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� We consider two state-of-the-art models for 
polyphonic audio representation:
� Itakura-Saito nonnegative matrix factorization (IS-NMF)
� Gaussian scaled mixture model (GSMM)

� We combine both models into a hybrid model:
� Factorial scaled hidden Markov model (FS-HMM)

� We apply FS-HMM to single-channel speech / 
music separation



Outline
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� Factorial scaled hidden Markov model

� Inference algorithms
� Application to single-channel speech / music 
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� Conclusion



State-of-the-art models
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� Family of models considered: short time spectra 
are modeled as Gaussians with zero means and 
structured variances

� Attractive properties:
� Generative model (for source separation)
� Model is linear in STFT domain

� Easy inference
� Easy signal reconstruction
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State-of-the-art models

� Itakura-Saito nonnegative 
matrix factorization (IS-NMF) 
[Benaroya et al 2003, Févotte 
et al 2009]

� Suitable for polyphonic signals

� Gaussian scaled mixture model 
(GSMM) [Benaroya et al 2006]

� Suitable for monophonic signals
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State-of-the-art models

� IS-NMF

� Summation of 
variances

� GSMM

� Summation of probability 
density functions (pdfs)

19 October 2009

IEEE Workshop on Applications of Signal Processing 

to Audio and Acoustics (WASPAA) 2009 6



Outline

19 October 2009

IEEE Workshop on Applications of Signal Processing 

to Audio and Acoustics (WASPAA) 2009 7

� State-of-the-art models

� Motivation
� Factorial scaled hidden Markov model

� Inference algorithms
� Application to single-channel speech / music 

separation

� Conclusion



Motivation

19 October 2009

IEEE Workshop on Applications of Signal Processing 

to Audio and Acoustics (WASPAA) 2009 8

� We would like to marry these two models for 
the following reasons

� Using suitable models for the corresponding sources 
(monophonic or polyphonic)

� Introducing discrete states into IS-NMF
� Facilitates the modeling of temporal dependencies
� Leads to joint (or integrated) approaches for source 

separation and information retrieval (e.g., music 
transcription [Bertin et al 2007])
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Factorial scaled Hidden 

Markov model
� Mother (IS-NMF) � Father (GSMM)
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Factorial scaled Hidden 

Markov model
� Baby (Factorial scaled GMM or HMM)
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Mother (IS-NMF) Father (GSMM)

Baby 1 (FS-GMM)

Baby 2 (FS-HMM)

We add temporal dependencies between states:
first order Markov chain
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Factorial scaled Hidden 

Markov model



Mother (IS-NMF) Father (GSMM)

given
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Factorial scaled Hidden 

Markov model



Baby 1 (FS-GMM) Baby 2 (FS-HMM)

given
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Factorial scaled Hidden 

Markov model
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� EM-MU algorithm
� Reduced complete data set:

� EM algorithm
� Full complete data set:

Inference algorithms
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complete 
data

� Two Generalized EM (GEM) algorithms



Inference algorithms

� Convergence speeds
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Application to single channel 

speech / music separation

� Tested model (FS-HMM) configurations :
� Mono. speech / Mono. music (S-HMM / S-HMM):

� Ks = Km = 1 (K = 2), J1 = 16, J2 = 8

� Mono. speech / Poly. music (S-HMM / IS-NMF):
� Ks = 1, Km = 8 (K = 9), J1 = 16, Jk = 1 (k > 1)

� Poly. speech / Poly. music (IS-NMF / IS-NMF):
� Ks = 16, Km = 8 (K = 24), Jk = 1 (k = 1, …, K)

speech musicmix
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� Data

� Procedure:
� Learn a speech model (from some training data)
� Clamp the speech model spectral patterns and 

estimate all the other parameters (from the mix)
� Reconstruct sources (via MMSE estimation)

Application to single channel 

speech / music separation
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� LEGO-like (e.g., modular framework)

Application to single channel 

speech / music separation
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� Female speech model spectral patterns

Application to single channel 

speech / music separation
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� Numerical results

Application to single channel 

speech / music separation

Speech / music source average SDR (dB) (SDRs / SDRm) computed on
full-length sources and on segments of speech presence only (in braces).
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� Audio examples

Application to single channel 

speech / music separation
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� Conclusion
� Approach generalizing several existing models
� Modeling having the most credible physical 

motivation leads to the best separation results (SDR)

� Further work
� Imagine other configurations of FS-HMM and apply it 

to other problems (e.g., music transcription)
� Speed up inference algorithms (e.g., via variational 

approximations)
� Extend to multichannel case (e.g., in line with 

[Ozerov & Févotte 2010]): quite straightforward

Conclusion
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Thank you!
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