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ABSTRACT
Knowledge of a statistical model of the signal can be used to in-
crease coding efficiency. A common approach is to use a fixed
model structure with parameters that adapt to the signal. The
model parameters and a signal representation that depends on the
model are encoded. We show that, if the signal is divided into
segments of a particular duration, and the model structure is fixed,
then the optimal bit allocation for the model parameters does not
vary with the overall rate. We discuss in detail the parameter rate
for the autoregressive (AR) model. Our approach shows that the
square error criterion in the signal domain is consistent with the
commonly used root mean square log spectral error for the model
parameters. Without using perceptual knowledge, we obtain a rate
allocation for the model that is consistent with what is commonly
used. This model rate is independent of overall coding rate. We
provide experimental results for the application of the autoregres-
sive model to speech that confirm the theory.

1. INTRODUCTION

It is common practice to use a model in the encoding of audio
signals. The model provides a characterization of the statistical
dependencies that exist between signal samples. Usage of the
model allows more efficient encoding of the signal. In audio and
speech coding, it is common to use adaptive models that describe
the short-term statistics of the signal (statistics that are meaningful
within signal segments of 5 to 30 ms). When a model is used, two
sets of data must be transmitted: on the one hand the model param-
eters and on the other hand the signal coefficients that specify the
signal given the model (we do not consider the case of backward
adaptation in this paper).

Source coding is often formulated as a minimization of the bit
rate required to transmit the signal at a given fidelity. If modeling
is used, then it must be decided how to allocate the rate between
model parameters and signal coefficients. The standard approach
to rate allocation between model parameters and signal coefficients
is based on experimental evidence. Optimization by experimenta-
tion is a laborious approach that is feasible only if it can be per-
formed off-line. Thus, this approach to rate-allocation is natural
only for coders that operate at a pre-determined rate.

Communication networks and applications of audio coding in
general are becoming increasing heterogeneous. To facilitate us-
age in various environments, audio coders must be able to operate
at a range of rates. This implies that off-line experiment-based op-
timization of the rate-distribution between model parameters and
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signal coefficients is not desirable. This motivates the work in this
paper, which shows how a rate distribution between model param-
eters and signal coefficients can be derived theoretically based only
on knowledge of certain signal properties. Our general approach
towards rate distribution is based on that used in the context of the
minimum description length (MDL) principle [1, 2]. The analytic
relation for the bit rate allocation given in this paper provides a
step towards source coding algorithms that can adapt in real-time
to the allowed rate set by an external control mechanism.

We provide practical results for the rate distribution for the
particular case of autoregressive (AR) modeling, also often re-
ferred to as linear-predictive modeling. AR modeling has long
been used in speech coding and is becoming more common for
audio coding, particularly in the context of a low delay constraint,
e.g., [3]. Our results show that the rates commonly used for the
AR model in speech coding, e.g., [4, 5], can be explained based
only on coding efficiency and a squared error criterion operating
directly on the speech. Importantly, this means that perceptual as-
pects play only a minor role in the bit allocation for the model.

To determine the rate allocation between model parameters
and signal coefficients, we must define relations between rate and
distortion for these variables. To this purpose we use a model of
quantization that is accurate only in the asymptotic limit of high
rate. Thus, our results are guaranteed only for high rates. How-
ever, experimental evidence indicates that the resulting principles
hold over a wide range of rates, e.g., [6].

The remainder of this paper starts with a derivation of generic
rate-allocation results in section 2. More detailed results are worked
out for the AR case in section 3. To show that our results remain
valid for practical rate allocations, we confirm the theory through
experimental evidence in section 4.

2. RATE ALLOCATION

We consider a stochastic process (signal) Xi. To encode the signal
we divide the signal into coding blocks of k samples. For each
block, the k samples are encoded independently from the other
blocks, using a signal model. Thus, we try to optimize the encod-
ing of random vectors Xk using models that are specified by a set
of random model parameters Θ.

We now compute the number of bits required to encode a par-
ticular data sequence xk, using a model θ, when the coder operates
at a mean distortion D. A particular data model θ corresponds to
an assumed probability density of the data pXk|Θ(·|θ). We assume
that the cells are identical in shape and write the relation between
mean distortion and cell volume V as

D = CV
2
k , (1)
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where C is the coefficient of quantization, a constant that depends
only on the geometry of the quantization cell.

The data sequence (vector) xk falls into a particular quantiza-
tion cell, with index i = i(xk), i ∈ N. The probability of this
quantization index is, under the high-rate assumption,

pI(i(x
k)) = V pXk|Θ(xk|θ), (2)

where, in general, V = V (i) is a function of i. The source-coding
theorem effectively states that the codeword length required for a
particular index i is − log(pI(i)). (To facilitate notational brevity,
we use nats as unit of codeword length.) If we constrain the aver-
age rate of the indices, H(I) = −∑

i pI(i) log(pI(i)), then we
obtain a so-called constrained-entropy quantizer. In such quan-
tizers, V does not depend on xk under the high-rate assumption.
Thus, the codeword length required to encode a particular xk with
the coder that operates at mean distortion D is

LXk|Θ(xk|θ) = − log
(
pXk|Θ(xk|θ)(D

C

)− 2
k
)
. (3)

The codeword length of (3) can be minimized by selecting
the best model parameters for the particular sequence. This sim-
ply the parameter vector that maximizes the probability density
pXk|Θ(xk|θ). Assuming a uniform prior distribution for Θk, the
optimal parameter set has maximum likelihood parameter for the
sequence xk. We write the resulting maximum likelihood model
as

θ̂(xk) = argmax
θ

pXk|Θ(xk|θ). (4)

While the maximum likelihood model minimizes the codeword
length required for the signal vector xk, the parameters θ̂(xk) of
such a model can, in general, not be encoded at a finite rate.

To make the rate required for the parameters finite, we restrict
the set of allowed parameter vectors to a countable set. The set {θ̄}
of admissable parameter vectors corresponds to the reconstruction
vectors of a quantizer for the random parameter vector Θ. Let
pΘ̄(·) be the probability mass function for the countable set of al-
lowed parameter vectors {θ̄}. Then the codeword length required
to describe the model for θ̄ is

LΘ̄(θ̄) = − log(pΘ̄(θ̄)). (5)

The rate required to encode xk consists of the rate for the
model and the rate for encoding the sequence xk given the model:

L(xk) =LΘ̄(θ̄(xk)) + LXk|Θ̄(xk|θ̄(xk))

= − log(pΘ̄(θ̄(xk))) − log
(
pXk|Θ̄(xk|θ̄(xk))(

D

C
)−

2
k
)

=ψ(θ̄(xk), θ̂(xk), xk) − log
(
pXk|Θ̂(xk|θ̂(xk))(

D

C
)−

2
k
)

(6)

where

ψ(θ̄, θ̂, xk) = − log(pΘ̄(θ̄)) − log

(
pXk|Θ̄(xk|θ̄)
pXk|Θ̂(xk|θ̂)

)
(7)

is the index of resolvability [2]. The index of resolvability collects
the terms of the overall rate that involve the quantized model pa-
rameters θ̄. The last term of (6) is the rate required to encode the

signal vector xk given the ideal (maximum-likelihood) model θ̂.
The index of resolvability (7) consists of two terms that have

a clear interpretation. The first term represents the rate for the

model parameters. The second term is the increase in the rate for
the signal xk resulting from using the non-optimal θ̄ instead of the

optimal θ̂.
We are interested in the average performance for coding audio

signal vectors Xk. Thus, we average (6) over the random vector
Xk. Let E[·] denote expectation over the ensemble of all audio
signal vectors. The expected codeword length for Xk is then

E[L(Xk)] = −E[ψ(θ̄(Xk), θ̂(Xk), Xk)]

− E[log(pXk|Θ̂(Xk|θ̂(Xk)))] +
2

k
log(

D

C
). (8)

The bit allocation for the model is determined by the mapping
θ̄(xk). The optimal bit allocation for the model θ̄ is the result of
a trade-off between the rate required for the model and the mean
rate penalty resulting from using the quantized model if the same
distortion must be attained. This trade-off involves only the mean
index of resolvability (the first term of (8)). An important corrol-
lary is that, under the assumptions of our derivation, the optimal
rate for the model parameters is unaffected by the mean signal dis-
tortion D. The rate required for the model parameters depends on
the structure of the model and the statistical properties of the data.

3. APPLICATION TO AUTOREGRESSIVE MODEL

Autoregressive (AR) models are commonly used in speech cod-
ing and are becoming more common for audio applications. This
model class forms a natural first application for the theory. Our
goal is to describe the index of resolvability for the constrained-
entropy case in terms that are easily computed and interpreted. We
assume that the random signal vector Xk has a Gaussian multi-
variate distribution

pXk|Θ(xk|θ) =
1√

(2π)k det(Rθ)
exp

(
−1

2
xkT R−1

θ xk

)
,

(9)
where Rθ is the model covariance matrix for Xk corresponding to
the AR model with parameters θ. To find the matrix Rθ , we model
the random vector Xk as a segment of a stationary AR process.
This implies that the matrix is Toeplitz, symmetric, and has as first
column the autocovariance function of a signal generated with the
AR model. The autocovariance function is the inverse discrete-
time Fourier transform of the transfer function of AR filter, which
means the first column of Rθ is

Rθ(n, 0) =
1

2π

∫ 2π

0

σ2

|A(ejω)|2 ejnωdω, (10)

where σ2 is the excitation signal variance (gain) and A(z) = 1 +
a1z

−1 · · · + amz−m for an m’th order AR model. The model
parameters are then θ = [σ2, a1, a2, · · · am].

As a first step towards obtaining the mean index of resolvabil-
ity we determine an expression for log(pXk|Θ(xk|θ)). We note
that the factor multiplying the exponential in (9) is, asymptotically
with increasing k,

− 1

2
log((2π)k det(Rθ)) ≈

− k

2
log(2π) − k

2

1

2π

∫ 2π

0

log(Rθ(e
jω))dω =

− k

2
log(2π) − k

2
log(σ2) (11)
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Table 1: Bit rates of the AMR-WB coder [7].
Rate 6.6 8.85 12.65 14.25 15.85 18.25 19.85 23.05

AR model parameters 36 46 46 46 46 46 46 46
pitch-model parameter 23 26 30 30 30 30 30 30

excitation 48 80 144 176 208 256 288 352

where we used Szegö’s theorem and that Rθ(z) = σ2/|A(z)|2
and that since A(z) is a monic minimum-phase polynomial∫ 2π

0
log(|A(ejω)|2)dω = 0. We then consider the argument of

the exponential in (9). Let Rxk(ejω) be the Fourier transform
of the auto-covariance function of the segment xk. Then, again
asymptotically with increasing k, we have

1

2k
xkT R−1

θ xk ≈ 1

4π

∫ 2π

0

Rxk (ejω)

Rθ(ejω)
dω. (12)

Thus, based on (11) and (12) we can approximate (9) as

log(pXk|Θ(xk|θ)) ≈ −k

2
log(2πσ2)− k

4π

∫ 2π

0

Rxk (ejω)

Rθ(ejω)
dω. (13)

Ignoring scaling effects, the index of resolvability (7) is

ψ(θ̄, θ̂, xk) ≈− log(pΘ̄(θ̄))+

k

4π

∫ 2π

0

(
Rxk(ejω)

Rθ̄(e
jω)

− Rxk(ejω)

Rθ̂(e
jω)

)
dω.

= − log(pΘ̄(θ̄))+

k

4π

∫ 2π

0

Rxk (ejω)

Rθ̂(e
jω)

(
Rθ̂(e

jω)

Rθ̄(e
jω)

− 1

)
dω. (14)

Assuming that the effect of model quantization on the power spec-
trum is small, we use the expansion u = 1+log(u)+ 1

2
log(u)2 · · · :

ψ(θ̄, θ̂, xk) ≈ − log(pΘ̄(θ̄)) +
k

4π

∫ 2π

0

Rxk (ejω)

Rθ̂(e
jω)(

log(
Rθ̂(e

jω)

Rθ̄(e
jω)

) +
1

2
log(

Rθ̂(e
jω)

Rθ̄(e
jω)

)2
)

dω. (15)

The ratios
R

xk (ejω)

Rθ̄(ejω)
and

R
θ̂
(ejω)

Rθ̄(ejω)
represent the effect of modeling

and the effect of quantization respectively. The modeling ratio av-
erages to unity for maximum likelyhood gain. It is reasonable to
assume that the effects of modeling and quantization are indepen-
dent and we can approximate

ψ(θ̄, θ̂, xk) ≈ − log(pΘ̄(θ̄))+

k

4π

∫ 2π

0

(
log(

Rθ̂(e
jω)

Rθ̄(e
jω)

) +
1

2
log(

Rθ̂(e
jω)

Rθ̄(e
jω)

)2
)

dω. (16)

Neglecting the effect of gain quantization, (16) can be written as

ψ(θ̄, θ̂, xk) ≈ − log(pΘ̄(θ̄)) +
k

4π

∫ 2π

0

1

2
log(

R
θ̂(ejω)

Rθ̄(ejω)
)2dω, (17)

where the second term is the well-known mean square log-spectral
distortion measure, which is commonly used to evaluate the per-
formance of prediction coefficient quantizers, e.g., [8, 4].

By averaging the index of resolvability (17) over the ensem-
ble of signal vectors, we obtain the equation that governs the rate
allocation for the model parameters for the AR model

E[ψ(θ̄, θ̂, xk)] = R(Θ̄) +
k

4
D(Θ̄, Θ̂) (18)

with

R(Θ̄) = −E[log(pΘ̄(Θ̄))] (19)

and

D(Θ̄, Θ̂) = E

[
1

2π

∫ 2π

0

log(
RΘ̂(ejω)

RΘ̄(ejω)
)2dω

]
. (20)

We recognize in (18) a Lagrangian that minimizes the average
rate for the parameter vector quantizer under a constraint on the
mean log spectral squared error. The Lagrange multiplier is k

4
. We

can replace the mapping xk → θ̄ by the simpler two-stage mapping

xk → θ̂ → θ̄.

The model parameters describe a manifold in the log power
spectral domain with dimensionality d ≤ |Θ|. With increasing
rate, the optimal constrained-entropy quantizer is asymptotically
uniform on this manifold in the log-power-spectral domain. The
performance of a high-rate constrained-entropy quantizer using the
square error and lying on the manifold scales with rate as

D(Θ̄, Θ̂) = dCe−
2
d
(R(Θ̄)−h(Θ̂)), (21)

where C is the coefficient of quantization, h(Θ̂) is the differential

entropy of Θ̂ as measured in the log power spectral domain. The
objective is to find the model rate R(Θ̄) that minimizes

E[ψ(θ̄, θ̂, xk)] = R(Θ̄) +
k

4
dCe−

2
d
(R(Θ̄)−h(Θ̂)), (22)

which is solved by the optimal model rate allocation

R(Θ̄) = h(Θ̂) +
d

2
log

(
k

2
C

)
. (23)

4. RESULTS AND VERIFICATION

The principles introduced in this paper are of a general nature.
We verify the principles with applications to the coding of speech.
The motivation for the selection of the speech signal is that the AR
model is commonly used in this context, which means reasonable
model choices are well understood. More-over, existing results for
standardized coders can provide a first indication of the principles
derived here-in.

4.1. Corroborative Earlier Results

The present paper discusses the distribution of the bit rate for
entropy-constrained coding, which is common in audio coding.
The results are essentially identical for the case constrained-
resolution coding. Practical results for constrained-resolution dis-
play the correct behavior. Table 1 shows bit allocations used in the
adaptive-multirate wide-band (AMR-WB) speech coder [7]. It is
seen that the bit allocation for the model parameters is independent
of the rate of the codec, except at low rates. In contrast, the bit al-
location for the excitation (the signal) increases rapidly with the
overall rate. These bit allocations confirm our theoretical findings.
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4.2. Experimental Verification
The verification was performed for tenth-order AR modeling on 8
kHz sampled speech. We used the TIMIT database [9].

We first estimated the differential entropy and the manifold di-
mensionality of the random parameter vector θ, using the methods
described in [10]. The dimensionality of the manifold was found
as d = 7.9 and the differential entropy was 8.5 bits. From (23)
it then follows that the optimal rate for the model is 19.0 bits for
scalar quantization and 17.2 bits for vector quantization. The rates
correspond to a root mean square log spectral distortion of 1.29
dB, close to the 1 dB commonly used on heuristic grounds [4].

The second step of our verification work is to confirm that the
mean of the summation of model rate and signal rate is minimized
using the measured rates for

E[L(xk)] = E[LΘ̄(θ̄(xk))] + E[LXk|Θ̄(xk|θ̄(xk))]. (24)

To confirm this, we measured the average rate that a coder oper-
ating on speech requires for the speech signal, for a given speech-
signal distortion and with varying quantization accuracy for the
model parameters. To this purpose, we extracted 10000 randomly
located speech blocks of 160 samples (20 ms) from the 1680 ut-
terance evaluation part of TIMIT. For each block we performed
linear-predictive analysis (using a Hann window) to obtain a set of
AR model parameters. To approximate optimal parameter quan-
tization on the data manifold in the log spectral distortion do-
main, we converted the parameters to the line-spectral frequencies
(LSFs) and computed the (diagonal) sensitivy matrix of the LSFs
[11]. We then performed scalar quantization of the scaled LSFs.
We used these parameters to estimate the bit allocation required for
scalar quantization of the 40-dimensional speech vector xk located
in the center of the 160 sample block. The vector was first decorre-
lated using a model-based Karhunen-Loève transform, then scalar
quantized. The rate was estimated using numerical integration of
the probability density function over the cell. We multiplied by
four to get the rate for a stationary block of 160 samples, approxi-
mating a common speech coder scenario.

In Fig. 1 we show the outcome of the experiments. It provides
the overall rate as a function of the rate allocated to the model
for a range of distortions for the signal. It is seen that at overall
coding rates of about 2 to 5 bits per sample, the overall coding rate
is minimized when the model rate is about 20 bits. It is seen that
this rate is independent of the overall coding rate. As expected
from heuristic reasoning, the actual optimal model rate decreases
when the signal distortion is high and the overall rate falls below
the range of rates where the theory is valid.

5. CONCLUSIONS

In this paper we considered the coding of signal segments with
a model. We concluded that with increasing rate the rate alloca-
tion for the model becomes a constant and is independent of the
overall rate allocation. An existing speech coding standard and
our own experimental confirm the theoretical results. We conclude
that our method can be used to predict the optimal model coding
rate. For the AR model, our approach leads to the commonly used
squared log spectral distortion measure for the prediction param-
eters. More-over, we can conclude that the required accuracy of
the AR parameters is not a direct function of perceptual effects.
Our results mean that audio (as well as other source) coders that
adapt in real-time to changing network conditions can use a fixed
quantizer for the signal model parameters.
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Figure 1: The excess in overall rate (over its minimum value) for a
block of 160 samples as a function of the model rate for different
signal distortion levels. The data are for scalar quantization. The
corresponding minimum rates are 340, 530, and 736 bits per block.
The theory predicts a model rate of 19 bits.
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