
involves a computationally efficient strategy for learning the
source GMMs separately, using intermediate source estimates
obtained by some BSS method. As compared to these works,
we use a different source model (the NMF model), which
might be considered more suitable than the GMM for musical
signals. Indeed, the NMF is well suited to polyphony as it ba-
sically takes the source to be a sum of elementary components
with characteristic spectral signatures. In contrast, the GMM
takes the source as a single component with many states, each
representative of a characteristic spectral signature, but not
mixed per se. To put it in an other way, in the NMF model
a summation occurs in the STFT domain (or equivalently, in
the time domain), while in the GMM the summation occurs
on the distribution of the frames. Moreover, as discussed later,
the computational complexity of inference in our model grows
linearly with the number of components while the complexity
of standard inference in GMMs grows combinatorially.

The remaining of this paper is organized as follows. NMF
source model and noise model are introduced in Section II.
Section III is devoted to the definition of our two estimation cri-
teria, with corresponding optimization algorithms. Section IV
presents results of our methods to stereo source separation in
various settings, including blind and supervised separation of
music and speech sources in synthetic instantaneous and con-
volutive mixtures, as well as in professionally produced music
recordings. Conclusions are drawn in Section V. Preliminary as-
pects of this work are presented in [23]. We here considerably
extend on the simulations part as well as on the theoretical de-
velopments related to our algorithms.

II. MODELS

A. Sources

Let and be a nontrivial partition of
. Following [9], [10], we assume the complex

random variable to be a sum of latent components,
such that

with (5)

where and is the proper complex
Gaussian distribution [24] with probability density function
(pdf)

(6)

In the rest of the paper, the quantities and are, re-
spectively, referred to as “source” and “component”. The com-
ponents are assumed mutually independent and individually in-
dependent across frequency and frame . It follows that

(7)

Denoting the STFT matrix of source
and introducing the matrices and

, respectively, of dimensions and
, it is easily shown [10] that the minus log-likelihood of the

parameters describing source writes

where “ ” denotes equality up to a constant and

(8)

is the IS divergence. In other words, ML estimation of and
given source STFT is equivalent to NMF of the power

spectrogram into , where the IS divergence is used.
MU and EM algorithms for IS-NMF are, respectively, described
in [25], [26] and in [10]; in essence, this paper describes a gener-
alization of these algorithms to a multichannel multisource sce-
nario. In the following, we will use the notation ,
i.e., .

Our source model is related to the GMM used for example in
[14], [16] in the same source separation context, with the dif-
ference that one source frame is here modeled as a sum of
elementary components while in the GMM one source frame is
modeled as a process which can take one of many states, each
characterized by a covariance matrix. The computational com-
plexity of inference in our model with our algorithms described
next grows linearly with the total number of components while
the derivation of the equivalent EM algorithm for GMM leads to
an algorithm that has combinatorial complexity with the number
of states [12], [13], [15]. It is possible to achieve linear com-
plexity in the GMM case also, but at the price of approximate
inference [14], [16]. Note that all considered algorithms, either
for the NMF model or GMM, only ensure convergence to a sta-
tionary point of the objective function, and, as a consequence,
the final result depends strongly on the parameters initialization.
We wish to emphasize that we here take a fully data-driven ap-
proach in the sense that no parameter is pre-trained.

B. Noise

In the most general case, we may assume noisy data and
the following algorithms can easily accommodate estimation
of noise statistics under Gaussian independent assumptions and
given covariance structures such as or . In
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this paper, we consider for simplicity stationary and spatially
uncorrelated noise such that

(9)

and . The musical data we consider in
Section IV-A is not noisy in the usual sense, but the noise com-
ponent can account for model discrepancy and/or quantization
noise. Moreover, this noise component is required in the EM
algorithm to prevent from potential numerical instabilities (see
Section III-A1 below) and slow convergence (see Section III-A6
below). In Section IV-D, we will consider several scenarios:
when the variances are equal and fixed to a small value ,
when the variances are estimated from data, and most impor-
tantly when annealing is performed via the noise variance, so as
to speed up convergence as well as favor global solutions.

C. Convolutive Mixing Model Revisited

With (5), the mixing model (3) can be recast as

(10)

where and is the so
called “augmented mixing matrix” of dimension , with
elements defined by if and only if . Thus,
for every frequency bin , our model is basically a linear mixing
model with channels and elementary Gaussian sources

, with structured mixing coefficients (i.e., subsets of ele-
mentary sources are mixed identically). Subsequently, we will
note the covariance of .

III. METHODS

A. Maximization of Exact Likelihood With EM

1) Criterion: Let be the set of all pa-
rameters, where is the tensor with entries ,
is the matrix with entries , is the matrix
with entries , and are the noise covariance parameters.
Under previous assumptions, data vector has a zero-mean
proper Gaussian distribution with covariance

(11)

where is the covariance of . ML
estimation is consequently shown to amount to minimization of

(12)

The noise covariance term appears necessary so as to pre-
vent from ill-conditioned inverses that occur if 1)

, and in particular if , i.e., in the overdetermined case,
or if 2) has more than null diagonal coefficients
in the underdetermined case . Case 2) might happen in
regions of the time–frequency plane where sources are inactive.

For fixed and , the BSS problem described by (3) and (12),
and the following EM algorithm, is reminiscent of works by Car-
doso et al., see, e.g., [27] for the square noise-free case, [17] for
other cases and [18] for use in an audio setting. In these papers, a
grid of the representation domain is chosen, in each cell of which
the source statistics are assumed constant. This is not required in

our case where we instead solve parallel linear instantaneous
mixtures tied across frequency by the source model.1

2) Indeterminacies: Criterion (12) suffers from obvious
scale, phase and permutation indeterminacies.2 Regarding scale
and phase, let be a minimizer of
(12) and let and be sets of respectively complex
and nonnegative diagonal matrices. Then, the set

leads to , hence same likelihood value.
Similarly, permuted diagonal matrices would also leave the
criterion unchanged. In practice, we remove the scale and phase
ambiguity by imposing and (and
scaling the rows of accordingly) and then by imposing

(and scaling the rows of accordingly). With
these conventions, the columns of convey normalized
mixing proportions between the channels, the columns of
convey normalized frequency shapes and all time-dependent
amplitude information is relegated into .

3) Algorithm: We derive an EM algorithm based on complete
data , where is the STFT tensor with
coefficients . The complete data pdfs form
an exponential family (see, e.g., [11] or [29, Appendix]) and the
set defined by

(13)

(14)

is shown to be a natural (sufficient) statistics [29] for this family.
Thus, one iteration of EM consists of computing the expecta-
tion of the natural statistics conditionally on the current param-
eter estimates (E step) and of reestimating the parameters using
the updated natural statistics, which amounts to maximizing
the conditional expectation of the complete data log-likelihood

(M step). The re-
sulting updates are given in Algorithm 1, with more details given
in Appendix A.

Algorithm 1 EM algorithm (one iteration)

• E step. Conditional expectations of natural statistics:

(15)

(16)

(17)

(18)

1In [17] and [27], the ML criterion can be recast as a measure of fit between
observed and parameterized covariances, where the measure of deviation writes
����� ���� � � ����	���� ��� �� 
�� 	���� ��� � � and ��� and ��� are posi-
tive definite matrices of size ��� (note that the IS divergence is obtained in the
special case � � �). The measure is simply the KL divergence between the pdfs
of two zero-mean Gaussians with covariances ��� and ��� . Such a formulation
cannot be used in our case because ��� � � � is not invertible for � � �.

2There might also be other less obvious indeterminacies, such as those in-
herent to NMF (see, e.g., [28]), but this study is here left aside.
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where (19)

(20)

(21)

(22)

(23)

and is defined in Section II-C.
• M step. Update the parameters:

(24)

(25)

(26)

• Normalize , and according to Section III-A2.

4) Implementation Issues: The computation of the source
Wiener gain given by (19) requires the inversion of the

matrix at every time–frequency (TF) point. When
(overdetermined case) it may be preferable for sake of

computational efficiency to use the following alternative formu-
lation of , obtained using Woodbury matrix identity [30]

(27)

with

(28)

This second formulation requires the inversion of the ma-
trix instead of the inversion of the matrix . The
same idea applies to the computation of , (20), if .
Thus, this second formulation may become interesting in prac-
tice only if and , i.e., if (recall that

). As we only consider undetermined mixtures in the
experimental part of this article , we turn to the original
formulation given by (19). As we more precisely consider stereo
mixtures, we only need inverting 2 2 matrices per TF point
and our MATLAB code was efficiently vectorized so as to ma-
nipulate time–frequency matrices directly, thanks to Cramer’s
explicit matrix inversion formula. Note also that we only need
to compute the diagonal elements of the matrix in (18).
Hence, the computational complexity of one EM algorithm it-
eration grows linearly (and not quadratically) with the number
of components.

5) Linear Instantaneous Case: Linear instantaneous mixing
is a special case of interest, that concerns for example “pan pot”
mixing. Here, the mixing matrix is real-valued and shared be-
tween all the frequency subbands, i.e., . In
that case, (24) needs only be replaced by

(29)

6) Simulated Annealing: If one computes through (24),
(16), (17), (19), and (21), assuming , one has

as result. Thus, by continuity, when the covariance matrix
tends to zero, the resulting update rule for tends to

. Hence, the convergence of becomes very slow
for small values of . To overcome this difficulty and also
favor global convergence, we have tested in the experimental
section several simulated annealing strategies. In our frame-
work, simulated annealing consists in setting the noise variances

to a common iteration-dependent value , initial-
ized with an arbitrary large value and gradually decreased
through iterations to a small value . Besides improving con-
vergence speed, this scheme should also favor convergence to
global solutions, as typical of annealing algorithms: the cost
function is rendered flatter in the first iterations due to the (as-
sumed) presence of high noise, smoothing out local minima, and
is gradually brought back to its exact shape in the subsequent it-
erations.

7) Reconstruction of the Sources: Minimum mean square
error (MMSE) estimates of the source
STFTs are directly retrieved using Wiener filter of (19). Time-
domain sources may then be obtained through inverse STFT
using an adequate overlap-add procedure with dual synthesis
window (see e.g., [31]).

By conservativity of Wiener reconstruction the spatial images
of the estimated sources and of the estimated noise sum up to
the original mix in STFT domain, i.e., , , and

satisfy (3). Thanks to linearity of the inverse-
STFT, the reconstruction is conservative in the time domain as
well.

B. Maximization of Individual Likelihoods With MU Rules

1) Criterion: We now consider a different approach con-
sisting of maximizing the sum of individual channel log-like-
lihoods , hence discarding mutual information
between the channels. This is equivalent to setting the off-di-
agonal terms of and to zero in criterion (12),
leading to minimization of cost

(30)

where is the structure defined by

(31)

and . For a fixed channel , is basically the
sum of the source variances modulated by the mixing weights.
A noise variance term might be considered, either fixed
or to be estimated, but we will simply set it to zero as we will
not here encounter the issues described in Section III-A6 about
convergence of EM in noise-free observations.

Criterion (30) may also be read as the ML criterion cor-
responding to the model where the contributions of each
component (and thus, of each source) to each channel would
be different and independent realizations of the same Gaussian
process, as opposed to the same realization. In other words, this
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assumption amounts to changing our observation and source
models given by (2) and (5) to

(32)

with (33)

and thus changing (7) to

(34)

where (resp. ) denotes the contribution of component
(resp. source ) to channel , and these contributions are as-

sumed independent over channels (i.e., over ).
Our approach differs from the NTF approach of [6], [7] where

the following PARAFAC structure [32] is considered

(35)

It is only a sum of rank-1 tensors and amounts to
assuming that is a linear combination of

time–frequency patterns , where is column of
and is row of . It intrinsically implies a linear instan-

taneous mixture and requires a postprocessing binding step in
order to group the elementary patterns into sources, based
on clustering of the ratios (in the stereo case).
To ease comparison, our model can be rewritten as

(36)

subject to the constraint if and only if
(with the notation introduced in Section II-C, we have also

). Hence, our model has the following merits
with respect to (w.r.t.) the PARAFAC-NTF model: 1) it
accounts for convolutive mixing by considering frequency-de-

pendent mixing proportions ( instead of ) and 2) the

constraint that the mixing proportions can only take
possible values implies that the clustering of the components

is taken care of within the decomposition as opposed to after
the decomposition.

We have here chosen to use the IS divergence as a measure of
fit in (30) because it connects with the optimal inference setting
of Section III-A and because it was shown a relevant cost for
factorization of audio power spectrograms [10], but other costs
could be considered, such as the standard Euclidean distance
and the generalized Kullback–Leibler (KL) divergence, which
are the costs considered in [6] and [7].

2) Indeterminacies: Criterion (30) suffers from same scale,
phase and permutations ambiguities as criterion (12), with the
exception that ambiguity on the phase of is now total as
this parameter only appears through its squared-modulus. In the
following, the scales are fixed as in Section III-A2.

3) Algorithm: We describe for the minimization of an
iterative MU algorithm inspired from NMF methodology [1],
[33], [34]. Continual descent of the criterion under this algo-
rithm was observed in practice. The algorithm simply consists

of updating each scalar parameter by multiplying its value at
previous iteration by the ratio of the negative and positive parts
of the derivative of the criterion w.r.t. this parameter, namely

(37)

where and the sum-
mands are both nonnegative [10]. Not any cost function gradient
may be separated in two such summands, but this is the case for
the Euclidean, KL and IS costs, and more generally the -diver-
gence of which they are specific cases [10], [26]. This scheme
automatically ensures the non-negativity of the parameter up-
dates, provided initialization with a nonnegative value.

The resulting parameter updates are described in Algorithm
2, where “.” indicates element-wise matrix operations,
is a -vector of ones, is the vector and

(resp. ) is the matrix (resp. ).
Some details about the derivation of the algorithm are given in
Appendix B.

Algorithm 2 MU rules (one iteration)

• Update

(38)

• Update
(39)

• Update
(40)

• Normalize , and according to Section III-B2.

4) Linear Instantaneous Case: In the linear instantaneous
case, when , we obtain the following update rule for
the mixing matrix coefficients:

(41)

where is the sum of all coefficients in . Then,
needs only be replaced by in (39) and (40). The

overall algorithm yields a specific case of PARAFAC-NTF
which directly assigns the elementary components to direc-
tions of arrival (DOA). This scheme however requires to fix in
advance the partition of , i.e., assign
a given number of components per DOA. In the specific linear
instantaneous case, multiplicative updates for the whole ma-
trices , , can be exhibited (instead of individual updates
for , , ), but are not given here for conciseness. They
are similar in form to [33], [34] and lead to a faster MATLAB
implementation.

5) Reconstruction of the Source Images: Criterion (30) being
equivalent to the ML criterion under the model defined by (32)
and (33), the MMSE estimate of the
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image of source in channel is computed
through

(42)

i.e., by Wiener filtering of each channel. A noise com-
ponent (if any) can similarly be reconstructed as

. Overall the decomposition is conservative,

i.e., .

IV. EXPERIMENTS

In this section, we first describe the test data and evalua-
tion criteria, and then proceed with experiments. All the audio
datasets and separation results are available from our demo web
page [35]. MATLAB implementations of the proposed algo-
rithms are also available from the authors’ web pages.

A. Datasets

Four audio datasets have been considered and are described
below.

• Dataset A consists of two synthetic stereo mixtures, one
instantaneous the other convolutive, of musical
sources (drums, lead vocals and piano) created using 17-s
excerpts of original separated tracks from the song “Sun-
rise” by S. Hurley, available under a Creative Commons Li-
cense at [36] and downsampled to 16 kHz. The mixing pa-
rameters (instantaneous mixing matrix and the convolutive
filters) were taken from the 2008 Signal Separation Evalua-
tion Campaign (SiSEC’08) “under-determined speech and
music mixtures” task development datasets [37], and are
described below.

• Dataset B consists of synthetic (instantaneous and convo-
lutive) and live-recorded (convolutive) stereo mixtures of
speech and music sources, corresponding to the test data
for the 2007 Stereo Audio Source Separation Evaluation
Campaign (SASSEC’07) [38]. It also coincides with de-
velopment dataset dev2 of SiSEC’08 “under-determined
speech and music mixtures” task. All the mixtures are 10
s long and sampled at 16 kHz. The instantaneous mixing
is characterized by static positive gains. The synthetic con-
volutive filters were generated with the Roomsim toolbox
[39]. They simulate a pair of omnidirectional microphones
placed 1 m apart in a room of dimensions

m with reverberation time 130 ms, which correspond
to the setting employed for the live-recorded mixtures. The
distances between the sources and the center of the micro-
phone pair vary between 80 cm and 1.20 m. For all mix-
tures the source directions of arrival vary between 60
and 60 with a minimal spacing of 15 (for more details
see [37]).

• Dataset C consists of SiSEC’08 test and development
datasets for task “professionally produced music record-
ings”. The test dataset consists of two excerpts (of about
22 s long) from two different professionally produced
stereo songs, namely “Que pena tanto faz” by Tamy and
“Roads” by Bearlin. The development dataset consists of
two other excerpts (of about 12 s long) from the same

TABLE I
STFT WINDOW LENGTHS USED IN DIFFERENT EXPERIMENTS

songs, with all original stereo tracks provided separately.
All recordings are sampled at 44 kHz (CD quality).

• Dataset D consists of three excerpts of length between
25 and 50 s taken from three professionally produced
stereo recordings of well-known pop and reggae songs,
and downsampled to 22 kHz.

B. Source Separation Evaluation Criteria

In order to evaluate our multichannel NMF algorithms in
terms of audio source separation we use the signal-to-distortion
ratio (SDR) numerical criterion defined in [38], which essen-
tially compares the reconstructed source images with the orig-
inal ones. The quality of the mixing system estimates was as-
sessed with the mixing error ratio (MER) described at [37],
which is an SNR-like criterion expressed in decibels. MATLAB
routines for computing these criteria were obtained from the
SiSEC’08 web page [37]. These evaluation criteria can only be
computed when the original source spatial images (and mixing
systems) are available. When not (i.e., for datasets C and D),
separation performance is assessed perceptually and informally
by listening to the separated source images, available online at
[35].

C. Algorithm Parameters

1) STFT Parameters: In all the experiments below we used
STFTs with half-overlapping sine windows, using the STFT
computation tools for MATLAB available from [37]. The choice
of the STFT window size is rather important, and is a matter of
compromise between 1) good frequency resolution and validity
of the convolutive mixing approximation of (2) and 2) validity
of the assumption of source local stationarity. We have tried var-
ious window sizes (powers of 2) for every experiment, and the
most satisfactory window sizes are reported in Table I.

2) Model Order: In our case the model order parameters
consist of the total number of components and the alloca-
tion of the components among the sources, i.e., the partition

. The value of may be set by hand to the number
of instrumental sources in the recording, although, as we shall
discussed later, the existence of non-point sources or the exis-
tence of sources mixed similarly might render the choice of
trickier. The choice of the number of components per source
may raise more questions. As a first guess one may choose a high
value, so that the model can account for all of the diversity of
the source; basically, one may think of one component per note
or elementary sound object. This leads to increased flexibility
in the model, but, at the same time, can lead to data overfitting
(in case of few data), and favors the existence of local minima,
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thus rendering optimization more difficult, as well as more in-
tensive. Interestingly, it has been noted in [10] that, given a lim-
ited number of components, IS-NMF is also able to learn higher
level structures in the musical signal. One or a few components
can capture a large part of one source or a subset of sources, so
that a coherent sound decomposition can be achieved to some
extent. A similar behavior was logically observed in our mul-
tichannel scenario, with even more success as the spatial infor-
mation helps to discriminate between the sources. Hence, sat-
isfying source separation results could be obtained with small
values of .

In the experiments of Sections IV-D and IV-E we set
; however, this has minor importance there as the aim of these

experiments is merely to investigate the algorithms behavior,
and not to obtain optimal source separation performance. In the
experiments of Sections IV-F and IV-G, is chosen by hand
through trials so as to obtain most satisfying results. In the ex-
periment of Section IV-H the total number of components is ar-
bitrary set to either or , depending on the recording,
and the numbers of components per source are chosen au-
tomatically by the initialization procedure, see below.

D. Dealing With the Noise Part in the EM Algorithm

In this section, we experiment strategies for updating the
noise parameters in the EM algorithm. We here arbitrarily use
the convolutive mixture of dataset A and set the total number
of components to , equally distributed between
sources. Our EM algorithm being sensitive to parameters
initialization, we used the following perturbed oracle initial-
izations so as to ensure “good” initialization: factors and
as computed from the original sources using IS-NMF [10] and
original mixing system , all perturbed with high level additive
noise. We have tested the following noise update schemes.

• (A): , with fixed set to 16-bit PCM quan-
tization noise variance.

• (B): , with fixed set to the average channel
empirical variance in every frequency band divided by 100,
i.e., .

• (C): with standard deviation decreasing
linearly through iterations from to . This is what we
refer to as simulated annealing.

• (D): Same strategy as (C), but with adding a random noise
with covariance to at every EM iteration. We refer
to this as annealing with noise injection.

• (E): is reestimated with update (25).
• (F): Noise covariance is reestimated like in scheme E,

but under the more constrained structure
(isotropic noise in each subband). In that case, operator

in (25) needs to be replaced with .
The algorithm was run for 1000 iterations in each case and

the results are presented in Fig. 2, which displays the average
SDR and MER along iterations, as well as the noise standard
deviations , averaged over all channels and frequencies .
As explained in Section III-A6, we observe that with a small
fixed noise variance (scheme A), the mixing parameters stag-
nate. With a fixed larger noise variance (scheme B) convergence
starts well but then performance drops due to artificially high
noise variance. Simulated annealing (scheme C) overcomes

Fig. 2. EM algorithm results on convolutive mixture of dataset A, using various
noise variance update schemes. (Left) Average source separation SDR. (Middle)
average mixing system identification MER. (Right) average noise standard de-
viation. (A) Triangles: small fixed noise variance. (B) Circles: larger fixed noise
variance. (C) Dashed line: annealing. (D)Solid line: annealing with noise injec-
tion. (E) Dotted line: diagonal noise covariance reestimation. (F) Dash-dotted
line: isotropic noise variance reestimation.

this problem, and artificial noise injection (scheme D) even
improves the results (both in terms of source separation and
mixing system estimation). Noise variance reestimation allows
to obtain performances almost similar to annealing, but only
in the case when the variance is constrained to be the same in
both channels (scheme F). However, we observed that faster
convergence is obtained in general using annealing with noise
injection (scheme D) for similar results.

Finally, it should be noted that for the schemes with annealing
(C and D) both the average SDR and MER start decreasing from
about 400 iterations (for SDR) and 200 iterations (for MER).
We believe this is because the final noise variance (set to
16-bit PCM quantization noise variance) might be too small
to account for discrepancy in the convolutive mixing equation
STFT-approximation (2). Indeed, with scheme F (constrained
reestimated variance) the average noise standard deviation seem
to be converging to a value in the range of 0.002 (see right plot of
Fig. 2), which is much larger than . Thus, if computation time
is not an issue, scheme F can be considered the most advanta-
geous because this is the only scheme to systematically increase
both the average SDR and MER at every iteration and it allows
to adjust a suitable noise level adaptively. However, as we want
to keep the number of iterations low (e.g., 300–500) for sake of
short computation time, we will resort to scheme D in the fol-
lowing experiments.

E. Convergence and Separation Performance

In this experiment we wish to check consistency of optimiza-
tion of the proposed criteria with respect to source separation
performance improvement, in the least as measured by the SDR.
We used both mixtures of dataset A (instantaneous and convo-
lutive) and ran 1000 iterations of both algorithms (EM and MU)
from ten different perturbed oracle initializations, obtained as in
previous section. Again we used components, equally
split into sources. Figs. 3 and 4 report results for the
instantaneous and convolutive mixtures, respectively. Plots on
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Fig. 3. Ten runs of EM and MU from ten perturbed oracle initializations using
instantaneous mixture of dataset A. (Top) cost functions. (Bottom) average
SDRs.

Fig. 4. Ten runs of EM and MU from ten perturbed oracle initializations using
convolutive mixture of dataset A. (Top) cost functions. (Bottom) average SDRs.

top row display in log-scale the cost functions and
w.r.t. iterations for all ten runs. Note that cost is not posi-
tive in general, see (12), so that we have added a common large
constant value to all curves so as to ensure positivity, and to be
able plotting cost value in the logarithmic scale. Plots on bottom
row display the average SDRs.

The results show that maximization of the joint likelihood
with the EM algorithm leads to consistent improvement of
source separation performance in term of SDR, in the sense
that final average SDR values are higher than values at initial-
ization. This is not the case with MU, which results in nearly
every case in worsening the SDR values obtained from oracle
initialization. This is undoubtedly a consequence of discarding
mutual information between the channels.

As for computational loads, our MATLAB implementation of
EM (resp. MU) algorithm takes about 80 min (resp. 20 min) per

1000 iterations, for this particular experiment with 17-s stereo
mixture (sampled at 16 kHz), sources, and
components.

F. Blind Separation of Under-Determined Speech and Music
Mixtures

In this section, we compare our algorithms with the methods
that achieved competitive results at the SASSEC’07 evaluation
campaign for the tasks of underdetermined mixtures of respec-
tively speech and music signals, in both instantaneous and con-
volutive cases. We used the same data and evaluation criteria as
in the campaign. More precisely, our algorithms are compared
in the instantaneous case to the method of Vincent [40], based
on source STFT reconstruction using a minimum norm con-
straint given a mixing matrix estimate obtained with the method
of Arberet et al. [41]. In the convolutive case, our algorithms
are compared to the method of Sawada, based on frequency-de-
pendent complex-valued mixing matrices estimation [42], and
a posteriori grouping relying on temporal correlations between
sources in different frequency bins [20]. We used the outputs of
these methods to initialize our own algorithms. In the linear in-
stantaneous case, we were given MATLAB implementations of
[40] and [41]. In the convolutive case, we simply downloaded
the source image estimates from the SASSEC’07 web page [43].
In both cases we built initializations of and based on NMF
of the source spectrogram estimates.3

We have found satisfactory separation results through trials
using components for musical sources and
components for speech sources. More components seem to be
needed for speech so as to account for its higher variability (e.g.,
vibrato). The EM and MU algorithms were run for 500 itera-
tions, final source separation SDR results together with refer-
ence methods results are displayed in Table II.4 The EM method
yields a significant separation improvement for all linear instan-
taneous mixtures. Improvement is also obtained in the convo-
lutive case for most source estimates, but is less significant in
terms of SDRs. However, and maybe most importantly, we be-
lieve our source estimates to be generally more pleasant to listen
to. Indeed, one drawback of sparsity-based, nonlinear source re-
construction is musical noise, originating from unnatural, iso-
lated time-frequency atoms scattered over the time–frequency
plane. In contrast, our Wiener source estimates, obtained as a
linear combination of data in each TF cell, appear to be less
prone to such artifacts as can be listened to at demo web page
[35]. We have entered our EM algorithm to the “under-deter-
mined speech and music mixtures” task of SiSEC’08 for in-
stantaneous mixtures, and our results can be compared to other

3However, in that case we used KL-NMF instead of IS-NMF, not to fit the
lower-energy residual artifacts and interferences, to which IS-NMF might be
overly sensitive as a consequence of its scale-invariance. This seemed to lead to
better initializations indeed.

4The reference algorithms performances in Table II do not always coincide
with those given on the SASSEC’07 web page [43]. In the instantaneous case,
this is because we have not used the exact same implementation of the � min-
imization algorithm [40] that was used for SASSEC. In the convolutive case,
this is because we have removed the dc component from all speech signals (in-
cluding reference, source image estimates, and mixtures) using high-pass fil-
tering, in order to avoid numerical instabilities.
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TABLE II
SOURCE SEPARATION RESULTS FOR SASSEC DATA IN TERMS OF SDR (dB)

methods in [44], and online at [45]. Note that among the ten al-
gorithms participating in this task our algorithm outperformed
all the other competiting methods by at least 1 dB for all sepa-
ration measures (SDR, ISR, SIR, and SAR), see [44, Table 2].

G. Supervised Separation of Professionally Produced Music
Recordings

We here apply our algorithms to the separation of the pro-
fessionally produced music recordings of dataset B. This is a
supervised setting in the sense that training data is available to
learn the source spectral patterns and filters. The following
procedure is used.

• Learn mixing parameters , spectral patterns

, and activation coefficients from available
training signal images of source (using 200 iterations of
EM/MU); discard .

• Clamp and to their trained values and
and reestimate activation coefficients from test data
(using 200 iterations of EM/MU).

• Reconstruct source image estimates from , and
.

Except for the training of mixing coefficient, the procedure is
similar in spirit to supervised single-channel separation schemes
proposed, e.g., in [9] and [46].

One important issue with professionally produced modern
music mixtures is that they do not always comply with the
mixing assumptions of (3). This might be due to nonlinear
sound effects (e.g., dynamic range compression), to reverbera-
tion times longer than the analysis window length, and maybe
most importantly to when the point source assumption does not
hold anymore, i.e., when the channels of a stereo instrumental
track cannot be represented as a convolution of the same source
signal. The latter situation might happen when a sufficiently
voluminous musical instrument (e.g., piano, drums, acoustic
guitar) is recorded with several microphones placed close to
the instrument. As such, the guitar track of the “Que pena tanto
faz” song from dataset C is a non-point source image. Such
tracks may be modeled as a sum of several point sources, with
different mixing filters.

For the “Que pena tanto faz” song, the vocal part is modeled
as an instantaneously mixed point source image with
components while the guitar part is modeled as a sum of three
convolutively mixed point source images, each modeled with

components. For the “Roads”
song, the bass and vocals parts are each modeled as instanta-
neously mixed point source images with six components, the
piano part is modeled as a convolutive point source image with
six components and finally, the residual background music (sum
of remaining tracks) is modeled as a sum of three convolutive
point source images with four components. The audio results,
available at [35], tend to show better performance of the EM
approach, especially on the “Roads” song. Our results can be
compared to those of the other methods that entered the “profes-
sionally produced music recordings” task of SiSEC’08 in [44],
and online at [47].

H. Blind Separation of Professionally Produced Music
Recordings

In the last experiment, we have tested the EM and MU al-
gorithms for the separation of professionally produced music
recordings (commercial CD excerpts) in a fully unsupervised
(blind) setting. We used the following parameter initialization
procedure, inspired from [48], which yielded satisfactory re-
sults.

• Stack left and right mixture STFTs so as to create a
complex-valued matrix .

• Produce a -components IS-NMF decomposition of
.

• Initialize as the average of and , where
. Initialize .

• Reconstruct components
from , , and , using single-channel
Wiener filtering (see, e.g., [10]). Produce ad-hoc
left and right component-dependent mixing filters esti-
mates by averaging and over frames,
with , and normalizing according to
Section III-A2. Cluster the resulting filter estimates with
the K-means algorithm, whose output can be used to
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define the partition (using cluster indices) and a
mixing system estimate (using cluster centroids).

Depending on the recording we set the number of sources
to 3 or 4 and used a total of to 20 components. The EM
and MU algorithms were run for 300 iterations in every case. On
these specific examples the superiority of the EM method w.r.t.
the MU method is not as clear as with previous datasets. A likely
reason is the existence of nonpoint sources breaking the validity
of mixing assumptions (2). In such precise cases, choosing not
to exploit inter-channel dependencies might be better, because
our model of these dependencies is now wrong. Looking for
suitable probabilistic models of nonpoint sources is a new and
interesting research direction.

In some cases the source image estimates contain several mu-
sical instruments and some musical instruments are spread over
several source images. Besides poor initialization, this can be
explained by 1) sources mixed similarly (e.g, same directions
of arrival), and thus impossible to separate in our fully blind
setting, 2) nonpoint sources, not well represented by our model
and thus split into different source image estimates.

One way to possibly refine separation results is to reconstruct
individual stereo component images (i.e., obtained via Wiener
filtering (20) in case of EM method, or via (42) by replacing

with in case of MU method), and manually group
them through listening, either to separate sources mixed simi-
larly, or to reconstruct multidirectional sound sources that better
match our understanding/perception of a single source.

Finally, to show the potential of our source separation ap-
proach for music remixing, we have created some remixes using
the blindly separated source images and/or the manually re-
grouped ones. The remixes were created in Audacity [49] by
simply re-panning the source image estimates between left and
right channels and by changing their gains. The audio results
can be listened to at [35].

V. CONCLUSION

We have presented a general probabilistic framework for the
representation of multichannel audio, under possibly underde-
termined and noisy convolutive mixing assumptions. We have
introduced two inference methods: an EM algorithm for the
maximization of the channels joint log-likelihood and a MU al-
gorithm for the maximization of the sum of individual channel
log-likelihoods. The complexity of these algorithms grows lin-
early with the number of model components, and make them
thus suitable to real-world audio mixtures with any number of
sources. The corresponding CPU computational loads are in the
order of a few hours for a song, which may be considered rea-
sonable for applications such as remixing, where real-time is not
an issue.

We have applied our decomposition algorithms to stereo
source separation in various settings, covering blind and
supervised separation, music and speech sources, synthetic in-
stantaneous and convolutive mixtures, as well as professionally
produced music recordings.

The EM algorithm was shown to outperform state-of-the-art
methods, given appropriate initializations. Both our methods

have indeed been found sensitive to parameter initialization, but
we have come up with two satisfying initialization schemes.
The first one, described in Section IV-F, consists in using the
output of a different separation algorithm. We show that our EM
algorithm improves the separation results in almost all cases.
The second scheme, described in Section IV-H, consists in a
single-channel NMF decomposition followed by K-means fil-
ters clustering. Our experiments tend to show that the NMF
model is more suitable to music than speech: music sources can
be represented by a small number of components to attain good
separation performance, and informal listening indicates better
separation of music signals.

Given that the mixed signals follow the mixing and point
source assumptions inherent to (2), the EM method gives
better separation results than the MU method, because be-
tween-channel dependencies are optimally exploited. However,
the performance of the EM method may significantly drop
when these assumptions are not verified. In contrast, we have
observed that the MU method, which relies on a weaker model
of between-channel dependencies, yields more even results
overall and higher robustness to model discrepancies (that may
for example occur in professionally produced recordings).

Let us now mention some further research directions. Al-
gorithms faster than EM (both in terms of convergence rate
and CPU time per iteration) would be desirable for optimiza-
tion of the joint likelihood (12). As such, we envisage turning
to Newton gradient optimization, as inspired from [50]. Mixed
strategies could also be considered, consisting of employing EM
in the first few iterations to get a sharp decrease of the likelihood
before switching to faster gradient search once in the neighbor-
hood of a solution.

Bayesian extensions of our algorithm are readily available,
using for example priors favoring sparse activation coefficients

, or even sparse filters like in [51]. Minor changes are re-
quired in the MU rules so as to yield algorithms for maximum a
posteriori (MAP) estimation. More complex priors structure can
also be envisaged within the EM method, such as Markov chains
favoring smoothness of the activation coefficients [10].

An important perspective is automatic order selection. In
our case, that concerns the total number of components , the
number of sources and the partition . Regarding the
total number of components , ideas from automatic relevance
determination can be explored, see [52] in a NMF setting.
Then the problem of partitioning can be viewed as a clustering
problem with unknown number of clusters , which is a typical
machine learning problem.

While we have assessed the validity of our model in terms of
source separation, our decompositions more generally provide
a data-driven object-based representation of multichannel audio
that could be relevant to other problems such as audio transcrip-
tion, indexing and object-based coding. As such, it will be inter-
esting to investigate the semantics revealed by the learnt spectral
patterns and activation coefficients .

Finally, as discussed in Section IV-H, new models should
be considered for professionally produced music recordings,
dealing with nonpoint sources, nonlinear sound effects, such as
dynamic range compression, and long reverberation times.
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APPENDIX A

APPENDIX A
EM ALGORITHM DERIVATION OUTLINE

The complete data minus log-likelihood can be written as

(43)

with , , , and defined by (13) and (14).
Thus, we have shown that the complete data log-likelihood can
be represented in the following form:

(44)

where is a vector of all scalar elements of

, and
and are some vector and scalar functions of parameters.
That means that the complete data pdfs form
an exponential family (see, e.g., [11], [29]) and complete data
statistics is a natural (sufficient) statistics [11], [29] for
this family. To derive an EM algorithm in this special case one
needs to 1) solve complete data ML criterion (thanks to (44)
this solution can be always expressed as a function of natural
statistics ), and 2) replace in this solution by its

conditional expectation
using model estimated at the previous step of EM.

To solve the complete data ML criterion, we first compute
the derivatives of (43) w.r.t. model parameters
(see [53] for issues regarding derivation w.r.t. complex-valued
parameters), set them to zero and solve the corresponding equa-
tions (subject to the constraint that is diagonal), and we
have:5

(45)

(46)

(47)

5Bayesian MAP estimation can be carried out instead of ML by simply adding
a prior term � ��� ������ to the right part of (43) and solving the corresponding
complete data MAP criterion.

Our EM algorithm is strictly speaking only a Gen-
eralized EM algorithm [54] because it only ensures

. Indeed, in (47) is still a
function of , and reversely, is a function of .

To finish derivation of our EM algorithm we need to com-
pute conditional expectation of the natural statistics . It
can be shown that given the source vector is a proper
Gaussian random vector, i.e.,

(48)

with mean vector and covariance matrix as follows:

Computing conditional expectations of and using
(48) leads to (16) and (17) of EM Algorithm 1. Very similar
derivations can be done to compute the conditional expectations
of . To that matter, one only needs to compute the posterior
distribution of instead of , using mixing equation (10)
instead of mixing equation (3).

APPENDIX B
MU ALGORITHM DERIVATION OUTLINE

Let be a scalar parameter of the set . The deriva-
tive of cost , given by (30), w.r.t. simply writes

(49)

where is the derivative of w.r.t. given by

(50)

Using (49), we obtain the following derivatives:

which can be written in the following matrix forms:

Hence, the update rules given in Algorithm 2, following the mul-
tiplicative update strategy described in Section III-B3.
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