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ABSTRACT is thesteering vector associated with TDOA. Each TDOA
This paper deals with the localization of multiple sourcegthus translates into an expected phase differénge at each
from two-channel mixtures recorded in a reverberant envifrequencyy.
ronment. We introduce new angular spectrum-based methods Three different approaches have been proposed in the
re|ying on the Signa|-to-noise ratio (SNR) to estimate thditerature. A first one [ll, 3, 1] is to convert the observed
time difference of arrival (TDOA) of each source. We pro-phase difference into a TDOA in each time-frequency bin
pose and compare five ways of estimating the SNR in eacnd to build a histogram of the TDOAs whose peaks point
time-frequency point and in each direction, using beamformto the sources. This approach is restricted to small micro-
ing techniques and statistical models. Large-scale eilatua Phone spacings for which little or no spatial aliasing oscur
considering a high number of situations shows the effective® second possibility [4, 8] is to alternately cluster the ¢im

ness of the proposed approach compared to state-of-the-&igquency bins into sources and update the source TDOAs
angular spectrum-based techniques. according to the observed phase differences. It does neot suf
fer from spatial aliasing but necessitates an initial gusss
the source TDOAs due to local optima. A third approach
[5, 9, 7] is to build a function of TDOA that we call angular
spectrum, whose peak(s) indicate the TDOA(s) compatible
1. INTRODUCTION with the observed phase difference in each time-frequency
] ] bin, and to sum this function over all bins. In the following,
Recorded signals are often a mixture of several sound s®Urcg,e consider the latter approach which is applicable to any

such as speech, music or noise. Source localization isske tamicrophone spacing and does not necessitate any prior guess
of estimating thedirection of arrival (DOA) of each source. ¢ the source TDOAS.

It has potential applications in many domains such as video-

conferencing, surveillance, or blind source separation. is that they essentially assign the same weight to all oleserv
This problgm is particularly difficult in the two-channel phase differences, whether they result from the directdoun

under-determined case, when three or more sources Mustqingle source or from a mixture of direct and reverberated

be localized from only two sensors. Localization is oftengy,nd and/or several souréesn [1], a signal-to-noise ratio

achieved by findingime difference of arrival (TDOA) be-  (g\R)-like confidence measure was proposed to weight the
tween channels for each source [5, 9]. Usually, this proligem i ormation provided in each time-frequency bin in the spe-
addressed using the short-time Fourier transform (STF). L cjtic context of histogram-based localization in instaeiaus

X(t, f) = [Xa(t, f), Xa(t, )]" andS,(t, f), n=1,...,N  mixtures and was shown to greatly improve localization per-
be respectively the STFT of the observed signals and thgmance.

n-_th source signal in time frameand frequenc_y birf. The In this paper, we propose to use the SNR in each time-
mixture can be modeled as the sum of a direct part and fequency point to construct an angular spectrum and define
reverberated paB(t, f): five ways of estimating the SNR in a convolutive mixture us-
N ing beamforming techniques and statistical models. Irigect
X(t,f) =Y dr, (f)Sult, ) + B(t, f) (1) 2, we describe the five proposed SNR-based angular spectra.
n=1 We evaluate the performance of the proposed approaches and

compare them to existing angular spectrum-based methods in
section 3. Finally, we conclude in section 4.

Index Terms— Multiple source localization, TDOA esti-
mation, signal-to-noise ratio, angular spectrum

A limitation of current angular spectrum-based methods

wherer,, is the TDOA of sourcex and

d.(f) = [L,e ™" ) N
IMUSIC [9] attenuates the effect or reverberation or intémfg sources
This work was supported in part by French ANR project ECHANBIH by denoising in the parameter domain but the output spectio@s not de-
by the Quaero Programme, funded by OSEO. pend on the resulting signal-to-noise ratio




2. SNR-BASED ANGULAR SPECTRA 2.2. Estimation of a priori SNR by ML under a diffuse
noise model.

In a given time-frequency bit, f), we define th&NR(t¢, f, 7) o . .
associated with TDOA as the ratio between the signal power !N the a posteriori approach, the SNR is generally overesti-
E, in this direction and the noise pow&y, (power in all other mated at low frequencies. Indeed, the_ol:_)served phTase—dlffer
directions). The SNR is then supposed to take large valugdces are small so thét,, becomes similar tal.d," for
in the direction of a given source in the time-frequency bin!l 7- This can be addressed by modeling both the source and
where this source is predominant. We propose to build af1® noise as random variables. We assume that in each time-
angular spectrum by summing the estimated SNRs over afféduency point, one sourcg of TDOA 7 is predominant,

time-frequency bins and all TDOAs: and thatS and noiseB follow independent zero-mean Gaus-
sian distributions. The mixturK = d,S + B then follows a
(1) = Z SNR(t, f,7) (3) Zero-mean Gaussian distribution with covariance matrix
®:1) Dyx = UsdeTH +vp ¥ (8)

The source TDOAs are then estimated by selecting the val- . )
ues ofr corresponding to thd highest peaks oE(r). The WherepS ety represent_respectlvely the source variance and
choice of.J leads to a trade-off between recall and precision the noise variance, anll is the covariance matrix of a diffuse

as described in section 3. noise [4, 2]
In order to estimat8NR(¢, f, 7), we propose three differ- 1 ne(2 fd
ent approaches. The first one, that we egblosteriori, uses U = ' J sinc(2mf %) 9)
sinc(27f <) 1

beamforming to estimate the source power and considers the

.re.3|dual POWET as NoIse. The secorjd one, that_ waq:mibn,l whered is the distance between the two microphoneés the
jointly estimates the source and noise powers in the maxmurgOunds ced andne( ) — 220 \We estimate. andu. in the
likelihood (ML) sense, under a diffuse noise model. We then P c() = =5 s AN,

combine these two models to define a third approach baséf- sense using the closed form algorithmiin [2]
on frequency weighting of tha posteriori SNR. (

Vs

v ) = (diag(A1) diag(A2))”" diag(A ™ B (AT) 1)
b
2.1. Estimation ofa posteriori SNR (10)

: : : . wherediag(.) denotes the column vector of diagonal entries
From now on, we consider a single time-frequency (iry) : ) . .
of a matrix, A is the matrix whose columns are the eigen-

and omit its indices for simplicity. The power associatethwi Ha 1 )
TDOA 7 can be estimated as the power of the output of a\lfﬁ(:irs dOngdATH ‘?1 a’nzrfﬁll’l’Aj aree qnilnr_ensepe;ttiixtelygo
Delay-and-Sum (DS) beamformer or a Minimum Variance, rd-"( ) (A7) PPN 9 y
Distortionless Response (MVDR) beamformer, respectively"P0sed by setting, to zero and, to 5tr(¥™" @) when

vp OF vg resulting from (10) is negative [2]. We then compute

iven by [6
J yiel the SNR by:
~ Vg
£09) d, " ®uxd, @ SNRapr = - (11)
T 4
EgMVDR) _ (dTH‘/f’;,ldT)_l G We can see on figure 1 (C) that this form of SNR increases the

resolution of the peaks but results in secondary peaks droun

where®,.. denotes the empirical mixture covariance matrixtN€ trué TDOAs that can lead to wrong estimation.

that can be computed as described in [2]. We wiie =
Ex — E. whereEx = %tr(‘I’xx) represent the total power. 2.3. Estimation ofa priori SNR by frequency weighting of

We obtain two ways of estimating the SNR for TDGA a posteriori SNR
d. 7%, .d. We now want to combine both approaches to obtain an an-
SNRps = (6)  gular spectrum with the global shapeapriori SNR and the

2r(Pyx) — dr ! Bosed,

d. "®zld,)?
SNRmvDr = A( ) (7)

%tr(i)xx) - (d‘rH&);idr)il

smoothness di posteriori SNR. In order to do so, we express
the relationship between these two forms of SNR, in the sim-
ple case where the input signal consists in a single source of
TDOA 7 = 0 and a diffuse noise®, is then given by (8).
Figures 1 (A) and (B) show the angular spectra obtained reBy plugging (8) into (6) and (7), we obtain:

spectively withSNRpgs and SNRyvpr - As compared to
the DS beamformer, MVDR beamformer appears to provide
better noise elimination and enhances the peaks.

1+ 2SNRpriori + sinc(2m f4)

SNRps =
bs 1 — sinc(2mf4)

(12)




SNR _ 1+ 2SNRpriori (13) SNR GCC
MVDR = T oY) DS [MVDR[APR|DSW|MVDRW|PHAT|MUSIC|cSCT
c R|0.41] 0.58 [0.62|0.63| 0066 | 0.56 | 0.55 | 0.61
where SNRiori = vs/vp. By inverting these equations, |7]0.48] 0.61 |0.37]0.67 | 0.69 0.65 | 0.33 [0.64
we obtain a new way of computing priori SNR by fre- [£10:43] 0.59 [0.46]0.65] 0.67 | 0.58 | 0.41 |0.62

guency weighting o& posteriori SNR, for bothSNRpg and o
SNRAVDR: Table 1. Recall, precision and F-measure for =

Jopt (A, N, d) averaged over all configurations.

SNRpsw = Wau(f)SNRps + Wa(f) —1 (14)
1
SNRmvprw = Wa(f)SNRmvpr — 3 (15)
female speech and music). 4446 mixtures of 11 s duration
whereW,(f) = l—sin02(27rf%) is a frequency-dependent fac- were generated in total using impulse responses simul&ed v

the Roomsimove toolb@xfor a room of dimensiong.45 m
x 3.55 m x 2.5 m. Matlab code implementing the five pro-
posed methods is availaBle We compared these methods
with three existing angular spectrum methods GCC-PHAT
[5], MUSIC [9], and cSCT [7]. The parameters of cSCT were
(4)SNR-DS (8) SNR-MVDR fixed by interpolation of the values chosen by the author for
l other configurations.
;’: \\ Evaluation was made in terms of recall, precision and F-
i\ measure. An estimated TDOAIs considered to be a correct
"~ /1 \\ ~ N\ estimate of a true TDOA if §(7 — 7) < with y a constant
R VA AN set in our experiments to 0.05. Fdrsources, if we select the
ot TooRs 5 o TDOAs corresponding to thé highest peaks of the angular
1 (©)sNR-PR o5 oY spectrum, and we notk the number of correct TDOAs, we
define the recalR, the precisior? and the F-measurg by

tor reducing the weight of low frequencies. Figure 1 (D)
shows the shape &¥;( f) for different values ofi. Angular
spectra obtained witSNRpgw andSNRyyvprw are repre-
sented in figure 1 (E) and (F).

TDOAS (s)

il l * R(J) = &, P(J) = L& andF(J) = 2 RINXPL) regpec-

: Mmh A 04 — d=5cm . R(J)+P(J)
04 MJ“ /"W‘ | M\ ——d=15cm t|Ve|y [10]'

\ | | Ul
[N L il . . . .
of S 'Aw, Al | A e d=S0on Figure 2 (A) shows the average F-measure as a function
[ W

\J |
|/ ‘Jk\,“‘v“ h\ / \, —d=1m

u s 0 of J for N = 6 sources. For all evaluated algorithms, ex-

0 0 1000 2000 3000 4000 5000 6000 7000 8000
TDOAS (5)

- x10” (F)SN;‘_”;‘VDRW f:epted MUSIC an8NRapr, the F-measure reaches its max-
1 ‘ T ‘ ! ; " : imum for J equal to the number of sourcéé. The best

oof | } F-measure is obtained BNRyvprw andSNRpsw which
\ A ;‘:‘\ ; provide respectively an improvement of 0.04 and 0.06 com-
\‘ 1\ Ji\ i pared to cSCT.
’ i | \‘ i \ In the following, we fix the number of selected peaks to a
= oo 50 0 5 valueJ = Jopi(A, N, d) for each algorithmA, each number

of sourcesNV and each distance between microphoieso

Fig. 1. Angular spectra produced BNRps (A), SNRyvor 85 to maximise the F-measure averaged over all other param-
(B), SNRapr (C), SNRpsw (E) andSNRyvprw (F) for eters. Indeed, preliminary experiments showed that thase p
three female speech sources placed at 50 cm from the cent@meters have the most important effect on the valug,gf.
of the microphone pair, witd = 15 cm and a reverberation The resulting average recall, precision and F-measurerare p
time of 500 ms. (D) represents the weighting factdrs( f) sented intable 1. The best recall, precision and F-measeire a
for different microphone spacings obtained bySNRyvprw andSNRpsw. SNRapr provides
good recall but low precision, leading to a low F-measure.
Figure 2 shows the F-measure obtained as a function
of microphone spacing and reverberation tim&Tg, for
speech sources. All methods provide poorer results with
We evaluated the five proposed methods on a large numb icrophone spacings smaller than 15 cm or with larger rever-
eration time.SNRyvprw Outperforms the other evaluated

of configurations, involving two to six sources, six reverbe hods f ! h . d for all b
ation times (from 50 ms to 750 ms), four microphone spac-met 0ds for most microphone spacing and for all reverber-

ings (from 5 cm to 1 m), four distances between the sourcedtion times. The two principal reasons are that it is robust
and the center of the microphone pair (from 20 cm t0 2 M),  2ntp./vww.irisa.frimetiss/imembers/evincent/softevar
several source DOAs, and three source types (male speech Bhttp://bass-db.gforge.inria.fr/hdecate
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3. EXPERIMENTAL EVALUATION
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Fig. 2. Average F-measure of the evaluated algorithms as a funetithe number of selected peaksor all 6-source mixtures
(A) and as a function of microphone spaci@B) and reverberation timBT's, (C) with J = J,,, for all speech mixtures.

to high reverberation thanks to MVDR beamforming, and to [4] Y. Izumi, N. Ono, and S. Sagayama. Sparseness-based

small microphone spacing thanks to frequency weighting. 2ch BSS using the EM algorithm in reverberant envi-
ronment. InProc. |EEE Wbrkshop on Applications of
Sgnal Processing to Audio and Acoustics, pages 147—
4. CONCLUSION 150, 2007.

We proposed five new angular spectrum methods using SN 5]
to estimate TDOAs in two-channel under-determined mix- correlation method for estimation of time delafEEE
tures. Large-scale evaluation showed that two of the pregbos Transactions on Acoustics, Speech and Signal Process-
angular spectra, based on frequency weighting of SNR es- ing, 24(4):320-327, 1976.

timated by beamforming techniques outperform state-ef-th

art methods in most configurations. Future work will focus on [6] H. Krim and M. Viberg. Two decades of array signal
summing a nonlinear function of SNR in each time-frequency processing research: the parametric approatdBEE
point and in using other information such as harmonicity to Sgnal Processing Magazine, 13(4):67-94, 1996.
improve TDOA estimation.

C. Knapp and G. Carter. The generalized cross-
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