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Abstract. Nonnegative tensor factorization (NTF) of multichannel spec-
trograms under PARAFAC structure has recently been proposed by
Fitzgerald et al as a mean of performing blind source separation (BSS)
of multichannel audio data. In this paper we investigate the statistical
source models implied by this approach. We show that it implicitly as-
sumes a nonpoint-source model contrasting with usual BSS assumptions
and we clarify the links between the measure of fit chosen for the NTF
and the implied statistical distribution of the sources. While the original
approach of Fitzgeral et al requires a posterior clustering of the spatial
cues to group the NTF components into sources, we discuss means of
performing the clustering within the factorization. In the results section
we test the impact of the simplifying nonpoint-source assumption on
underdetermined linear instantaneous mixtures of musical sources and
discuss the limits of the approach for such mixtures.

Key words: Nonnegative tensor factorization (NTF), audio source sep-
aration, nonpoint-source models, multiplicative parameter updates

1 Introduction

Nonnegative matrix factorization (NMF) is an unsupervised data decomposi-
tion technique with growing popularity in the fields of machine learning and
signal/image processing [1]. Much research about this topic has been driven by
applications in audio, where the data matrix is taken as the magnitude or power
spectrogram of a sound signal. NMF was for example applied with success to
automatic music transcription [2] and audio source separation [3, 4]. The fac-
torization amounts to decomposing the spectrogram data into a sum of rank-1
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spectrograms, each of which being the expression of an elementary spectral pat-
tern amplitude-modulated in time.

However, while most music recordings are available in multichannel format
(typically, stereo), NMF in its standard setting is only suited to single-channel
data. Extensions to multichannel data have been considered, either by stack-
ing up the spectrograms of each channel into a single matrix [5] or by equiva-
lently considering nonnegative tensor factorization (NTF) under a parallel fac-
tor analysis (PARAFAC) structure, where the channel spectrograms form the
slices of a 3-valence tensor [6, 7]. Let Xi be the short-time Fourier transform
(STFT) of channel i, a complex-valued matrix of dimensions F × N , where
i = 1, . . . , I and I is the number of channel (I = 2 in the stereo case). The
latter approaches boil down to assuming that the magnitude spectrograms |Xi|
are approximated by a linear combination of nonnegative rank-1 “elementary”
spectrograms |Ck| = wk hT

k such that

|Xi| ≈
K∑

k=1

qik|Ck| (1)

and |Ck| is the matrix containing the modulus of the coefficients of some “latent”
components whose precise meaning we will attempt to clarify in this paper.
Equivalently, Eq. (1) writes

|xifn| ≈
K∑

k=1

qik wfk hnk (2)

where {xifn} are the coefficients of Xi. Introducing the nonnegative matrices
Q = {qik}, W = {wfk}, H = {hnk}, whose columns are respectively denoted
qk, wk and hk, the following optimization problem needs to be solved

min
Q,W,H

∑

ifn

d(|xifn||v̂ifn) subject to Q,W,H ≥ 0 (3)

with

v̂ifn
def
=

K∑

k=1

qik wfk hnk (4)

and where the constraint A ≥ 0 means that the coefficients of matrix A are non-
negative, and d(x|y) is a scalar cost function, taken as the generalized Kullback-
Leibler (KL) divergence in [6] or as the Euclidean distance in [5]. Complex-valued

STFT estimates Ĉk are subsequently constructed using the phase of the observa-
tions (typically, ĉkfn is given the phase of xifn, where i = argmax{qik}i [7]) and
then inverted to produce time-domain components. The components pertaining
to same “sources” (e.g, instruments) can then be grouped either manually or via
clustering of the estimated spatial cues {qk}k.

In this paper we build on these previous works and bring the following con-
tributions :
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– We recast the approach of [6] into a statistical framework, based on a gen-
erative statistical model of the multichannel observations X. In particular
we discuss NTF of the power spectrogram |X|2 with the Itakura-Saito (IS)
divergence and NTF of the magnitude spectrogram |X| with the KL diver-
gence.

– We describe a NTF with a novel structure, that allows to take care of the
clustering of the components within the decomposition, as opposed to after.

The paper is organized as follows. Section 2 describes the generative and
statistical source models implied by NTF. Section 3 describes new and existing
multiplicative algorithms for standard NTF and for “Cluster NTF”. Section 4
reports experimental source separation results on musical data; we test in par-
ticular the impact of the simplifying nonpoint-source assumption on underdeter-
mined linear instantaneous mixtures of musical sources and point out the limits
of the approach for such mixtures. We conclude in Section 5. This article builds
on related publications [8, 9].

2 Statistical models to NTF

2.1 Models of multichannel audio

Assume a multichannel audio recording with I channels x(t) = [x1(t), . . . , xI(t)]
T ,

also referred to as “observations” or “data”, generated as a linear mixture of
sound source signals. The term “source” refers to the production system, for
example a musical instrument, and the term “source signal” refers to the signal
produced by that source. When the intended meaning is clear from the context
we will simply refer to the source signals as “the sources”.

Under the linear mixing assumption, the multichannel data can be expressed
as

x(t) =

J∑

j=1

sj(t) (5)

where J is the number of sources and sj(t) = [s1j(t), . . . sij(t), . . . , sIj(t)]
T is the

multichannel contribution of source j to the data. Under the common assump-
tions of point-sources and linear instantaneous mixing, we have

sij(t) = sj(t) aij (6)

where the coefficients {aij} define a I×J mixing matrix A, with columns denoted
[a1, . . . ,aJ ]. In the following we will show that the NTF techniques described
in this paper correspond to maximum likelihood (ML) estimation of source and
mixing parameters in a model where the point-source assumption is dropped
and replaced by

sij(t) = s
(i)
j (t) aij (7)
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where the signals s
(i)
j (t), i = 1, . . . , I are assumed to share a certain “resem-

blance”, as modelled by being two different realizations of the same random
process, characterizing their time-frequency behavior, as opposed to be the same
realization. Dropping the point-source assumption may also be viewed as ig-
noring some mutual information between the channels (assumption of sources
contributing to each channel with equal statistics instead of contributing the
same signal). Of course, when the data has been generated from point-sources,
dropping this assumption will usually lead to a suboptimal but typically faster
separation algorithm, and the results section will illustrate this point.

In this work we further model the source contributions as a sum of elementary
components themselves, so that

s
(i)
j (t) =

∑

k∈Kj

c
(i)
k (t) (8)

where [K1, . . . ,KJ ] denotes a nontrivial partition of [1, . . . , K]. As will become

more clear in the following, the components c
(i)
k (t) will be characterized by a

spectral shape wk and a vector of activation coefficients hk, through a statistical
model. Finally, we obtain

xi(t) =

K∑

k=1

mik c
(i)
k (t) (9)

where mik is defined as mik = aij if and only if k ∈ Kj . By linearity of STFT,
model (8) writes equivalently

xifn =

K∑

k=1

mik c
(i)
kfn (10)

where xifn and c
(i)
kfn are the complex-valued STFTs of xi(t) and c

(i)
k (t), and

where f = 1, . . . , F is a frequency bin index and n = 1, . . . , N is a time frame
index.

2.2 A statistical interpretation of KL-NTF

Denote V the I × F ×N tensor with coefficients vifn = |xifn| and Q the I ×K

matrix with elements |mik|. Let us assume so far for ease of presentation that
J = K, i.e, mik = aik, so that M is a matrix with no particular structure. Then
it can be easily shown that the approach of [6], briefly described in Section 1
and consisting in solving

min
Q,W,H

∑

ifn

dKL(vfn|v̂ifn) subject to Q,W,H ≥ 0 (11)
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with v̂ifn defined by Eq. (4), is equivalent to ML estimation of Q, W and H in
the following generative model :

|xifn| =
∑

k

|mik| |c
(i)
kfn| (12)

|c
(i)
kfn| ∼ P(wfkhnk) (13)

where P(λ) denotes the Poisson distribution, defined in Appendix A, and the
KL divergence dKL(·|·) is defined as

dKL(x|y) = x log
x

y
+ y − x. (14)

The link between KL-NMF/KL-NTF and inference in composite models with
Poisson components has been established in many previous publications, see, e.g,
[10, 11]. In our opinion, model (12)-(13) suffers from two drawbacks. First, the
linearity of the mixing model is assumed on the magnitude of the STFT frames -
see Eq. (12) - instead of the frames themselves - see Eq. (10) -, which inherently

assumes that the components {c
(i)
kfn}k have the same phase and that the mixing

parameters {mik}k have the same sign, or that only one component is active in
every time-frequency tile (t, f). Second, the Poisson distribution is formally only
defined on integers, which impairs rigorous statistical interpretation of KL-NTF
on non-countable data such as audio spectra.

Given estimates Q, W and H of the loading matrices, Minimum Mean Square
Error (MMSE) estimates of the component amplitudes are given by

̂
|c

(i)
kfn|

def
= E{ |c

(i)
kfn| | Q,W,H, |X|} (15)

=
qikwfkhnk∑

l qilwflhnl

|xifn| (16)

Then, time-domain components c
(i)
k (t) are reconstructed through inverse-STFT

of c
(i)
kfn =

̂
|c

(i)
kfn|arg(xifn), where arg(x) denotes the phase of complex-valued x.

2.3 A statistical interpretation of IS-NTF

To remedy the drawbacks of the KL-NTF model for audio we describe a new
model based on IS-NTF of the power spectrogram, along the line of [12] and
also introduced in [8]. The model reads

xifn =
∑

k

mik c
(i)
kfn (17)

c
(i)
kfn ∼ Nc(0|wfkhnk) (18)

where Nc(µ, σ2) denotes the proper complex Gaussian distribution, defined in
Appendix A. Denoting now V = |X|2 and Q = |M|2, it can be shown that ML



6 C. Févotte and A. Ozerov

estimation of Q, W and H in model (17)-(18) amounts to solving

min
Q,W,H

∑

ifn

dIS(vifn|v̂ifn) subject to Q,W,H ≥ 0 (19)

where dIS(·|·) denotes the IS divergence defined as

dIS(x|y) =
x

y
− log

x

y
− 1. (20)

Note that our notations are abusive in the sense that the mixing parameters
|mik| and the components |ckfn| appearing through their modulus in Eq. (12)
are in no way the modulus of the mixing parameters and the components ap-
pearing in Eq. (17). Similarly, the matrices W and H represent different types of
quantities in every case; in Eq. (13) their product is homogeneous to component
magnitudes while in Eq. (18) their product is homogeneous to variances of com-
ponent variances. Formally we should have introduced variables |cKL

kfn|, WKL,

HKL to be distinguished from variables cIS
kfn, WIS , HIS, but we have not in

order to avoid cluttering the notations. The difference between these quantities
should be clear from the context.

Model (17)-(18) is a truly generative model in the sense that the linear mix-
ing assumption is made on the STFT frames themselves, which is a realistic

assumption in audio. Eq. (18) defines a Gaussian variance model of c
(i)
kfn; the

zero mean assumption reflects the property that the audio frames taken as the
input of the STFT can be considered centered, for typical window size of about

20 ms or more. The proper Gaussian assumption means that the phase of c
(i)
kfn

is assumed to be a uniform random variable [13], i.e., the phase is taken into the
model, but in a noninformative way. This contrasts from model (12)-(13), which
simply discards the phase information.

Given estimates Q, W and H of the loading matrices, Minimum Mean Square
Error (MMSE) estimates of the components are given by

ĉ
(i)
kfn

def
= E{c

(i)
kfn | Q,W,H,X} (21)

=
qikwfkhnk∑

l qilwflhnl

xifn (22)

We would like to underline that the MMSE estimator of components in the STFT
domain (21) is equivalent (thanks to the linearity of the STFT and its inverse) to
the MMSE estimator of components in the time domain, while the the MMSE
estimator of STFT magnitudes (15) for KL-NTF is not consistent with time
domain MMSE. Equivalence of an estimator with time domain signal squared
error minimization is an attractive property, at least because it is consistent with
a popular objective source separation measure such as signal to distortion ratio
(SDR) defined in [14].

The differences between the two models, termed “KL-NTF.mag” and “IS-
NTF.pow” are summarized in Table 1.
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KL-NTF.mag IS-NTF.pow

Model

Mixing model |xifn| =
P

k
|mik| |c

(i)
kfn| xifn =

P

k
mik c

(i)
kfn

Comp. distribution |c(i)
kfn| ∼ P(wfkhnk) c

(i)
kfn ∼ Nc(0|wfkhnk)

ML estimation

Data V = |X| V = |X|2

Parameters W, H,Q = |M| W, H,Q = |M|2

Approximate v̂ifn =
P

k
qikwfkhnk

Optimization min
Q,W,H≥0

P

ifn
dKL(vifn|v̂ifn) min

Q,W,H≥0

P

ifn
dIS(vifn|v̂ifn)

Reconstruction
̂
|c(i)

kfn| =
qikwfkhnk

P

l qilwflhnl
|xifn| ĉ

(i)
kfn =

qikwfkhnk
P

l qilwflhnl
xifn

Table 1. Statistical models and optimization problems underlaid to KL-NTF.mag and
IS-NTF.pow

3 Algorithms for NTF

3.1 Standard NTF

We are now left with an optimization problem of the form

min
Q,W,H

D(V|V̂)
def
=

∑

ifn

d(vifn|v̂ifn) subject to Q,W,H ≥ 0 (23)

where v̂ifn =
∑

k qikhnkwfk, and d(x|y) is the cost function, either the KL or IS
divergence in our case. Furthermore we impose ‖qk‖1 = 1 and ‖wk‖1 = 1, so as
to remove obvious scale indeterminacies between the three loading matrices Q,
W and H. With these conventions, the columns of Q convey normalized mix-
ing proportions (spatial cues) between the channels, the columns of W convey
normalized frequency shapes and all time-dependent amplitude information is
relegated into H.

As common practice in NMF and NTF, we employ multiplicative algorithms
for the minimization of D(V|V̂). These algorithms essentially consist of updating
each scalar parameter θ by multiplying its value at previous iteration by the
ratio of the negative and positive parts of the derivative of the criterion w.r.t.
this parameter, namely

θ ← θ
[∇θD(V|V̂)]−

[∇θD(V|V̂)]+
, (24)

where ∇θD(V|V̂) = [∇θD(V|V̂)]+−[∇θD(V|V̂)]− and the summands are both
nonnegative [12]. This scheme automatically ensures the nonnegativity of the pa-
rameter updates, provided initialization with a nonnegative value. The derivative
of the criterion w.r.t scalar parameter θ writes

∇θD(V|V̂) =
∑

ifn

∇θ v̂ifnd′(vifn|v̂ifn) (25)
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where d′(x|y) = ∇yd(x|y). As such, we get

∇qik
D(V|V̂) =

∑

fn

wfkhnk d′(vifn|v̂ifn) (26)

∇wfk
D(V|V̂) =

∑

in

qikhnk d′(vifn|v̂ifn) (27)

∇hnk
D(V|V̂) =

∑

if

qikwfk d′(vifn|v̂ifn) (28)

We note in the following G the I×F×N tensor with entries gifn = d′(vifn|v̂ifn).
For the KL and IS cost functions we have

d′KL(x|y) = 1−
x

y
(29)

d′IS(x|y) =
1

y
−

x

y2
(30)

Let A and B be F ×K and N ×K matrices. We denote A ◦B the F ×N ×K

tensor with elements afkbnk, i.e, each frontal slice k contains the outer product
akb

T
k . 3 Now we note < S,T >KS,KT

the contracted product between tensors S

and T, defined in Appendix B, where KS and KT are the sets of mode indices
over which the summation takes place. With these definitions we get

∇QD(V|V̂) = < G,W ◦H >{2,3},{1,2} (31)

∇WD(V|V̂) = < G,Q ◦H >{1,3},{1,2} (32)

∇HD(V|V̂) = < G,Q ◦W >{1,2},{1,2} (33)

and multiplicative updates are obtained as

Q← Q.
< G−,W ◦H >{2,3},{1,2}

< G+,W ◦H >{2,3},{1,2}
(34)

W←W.
< G−,Q ◦H >{1,3},{1,2}

< G+,Q ◦H >{1,3},{1,2}
(35)

H← H.
< G−,Q ◦W >{1,2},{1,2}

< G+,Q ◦W >{1,2},{1,2}
(36)

The resulting algorithm can easily be shown to nonincrease the cost function at
each iteration by generalizing existing proofs for KL-NMF [15] and for IS-NMF
[16]. In our implementation normalization of the variables is carried out at the
end of every iteration by dividing every column of Q by their ℓ1 norm and scaling
the columns of W accordingly, then dividing the columns of W by their ℓ1 norm
and scaling the columns of H accordingly.

3 This is similar to the Khatri-Rao product of A and B, which returns a matrix of
dimensions FN × K with column k equal to the Kronecker product of ak and bk.
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3.2 Cluster NTF

For ease of presentation of the statistical composite models inherent to NTF, we
have assumed in Section 2.2 and onwards that K = J , i.e., that one source sj(t)
is one elementary component ck(t) with its own mixing parameters {aik}i. We
now turn back to our more general model (9), where each source sj(t) is a sum
of elementary components {ck(t)}k∈Kj

sharing same mixing parameters {aik}i,
i.e, mik = aij iff k ∈ Kj . As such, we can express M as

M = AL (37)

where A is the I × J mixing matrix and L is a J ×K “labelling matrix” with
only one nonzero value per column, i.e., such that

ljk = 1 iff k ∈ Kj (38)

ljk = 0 otherwise. (39)

This specific structure of M transfers equivalently to Q, so that

Q = DL (40)

where

D = |A| in KL-NTF.mag (41)

D = |A|2 in IS-NTF.pow (42)

The structure of Q defines a new NTF, which we refer to as Cluster NTF,
denoted cNTF. The minimization problem (23) is unchanged except for the fact
that the minimization over Q is replaced by a minimization over D. As such,
the derivatives w.r.t. wfk, hnk do not change and the derivatives over dij write

∇dij
D(V|V̂) =

∑

fn

(
∑

k

ljkwfkhnk) d′(vifn|v̂ifn) (43)

=
∑

k

ljk

∑

fn

wfkhnk d′(vifn|v̂ifn) (44)

i.e.,
∇DD(V|V̂) =< G,W ◦H >{2,3},{1,2} LT (45)

so that multiplicative updates for D can be obtained as

D← D.
< G−,W ◦H >{2,3},{1,2} LT

< G+,W ◦H >{2,3},{1,2} LT
(46)

As before, we normalize the columns of D by their ℓ1 norm at the end of every
iteration, and scale the columns of W accordingly.

In our Matlab implementation the resulting multiplicative algorithm for
IS-cNTF.pow is 4 times faster than the one presented in [8] (for linear in-
stantaneous mixtures), which was based on sequential updates of the matri-
ces [qk]k∈Kj

, [wk]k∈Kj
, [hk]k∈Kj

. The Matlab code of this new algorithm as
well as the other algorithms described in this paper can be found online at
http://perso.telecom-paristech.fr/~fevotte/Samples/CMMR10/.
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4 Results

We consider source separation of simple audio mixtures taken from the Signal
Separation Evaluation Campaign (SiSEC 2008) website. More specifically, we
used some “development data” from the “underdetermined speech and music
mixtures task” [17]. We considered the following datasets :

– wdrums, a linear instantaneous stereo mixture (with positive mixing coeffi-
cients) of 2 drum sources and 1 bass line,

– nodrums, a linear instantaneous stereo mixture (with positive mixing co-
efficients) of 1 rhythmic acoustic guitar, 1 electric lead guitar and 1 bass
line.

The signals are of length 10 sec and sampled at 16 kHz. We applied a STFT
with sine bell of length 64 ms (1024 samples) leading to F = 513 and N = 314.
We applied the following algorithms to the two datasets :

– KL-NTF.mag with K = 9,

– IS-NTF.pow with K = 9,

– KL-cNTF.mag with J = 3 and 3 components per source, leading to K = 9,

– IS-cNTF.pow with J = 3 and 3 components per source, leading to K = 9.

Every four algorithm was run 10 times from 10 random initializations for 1000 it-
erations. For every algorithm we then selected the solutions Q, W and H yielding
smallest cost value. Time-domain components were reconstructed as discussed
in Section 2.2 for KL-NTF.mag and KL-cNTF.mag and as is in Section 2.3 for
IS-NTF.pow and IS-cNTF.pow. Given these reconstructed components, source
estimates were formed as follows :

– For KL-cNTF.mag and IS-cNTF.pow, sources are immediately computed
using Eq. (8), because the partition K1, . . . ,KJ is known.

– For KL-NTF.mag and IS-NTF.pow, we used the approach of [6, 7] consisting
of applying the K-means algorithm to Q (with J clusters) so as to label every
component k to a source j, and each of the J sources is then reconstructed
as the sum of its assigned components.

Note that we are here not reconstructing the original single-channel sources

sj(t) but their multichannel contribution [s
(1)
j (t), . . . , s

(I)
j (t)] to the multichan-

nel data (i.e, their spatial image). The quality of the source image estimates
was assessed using the standard Signal to Distortion Ratio (SDR), source Im-
age to Spatial distortion Ratio (ISR), Source to Interference Ratio (SIR) and
Source to Artifacts Ratio (SAR) defined in [18]. The numerical results are
reported in Table 2. The source estimates may also be listened to online at
http://perso.telecom-paristech.fr/~fevotte/Samples/CMMR10/. Figure 1
displays estimated spatial cues together with ground truth mixing matrix, for
every method and dataset.
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Discussion On dataset wdrums best results are obtained with IS-cNTF.pow.
Top right plot of Figure 1 shows that the spatial cues returned by D reasonably
fit the original mixing matrix |A|2. The slightly better results of IS-cNTF.pow
compared to IS-NTF.pow illustrates the benefit of performing clustering of the
spatial cues within the decomposition as opposed to after. On this dataset KL-
cNTF.mag fails to adequately estimate the mixing matrix. Top left plot of Fig-
ure 1 shows that the spatial cues corresponding to the bass and hi-hat are cor-
rectly captured, but it appears that two columns of D are “spent” on representing
the same direction (bass, s3), suggesting that more components are needed to
represent the bass, and failing to capture the drums, which are poorly estimated.
KL-NTF.mag performs better (and as such, one spatial cue qk is correctly fitted
to the drums direction) but overly not as well as IS-NTF.pow and IS-cNTF.pow.

On dataset nodrums best results are obtained with KL-NTF.mag. None of
the other methods adequately fits the ground truth spatial cues. KL-cNTF.mag
suffers same problem than on dataset wdrums : two columns of D are spent on
the bass. In contrast, none of the spatial cues estimated by IS-NTF.pow and
IS-cNTF.pow accurately captures the bass direction, and ŝ1 and ŝ2 both contain
much bass and lead guitar.4 Results from all four methods on this dataset are
overly all much worse than with dataset wdrums, corroborating an established
idea than percussive signals are favorably modeled by NMF models [19]. In-
creasing the number of total components K did not seem to solve the observed
deficiencies of the 4 approaches on this dataset.

5 Conclusions

In this paper we have attempted to clarify the statistical models latent to audio
source separation using PARAFAC-NTF of the magnitude or power spectro-
gram. In particular we have emphasized that the PARAFAC-NTF does not op-
timally exploits interchannel redundancy in the presence of point-sources. This
still may be sufficient to estimate spatial cues correctly in linear instantaneous
mixtures, in particular when the NMF model suits well the sources, as seen from
the results on dataset wdrums but may also lead to incorrect results in other cases,
as seen from results on dataset nodrums. In contrast methods fully exploiting
interchannel dependencies, such as the EM algorithm based on model (17)-(18)

with c
(i)
kfn = ckfn in [8], can successfully estimates the mixing matrix in both

datasets. The latter method is however about 10 times computationally more
demanding than IS-cNTF.pow.

In this paper we have considered a variant of PARAFAC-NTF in which the
loading matrix Q is given a structure such that Q = DL. We have assumed that

4 The numerical evaluation criteria were computed using the bss eval.m function
available from SiSEC website. The function automatically pairs source estimates
with ground truth signals according to best mean SIR. This resulted here in pairing
left, middle and right blue directions with respectively left, middle and right red
directions, i.e, preserving the panning order.
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Fig. 1. Mixing parameters estimation and ground truth. Top : wdrums dataset. Bot-
tom : nodrums dataset. Left : results of KL-NTF.mag and KL-cNTF.mag; ground
truth mixing vectors {|aj |}j (red), mixing vectors {dj}j estimated with KL-cNTF.mag
(blue), spatial cues {qk}k given by KL-NTF.mag (dashed, black). Right : results of IS-
NTF.pow and IS-cNTF.pow; ground truth mixing vectors {|aj |

2}j (red), mixing vectors
{dj}j estimated with IS-cNTF.pow (blue), spatial cues {qk}k given by IS-NTF.pow
(dashed, black).
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wdrums

s1 s2 s3

(Hi-hat) (Drums) (Bass)

KL-NTF.mag

SDR -0.2 0.4 17.9
ISR 15.5 0.7 31.5
SIR 1.4 -0.9 18.9
SAR 7.4 -3.5 25.7

KL-cNTF.mag

SDR -0.02 -14.2 1.9
ISR 15.3 2.8 2.1
SIR 1.5 -15.0 18.9
SAR 7.8 13.2 9.2

IS-NTF.pow

SDR 12.7 1.2 17.4
ISR 17.3 1.7 36.6
SIR 21.1 14.3 18.0
SAR 15.2 2.7 27.3

IS-cNTF.pow

SDR 13.1 1.8 18.0

ISR 17.0 2.5 35.4
SIR 22.0 13.7 18.7
SAR 15.9 3.4 26.5

nodrums

s1 s2 s3

(Bass) (Lead G.) (Rhythmic G.)

KL-NTF.mag

SDR 13.2 -1.8 1.0

ISR 22.7 1.0 1.2
SIR 13.9 -9.3 6.1
SAR 24. 2 7.4 2.6

KL-cNTF.mag

SDR 5.8 -9.9 3.1
ISR 8.0 0.7 6.3
SIR 13.5 -15.3 2.9
SAR 8.3 2.7 9.9

IS-NTF.pow

SDR 5.0 -10.0 -0.2
ISR 7.2 1.9 4.2
SIR 12.3 -13.5 0.3
SAR 7.2 3.3 -0.1

IS-cNTF.pow

SDR 3.9 -10.2 -1.9
ISR 6.2 3.3 4.6
SIR 10.6 -10.9 -3.7
SAR 3.7 1.0 1.5

Table 2. SDR, ISR, SIR and SAR of source estimates for the two considered datasets.
Higher values indicate better results. Values in bold font indicate the results with best
average SDR.
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L is known labelling matrix that reflects the partition K1, . . . ,KJ . An important
perspective of this work is to let the labelling matrix free and automatically
estimate it from the data, either under the constraint that every column lk of L

may contain only one nonzero entry, akin to a hard clustering, i.e., ‖lk‖0 = 1, or
more generally under the constraint that ‖lk‖0 is small, akin to soft clustering.
This should be made feasible using NTF under sparse ℓ1-constraints and is left
for future work.

A Standard distributions

Proper complex Gaussian Nc (x|µ, Σ) = |π Σ|−1 exp−(x− µ)H Σ−1 (x− µ)
Poisson P(x|λ) = exp(−λ) λx

x!

B Contracted tensor product

Let S be a tensor of size I1×. . .×IM×J1×. . .×JN and T be a tensor of size I1×
. . .×IM×K1× . . .×KP . Then, the contracted product < S,T >{1,...,M},{1,...,M}

is a tensor of size J1 × . . .× JN ×K1 × . . .×KP , given by

< S,T >{1,...,M},{1,...,M}=

I1∑

i1=1

. . .

IM∑

iM=1

si1,...,iM ,j1,...,jN
ti1,...,iM ,k1,...,kP

(47)

The contracted tensor product should be thought of as a form a generalized dot
product of two tensors along common modes of same dimensions.
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