

Multichannel Nonnegative Tensor Factorization with Structured Constraints for User-Guided Audio Source Separation

Alexey Ozerov (1), Cédric Févotte (2), Raphaël Blouet (3) and Jean-Louis Durrieu (4)

(1) INRIA - Rennes, France, (2) CNRS LTCI; Telecom ParisTech, France, (3) Yacast, Paris, France, (4) EPFL, LTS5, Lausanne, Switzerland

SARAH project: Standardization of High-Definition Audio Remastering

Introduction

Separation of professionally produced music recordings is difficult:

- > Sources mixed in the same direction (e.g., vocals and bass)
- ➤ Point source assumption can fail (e.g., drums)
- > The problem is very ill-posed in its general formulation

User-guided separation: some input from the user is allowed

Contributions

- > Modeling: Extension of multichannel NMF model [1] to multichannel NTF model inspired by [2]
- ➤ **Algorithmic issues:** Introduction of a new generalized EM (GEM) algorithm based on multiplicative updates (GEM-MU) that is faster than the GEM algorithm previously proposed in [1]
- > Application: User-guided separation via specification of user-defined structured constraints (inspired by [3], where it was done for single channel case)

References

[1] A. Ozerov and C. Févotte, "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation," *IEEE TASLP*, 2010. [2] A. Liutkus, R. Badeau, and G. Richard, "Informed source separation using latent components," in *LVA/ICA'10*, St Malo, France, 2010.

[3] H. Laurberg, M. N. Schmidt, M. G. Christensen, and S. H. Jensen, "Structured non-negative matrix factorization with sparsity patterns," in *Asilomar CSSC*, 2008.

2010 Signal Separation Evaluation Campaign (SiSEC), "Professionally produced music recordings" task

Glan Philips | Nine Inch Nails

		"The Spirit of Shackleton"			"The Good Soldier"		"Sunrise"				Average
		vocals	drums	bass	vocals	drums	vocals	drums	bass	piano	
Algorithm 1	SDR (dB)	3.3	2.3	-4.0	1.1	5.7	2.2	3.6	2.6	-2.3	1.6
Proposed	OPS (0-100)	19.5	31.9	14.3	30.2	27.9	15.5	39.2	8.3	18.1	22.7
Algorithm 2 J. Janer & R. Marxer [4]	SDR (dB) OPS (0-100)	-0.3 15.9	ż	1	-2.6 18.8	:	0.8 15.2	:	:	•	1
Algorithm 3	SDR (dB)	3.9	3.6	-2.0	1.1	1.2	2.2	4.7	3.4	-3.8	1.6
M. Spiertz [10]	OPS (0-100)	15.4	37.3	8.7	25.2	25.0	8.0	40.6	5.8	10.4	19.6
STFT	SDR (dB)	5.6	6.4	2.0	1.5	5.1	7.8	7.3	8.2	0.7	4.9
Ideal Binary Mask	OPS (0-100)	21.0	30.6	11.3	29.3	37.9	15.4	35.5	20.6	19.2	24.5
Cochleagram	SDR (dB)	3.9	1.1	0.7	1.4	1.6	6.1	1.5	1.6	0.4	2.0
Ideal Binary Mask	OPS (0-100)	15.7	26.2	15.6	17.6	37.5	11.2	42.8	30.4	12.1	23.2

Evaluation measures: Signal to Distortion Ratio (SDR) and Overall Perceptual Score (OPS)

Conclusion

- > Novel user-guided audio source separation method based on a multichannel NTF model with structured constraints
- > The approach allows high quality source separation of real recordings using limited user input