

²IRISA, CNRS - UMR 6074, Rennes, France ¹INRIA, Rennes Bretagne Atlantique e-mail: {alexey.ozerov,emmanuel.vincent,frederic.bimbot}@irisa.fr

Classical audio source separation methods are usually adapted to a particular scenario:

- problem dimensionality ((over)determined, ...),
- mixing process characteristics (instantaneous, anechoic, ...),
- source characteristics (speech, singing voice, drums, bass, noise, ...)

Limitation:

 \blacktriangleright No common formulation \implies Difficult and time-consuming to adapt a method to a different scenario, it was not originally conceived for.

Design a new source separation framework that should be:

- general, generalizing existing methods and making it possible to combine them,
- flexible, allowing easy incorporation of the a priori information about a particular scenario considered,
- modular, allowing an implementation in terms of software blocks addressing the estimation of subsets of parameters.

Mixing in STFT (j, f and n being source, frequency and time indices):

$$\mathbf{x}_{fn} = \sum_{j=1}^{J} \mathbf{y}_{j,fn}$$

where $\mathbf{x}_{fn}, \mathbf{y}_{j,fn} \in \mathbb{C}^{I}$ are the mixture and the source spatial images. Use local Gaussian model as a basis of our framework:

$$\mathbf{y}_{j,fn} \sim \mathcal{N}_c\left(\bar{0}, v_{j,fn} \mathbf{R}_{j,fn}\right),$$

 $\triangleright \mathbf{R}_{i,fn} \in \mathbb{C}^{I \times I}$: is called spatial covariance matrix, ► $v_{j,fn} \in \mathbb{R}_+$: is called spectral power

Reference		Ozerov-07	Benaroya-06	Blouet-08	Durrieu-10	Abdallah-04	Vincent-10	Bertin-10	Fevotte-09	Fevotte-05	Arberet-09	Ozerov-10	Duong-10	Duong-10a	Arberet-10	Cardoso-08	Pham-03	Attias-03
Problem dimensionality	single channel	×	X	X	×	×	×	×	×									
	underdetermined									×	×	×	X	×	×	(x)		
	(over-)determined															(\mathbf{x})	×	X
Mixing type	linear instantaneous									×	×	(x)				×		
	convolutive											(x)	X	X	×		×	X
Spatial mixing	rank-1 covariance									×	×	×				×	X	X
model	full rank covariance												X	X	×	×		
Source power model	unconstrained												X	X				
	piecewise constant									X						×	X	
	GMM / HMM	×									×							X
	GSMM / S-HMM		X	Х	(\mathbf{x})													
	NMF			X		Х						×			X			
	harmonic NMF				(\mathbf{x})		X	X										
	temp. constr. NMF							X	X									
	source-filter	×			×													
Signal	STFT	×	×	X	×	×			×	×	×	×	×		X	×	×	×
representation	ERB						X	×						X				

A General Modular Framework for Audio Source Separation

Alexey Ozerov¹, Emmanuel Vincent¹ and Frédéric Bimbot²

Context

Goals

Approach

(1)

(2)

Source separation via Wiener filtering:

$$\hat{\mathbf{y}}_{j,fn} = v_{j,fn} \mathbf{R}_{j,fn} \mathbf{\Sigma}_{\mathbf{x},fn}^{-1}(\theta) \mathbf{x}_{fn}, \qquad \mathbf{\Sigma}_{\mathbf{x},fn}(\theta) = \sum_{j=1}^{J} v_{j,fn} \mathbf{R}_{j,fn}$$
(3)

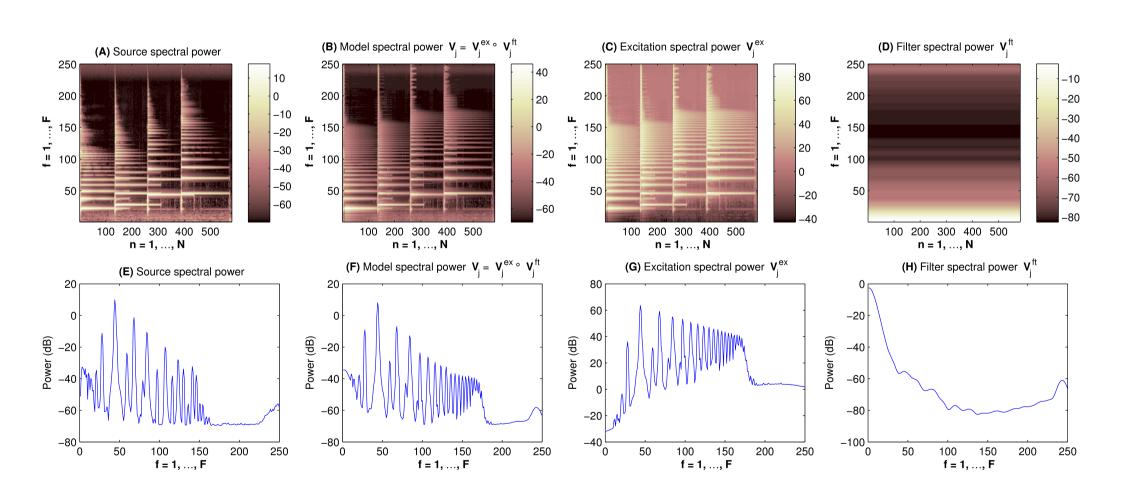
Model estimation using MAP criterion:

$$\theta^*, \eta^* = \arg\min_{\theta\in\Theta,\eta} \sum_{f,n} \left[\operatorname{tr} \left(\Sigma_{\mathbf{x},fn}^{-1}(\theta) \mathbf{x}_{fn} \mathbf{x}_{fn}^H \right) + \log \right]$$

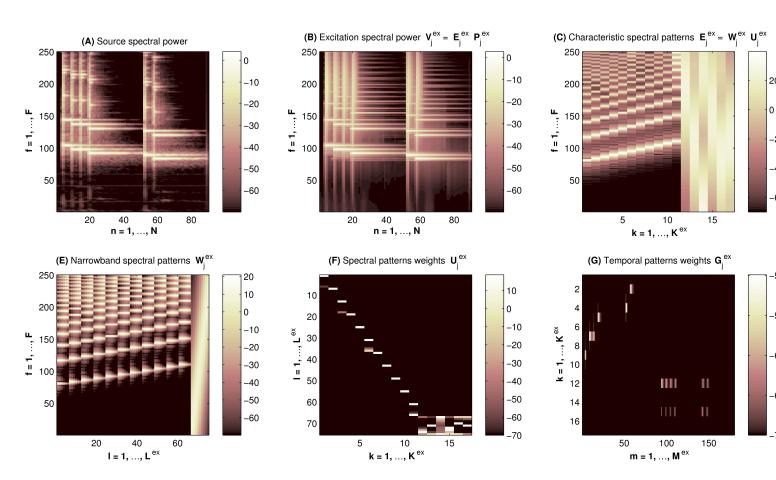
Spatial Covariance Structures

Spatial covariances are time invariant, i.e., $\mathbf{R}_{i,fn} = \mathbf{R}_{i,f}$, and can be:

- ▶ linear instantaneous (i.e., $\mathbf{R}_{j,f} = \mathbf{R}_j$) or convolutive,
- ▶ rank 1 (i.e., $\mathbf{R}_{j,f} = \mathbf{a}_{j,f}\mathbf{a}_{j,f}^H$) or full rank,
- fixed or adaptive.

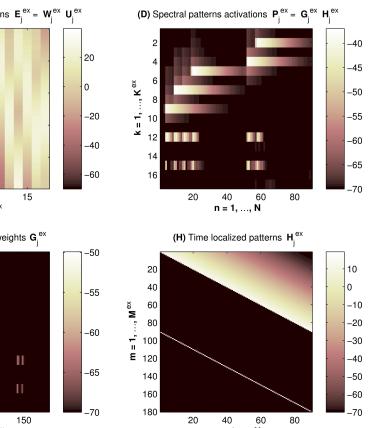

Spectral Power Structures

Excitation / filter NMF-like decomposition:


$$\mathbf{V}_{j} = \mathbf{V}_{j}^{\text{excit}} \odot \mathbf{V}_{j}^{\text{filt}} = \left(\mathbf{W}_{j}^{\text{excit}} \mathbf{U}_{j}^{\text{excit}} \mathbf{G}_{j}^{\text{excit}} \mathbf{H}_{j}^{\text{excit}}
ight)$$

For example, with these matrices one can model spectral harmonicity, spectral smoothness, time continuity or other structure.

each matrix can be either fixed or adaptive, each source can have additional GMM / HMM-like constraints.


Excitation structure example:

Flexible model

 $\left| \mathbf{\Sigma}_{\mathbf{x},fn}(\theta) \right| - \log p(\theta|\eta).$ (4)

 $ight) \odot \left(\mathbf{W}_{j}^{ ext{filt}} \, \mathbf{U}_{j}^{ ext{filt}} \, \mathbf{G}^{ ext{filt}} \, \mathbf{H}_{j}^{ ext{filt}}
ight)$ (5)

Model: $\theta = \{\theta_i\}_{i=1}^J$, where

Modular implementation is based on a Generalized Expectation-Maximization (GEM) algorithm and multiplicative NMF update rules:

- apply a specific update depending on its properties.

Underdetermined-Speech and Music Mixtures

Mixing	instanta	aneous	synth.	convolutif	live recorded		
Sources	speech	music	speech	music	speech	music	
baseline (l_0 min. or bin. mask.)	8.6	12.4	0.9	-0.8	1.2	1.2	
NMF / rank-1 [Ozerov-10]	9.6	18.4	1.7	-0.6	2.2	2.0	
NMF / full-rank [Arberet-10]	8.7	17.9	2.1	-1.4	2.6	2.0	
harmonic NMF / rank-1 [NEW]	10.6	15.1	1.9	0.0	2.8	1.4	
harmonic NMF / full-rank [NEW]	10.5	14.3	2.5	-1.9	3.2	1.0	

 Table 1: Average SDRs on subsets of SiSEC 2010 development data.

Professionally Produced Music Recordings

A fully automatic system (using pre-trained or adaptive spectral and adaptive spatial cues) that allows extracting the following three components from stereo recordings:

bass, drums, and melody (e.g., singing voice).

Conclusions and Further Work

Proposed general flexible and modular source separation framework:

- generalizes several existing source separation methods,
- brings them into a common framework,
- allows to imagine and implement new efficient methods.

Proposed framework can also be seen as a statistical implementation of Computational Auditory Scene Analysis (CASA) principles.

Further work:

- tributions $p(\theta|\eta)$ (e.g., sparse priors).
- Make the framework implementation publicly available.

Modular Implementation

$\theta_j = \{\theta_j^m\}_{m=1}^9 = \{\mathbf{R}_j, \mathbf{W}_j^{\text{excit}}, \mathbf{U}_j^{\text{excit}}, \mathbf{G}_j^{\text{excit}}, \mathbf{H}_j^{\text{excit}}, \mathbf{W}_j^{\text{filt}}, \mathbf{U}_j^{\text{filt}}, \mathbf{G}_j^{\text{filt}}, \mathbf{H}_j^{\text{filt}}\}.$ (6)

E-step: compute expectations of natural sufficient statistics.

 \blacktriangleright M-step: loop over all $J \times 9$ parameter subsets, and for every subset

Experimental Illustrations

Incorporate into the framework a possibility to use various prior dis-