
Source Separation Results with EM

I Results for different mixture types (initialization = baseline).

Music sources (3) Speech sources (4)
Mixture type Baseline Proposed Baseline Proposed

Linear instantaneous 11.6 15.2 7.6 9.3
Synthetic convolutive -0.8 -0.6 3.5 4.5
Live-recorded (convolutive) 3.3 4.2 3.6 4.3

Table 1: Separation in terms of average Signal to Distortion Ratio (SDR) (dB).

I Signal Separation Evaluation Campaign (SiSEC 2008) / ICA 2009.

B “Under-determined speech and music (instantaneous) mixtures”:
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Conclusions

I Strong points of the proposed approach:

B use of both spectral and spatial diversities for source separation,
B joint and blind estimation of source and mixing models,
B covers both underdetermined and (over)determined noisy cases,
B source model frees us from convolutive BSS permutation ambiguity,
B computational load growing linearly with number of components.

I Weak point: sensitive to the parameters initialization.
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Proposed Multichannel NMF Methods

Exact Likelihood Maximization with EM Algorithm

I Criterion (θ = {A,W,H}, xfn = [x1,fn, . . . , xI,fn]
T):

C1(θ) = − log p(X|θ) = −∑
fn

log p(xfn|θ).

I Expectation-Maximization (EM) Algorithm (C = [cj,k,fn]j,k,f,n):

E step: Q(θ|θ(l)) =
∫

log p(X,C|θ) p(C|X,θ(l)) dC,

M step: θ(l+1) = arg maxθ Q(θ|θ(l)).

I A(l+1) ≈ A(l) for small noise, thus a “simulated annealing” strategy is
used.

I Related to other model-based methods (e.g., GMM-based [2]).

Individual Likelihoods Maximization with MU rules

I Criterion (IS divergence dIS(x|y) = x
y − log x

y − 1):

C2(θ) = −∑I

i=1
log p(Xi|θ) = −∑

i,fn
log p(xi,fn|θ) ( 6= log p(X|θ))

=
∑

i,fn
dIS

(
|xi,fn|2

∣∣∣∣
∑

j
|aij,f |2

∑Kj

k=1
wj,fkhj,kn

)
.

I Multiplicative Update (MU) Rules:

θr ← θr [∇θr
C2(θ)]− / [∇θr

C2(θ)]+,

∇θr
C2(θ) = [∇θr

C2(θ)]+ − [∇θr
C2(θ)]− and [∇θr

C2(θ)]+, [∇θr
C2(θ)]− ≥ 0.

I Related to Nonnegative Tensor Factorization (NTF).

Convergence and Decomposition

I Convergence vs. source sep-
aration performance (with per-
turbed oracle initializations).
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I Multichannel NMF decomposi-
tion example (random init.).
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Abstract

I Nonnegative Matrix Factorization (NMF) is usually used for single-
channel audio signal power spectrogram decomposition.

I We propose a multichannel NMF framework in a general case of
convolutive mixtures of sources.

I Possible applications: source separation (blind or supervised) and
information retrieval from audio (e.g., music transcription).

I Here we apply multichannel NMF to different stereo audio source
separation tasks, and obtain very promising results.

Introduction

I Single-channel NMF for power spectrogram decomposition:

|X|2 ≈ WH, X ∈ CF×N , W ∈ RF×K
+ , H ∈ RK×N

+

I Convolutive mixing equation (in STFT domain):

xi,fn =
∑J

j=1 aij,f sj,fn + bi,fn i = 1, . . . , I
mixture mix. coef source noise

I Multichannel NMF problem: estimate A, W and H, given X.

I Our approach is based on a probabilistic NMF formulation.

+

+

Sources S NMF: W H Mixing system A

Mixture X

noise 1

noise 2

Probabilistic NMF Model

I Source STFT is modeled as a sum of latent Gaussian components:

sj,fn =
∑Kj

k=1
cj,k,fn with cj,k,fn ∼ Nc(0, wj,fkhj,kn)

I Maximum Likelihood (ML) estimation of Wj = [wj,fk]f,k and Hj =
[hj,kn]k,n given source STFT Sj = [sj,fn]f,n is equivalent to NMF de-
composition |Sj|2 ≈ WjHj with Itakura-Saito (IS) divergence [1].

Multichannel Nonnegative Matrix Factorization in Convolutive Mixtures
With Application to Blind Audio Source Separation

Alexey Ozerov 1 and Cédric Févotte 2
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