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ABSTRACT

In this paper we study high-resolution entropy-constrained cod-
ing using multidimensional companding. To account for auditory
perception, we introduce a perceptual relevant distortion measure.
We will derive a multidimensional companding function which is
asymptotically optimal in the sense that the rate loss introduced
by the compander will vanish with increasing vector dimension.
We compare the companding scheme to a scheme which is based
on a perceptual weighting of the source, thereby transforming the
perceptual distortion measure into a mean-squared error distortion
measure. Experimental results show that even at low vector di-
mension, the rate loss introduced by the compander is low (less
than 0.05 bit per dimension in case of two-dimensional vectors).

1. INTRODUCTION

The most commonly used fidelity criteria in source coding is the
mean-squared error (MSE) fidelity criterion. The MSE criterion is
mainly used because of its mathematical tractability. In applica-
tion involving a human observer, however, it has been noted that
distortion measures which include some aspects of human percep-
tion generally perform better than the MSE. For example, most
state-of the-art audio coding schemes exploit the phenomenon of
spectro-temporal masking to discard perceptually irrelevant infor-
mation.

To date, the rate-distortion function of stationary sources using
the MSE criterion (and variations of it like the weighted squared-
error criterion [1]) is known analytically only in situations involv-
ing Gaussian and some special non-Gaussian sources. Other ex-
amples for which the rate-distortion function can be computed in-
clude the locally quadratic distortion measures for fixed-rate vec-
tor quantizers under high-resolution assumptions [2], results which
were extended to variable-rate (entropy-constrained) vector quan-
tizers in [3].

In this work we use recent results on high-resolution source
coding for non-difference distortion measures [4] in order to nu-
merically evaluate the rate-distortion function of sources under
a perceptually relevant distortion measure. We will investigate
entropy coded multidimensional companding vector quantization
Multidimensional companding is a type of structured vector quan-
tization of low complexity, where a k-dimensional source vector
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X is first "compressed" by an invertible mapping F (the compres-
sor function), next quantized by a lattice vector quantizer Q( and
finally inversely mapped by F- 1 to obtain the reconstruction Y of
X. That is, the companding scheme is

X -F() -QA() F-10() -Y

It has been shown that for high dimensions and low distortions,
an entropy-constrained companding scheme with an optimal com-
pressor (if exists) can approach the rate-distortion limit arbitrarily
close [4].

This paper is organized as follows. In Section 2 we introduce
the perceptual distortion measure we will consider here. Next,
in Section 3, we discuss multidimensional companding and in-
troduce a compander function which becomes optimal for large
vector dimensions. In Section 4 we consider the rate-distortion
performance of the proposed companding scheme and compare
the results to schemes based on perceptual weighting. Finally, in
Section 5, we draw some conclusions.

2. PERCEPTUAL DISTORTION MEASURE

Let xi = (Xil, Xik) ER =y (Yil, Yik) tR
where the superscript t denotes matrix transposition, and let x
(X, )t Rnk,y = (Y, yn)t c nk. Inthis workwe
will consider the distortion measure given by

d(py) =E£= (1)

Each term Yi 112 in the summation is normalized by Xl 11 2,
reflecting Weber's law which states that the just noticeable differ-
ence in signal level is a constant percentage of the level (0.5-1 dB
for pure tones) [5, 6]. The index i could. for example, refer to
a particular time frame consisting of k samples. In case k = 1,
(1) reduces to the well-known single-letter magnitude-normalized
distortion measure. Alternatively, in case x and y are frequency
representations, the index i could refer to a particular frequency
band with k the number of frequency bins within the band'. An
example is the spectral distortion measure presented in [7], which
was derived from the monaural masking model introduced in [8].
The model computes the detectability of distortions by combining
the information at the output of the auditory filters, which is in

'In this paper we will assume that k does not depend on i. However, it
is straightforward to extend the results to variable k values.
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line with recent findings within the field of psychoacoustics which
show that the human auditory system is able to integrate distortions
that are present within a range of auditory filters [9]. Thus, if we
set xi and yi to be the (band-pass filtered) input signal and its re-
construction, respectively, present at the output of the ith auditory
filter and ignore the detectability of signals near the absolute hear-
ing threshold (threshold in quiet), the distortion measure presented
in [7] reduces to (1) (up to a proper scaling).

3. MULTIDIMENSIONAL COMPANDING

The classical approach for coding a source under the distortion
measure (1) is to normalize the input, thereby transforming it into
a MSE distortion measure,

ldxilE E llx'i - yi'll', (2)

Theorem 3.1. Suppose d(x, y) and X satisfy some technical con-
ditions, cf [4]. Then

D H(QDF)

E0log2 det F' (X) + 1og2 (G(A)E (tr(F(X))))),
rnk 2

where G(A) is the normalized second moment of inertia [15] of
the lattice quantizer, h(X) the dimension normalized differential
entropy., tr(F1(x)) denotes the trace of

r(x) = F'(x)-tM()FO(F)-,

and F'(x) is the derivative of F(x).

The optimal compressor then satisfies [4]

F'(x)tF1(x) = cI(x) a.e.,

where x' = xi xi and y' = yi xi Similar normalizations
are found in sinusoidal coding applications [10, 11L] and MDCT au-
dio coding [12, 13], where the data is normalized by weights which
are related to the masking threshold. The advantage of working
with the MSE distortion measure is that, under high resolution,
lattice vector quantization is optimal, independent of the source
distribution [14]. There are, however, two problems with the nor-
malization approach. First of all, in order to reconstruct the source,
the weights have to be known at the decoder. As a consequence,
these weights have to be transmitted as side information to the de-
coder, in addition to the source data itself. Secondly, the process of
normalization and separately transmitting the weights introduces a
rate loss which we will quantify in Section 4.

It can be shown that the distortion (1) is a locally quadratic
distortion measure, so that, under high-resolution assumptions, it
can be approximated by [2]

d(x,y) -_(x-y)'M(x) (x- y)

ZEa(Xi y) AIi (x) (xi Yi) (3)

where Ali (a) is the k x k matrix whose elements are given by

I 0 d(xw y)
(A/10)1m (x) 2 (yf.y2 ylym YX=

The matrix All (x) was named the sensitivity matrix in [2], where it
was first pointed out that certain useful distortion measures can be
represented by (3).

Let the expected distortion in quantizing the rnk-dimensional
random vector X denoted by

D Ed(X Y)

and assume the expectation i finite Let F(x) denote the compres
sor function and let QD,F denote the compander vector quantizer
using F resulting in an expected distortion D. The rate of en-
coding the source will be measured by the Shannon entropy in bit
per dimension, and denoted by H(QD F). We have the following
theorem [4].

where c > 0 is a scalar constant. Note that the optimal compander
does not depend on the source or the quantizer used. If (4) has
been satisfied and we choose c = 1, the result of Theorem 3.1
reduces to

hm (QDF)
I N
-10og2(D)l2 j

1
h(X) log102(nikG(A))2

1
2nkEF092 (det A1(X)).

Clearly, since (4) is expressed in terms of partial derivatives, the
optimal compander does in general not exist, an observation made
earlier in [14]. An exception forms the case k = 1 for which any
nonuniform (scalar) quantizer can be implemented using a com-
pressor function and uniform quantizer, a result first proved in [1 6].
The asymptotic rate redundancy (or rate loss) introduced by a sub-
optimal compander, say F then follows from Theorem 3.1 and (4)
(see also [4])

lim (H(QD F) H(Q F))
D =E+O

2flkF etluX)
(5)

where 111(x) = F'(x)tF/(x).
Let us consider the distortion measure (1). In this case the

sensitivity matrix is given by

111(x) = diag (IIXI 11 -2IA 23I-2Ik) (6)

where 'k is the identity operator in R . Clearly, since 111(x) is
diagonal with diagonal elements depending on all entries of the
vectors x the optimal compander does not exist An exception
forms the case k = 1 where the optimal compander satisfies

F'(x) =diag (Iil ,.. ,2

andthusI x) =(F1D l(x1),

I)

z(x y , where, for xi Or

F Xi

Fi Kx =- ltl-'dt = n(x h
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I M(X)-'AI(X)-1092 E tr
2 nk
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the optimal scalar compander function for the magnitude-normalized
distortion measure.

In order to compute a (suboptimal) companding function for
the distortion measure (1) in case k > 1, we note that

ix1i = (2il + * + Xi2k) 2

where z
given by

(2 + Z2 )2

E13Iji£. We consider the compander function

Fij(x) = ft +, W2dt

lQrI(1ij + )Ii ID -ln .( (,2 + Zi 2 )l{2j j (7)

where xij, cij > 0 and the constant cij = EXij is chosen such
that the rate loss introduced by the suboptimal compander is mini-
mized. Using some elementary calculus, it can be shown that

OFij (x)
£lSi -,

and, for I/ j,

aFij (x) ii

Oxii llxill(xii + llxill)x~(a2 xii)9
2 2 )I 2 2 9(C2j + Zij) 2 (Cij + (Cij + zij 2)

which is nonzero, from which we conclude that the compander is
suboptimal. However, by inspection of (8) and (9), we have that

lin ijK(x)

where 61j is the Kronecker delta which is 1 if I j and 0 other-
wise. Hence, we conclude that the matrix F'(x) becomes diagonal
for large vector dimensions k and as a consequence

Recall that D = Ed(X, Y) and that Shannon's rate-distortion
function is given by [19]

R(D) = inf I (X; Y) : Ed(X, Y) < DI
where I(X; Y) denotes the mutual information per dimension be-
tween X and Y. As mentioned before, this function is only known
is some special cases. However, for locally quadratic distortion
measures we have the following result [3]:

Theorem 4.1. Suppose d(x, y) and X satisfy some technical con-
ditions, cf [37. Then

lim (R(D) + 1og (27eD))

h(X) + 2kElog2 (det M1(X)) .

In order to evaluate the rate-distortion performance of the multidi-
mensional companding scheme, we generated 106 i.i.d. Rayleigh
distributed random variables with parameter CT = 5. Hence. the
expected value of the source is u T and the differential entropy
is given by

h(X) 2o (1 2+-)

where -y is Euler's constant. The Rayleigh distribution reflects, for
example, the distribution of amplitudes in sinusoidal coding ap-
plications [10, 11]. For the experiments presented here, we used
k = 2 (and thus n = 0.5 106) since this is the smallest vector
dimension for which the optimal compander does not exist and,
according to the discussion above, would yield the largest rate loss
(the rate loss decreases as k increases). The rate loss introduced by
this suboptimal compander can be computed using (5). By inspec-
tion of (8) and (9), we conclude that F'(x) is block-diagonal with
k x k block diagonal elements, and so is II(x). As a consequence,
we have that

F/(x)tLF(ac) diag II112 Ik in?, || I) = (X),
IE1log2 det MI(X)) nLIlog2 (t=ldet 1

which means that the compander becomes optimal.
At the decoder, the quantized data has to be inversely mapped

by the expander function F(x)-1. Since det(F'(x)) 0 (IAI(x)
is positive-definite), F(x) is invertible by the inverse function the-
orem [17]. Hence, the problem of finding the appropriate quan-

tization levels amounts of finding a fast numerical algorithm for
solving xij in (7). Since both F(xQ) and. F'(x) are known, this can

be done efficiently using Newton's method [18]. That is, letting
Fij (x) = (, the reconstruction points xij can be approximated
iteratively by

where the superscript (m) indicates the iteration number. Note that
no side information is needed to reconstruct the data.

4. RATE-DISTORTION EVALUATION

In this section we discuss results obtained by computer simulation
where we will numerically evaluate the rate-distortion function.

E ( 1
i=l

(det Alli (X)))

Elog, (det ANI (x)),
ni

for sufficiently large n by the central limit theorem, assuming that
the random variables log (det A/l (X)) are statistically indepen-
dent and that the Lindeberg conditions on the individual variances
are satisfied [20]. Similar results hold for Elog2(det M1(X)),
where det l (X))XA k. In addition, we have

-1 \/y n I 1\

LIt MV(X) A1M(X)) LI ta (v
(X)

vh
ii(X))Etr K () E vtrK (X l1X)

nk Jn rk

tr
Ali (x) (a))rz~~k

Hence we conclude that the rate loss given by (5) can be accu-
rately approximated using realizations of the process, the source

distributions do not have to be known.

2077
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Fig. 2. Rate-distortion evaluation of the perceptual distortion mea-
sure (1) for a Rayleigh distributed source using perceptual weight-
ing.
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Fig. 1. Rate-distortion evaluation of the perceptual distortion mea-
sure (1) for a Rayleigh distributed source using multidimensional
companding. The bottom plot is an enlarged version of the top
plot.

Figure 1 shows the results for the multidimensional compan-

der given by (7). The solid line denotes the rate-distortion func-
tion of the source. The dashed line is the optimal performance
when using a two-dimensional vector quantizer, which introduces
a rate loss of 2 1og2(G(A2)) log2(G(Al Q)) = 0.23 bit per

dimension due to the sphere-packing loss of the two-dimensional
lattice. Here G(A2) 5 denotes the normalized second mo, } 108_
ment of inertia of the A2-lattice [14] and G(A 1,)= 1/27e is
the normalized second moment of an infinite-dimensional sphere.
The solid line R,(D) denotes the rate-distortion performance of
the proposed multidimensional companding scheme using the A2-
lattice. The rate loss, as computed by (5), is about 0.05 bit per di-
mension which is in line with the experimental results (see bottom
plot for an enlarged version). The line Rn (D) shows the rate-
distortion performance without any compandingu the source data
is quantized directly using the A2-lattice. In that case we have

Vhi (X) = Ik and the corresponding rate loss becomes, again using

(5), 0.30 bit per dimension. Note that the rate loss is independent
of the lattice vector quantizer used in the companding scheme and
only depends on the companding function.

From Figure 1, we can conclude that the rate loss introduced
by direct quantization ofthe source data is relatively small, namely
0.30 bit per dimension. For k = 3, this rate loss reduces to 0.17
bit per dimension. This indicates that there is not much to gain by
transforming the distortion measure (1) into a MSE measure as (2)
and transmitting the weights separately to the decoder. Figure 2
shows the rate-distortion performance of the perceptual weighting
scheme. Again, the two top lines correspond to the rate-distortion
function and the optimal performance using the A2-lattice, respec-

tively. The other curves show the results for encoding the weights
(to be transmitted as side information) using 0, 2, and 5 bits. The
quantizers for quantizing the weights are uniform and centered
around the expected value of the weights and the quantizer output
is entropy encoded. Note that the zero-bit situation corresponds
to the case where we don't use a compander at all (line labeled
Rc(D) in Figures 1 and 2). From Figure 2 we conclude that
transmitting the weights to the decoder does not improve the per-

formance of the scheme. In fact, after spending about 2-3 bits for
the weights, the additional rate for transmitting the side informa-
tion will decrease the performance of the scheme at practical bit
rates. The only way to reduce the rate loss introduced by the per-

ceptual weighting is to jointly encode the source data and the per-

ceptual weights, thereby increasing the encoder complexity, some-
thing which is not necessar in the multidimensional comparding
scheme.

5. CONCLUSIONS

In this paper we studied high-resolution entropy-constrained cod-
ing using multidimensional companding. We introduced a percep-

tual relevant distortion measure to account for auditory percep-

tion and introduced a compander function that becomes optimal
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for large vector dimensions. Using two-dimensional vector quan-
tization, we showed that the rate loss introduced by the proposed
compander is less than 0.05 bit per dimension. We compared the
companding scheme to a scheme based on perceptual weighting
and showed that, for the case k = 2, transmitting the weights sep-
arately to the decoder does not improve the performance of the
scheme resulting in a rate loss of 0.30 bit per dimension.
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