Multi-source TDOA estimation using SNR-based angular spectra

Charles Blandin, Emmanuel Vincent and Alexey Ozerov
INRIA, Centre de Rennes - Bretagne Atlantique, France
emmanuel.vincent@inria.fr

Overall approach

We aim to find the time differences of arrival (TDOAs) \(\tau_{ij} \) of several sound sources from a two-channel mixture signal.

We consider a local angular spectrum \(\phi_{\text{local}}(\tau) \) describing sound direction in each time-frequency bin \((t, f)\),

- defining a local angular spectrum \(\phi_{\text{local}}(\tau) \) describing sound direction in each time-frequency bin \((t, f)\),
- summing it over the time-frequency plane

\[
\phi(\tau) = \sum_{t, f} \phi_{\text{local}}(\tau),
\]

- picking the \(J \) largest peaks of \(\phi(\tau) \).

Current methods essentially assign the same weight to all time-frequency bins, whether they result from one or several sources.

SNR-based angular spectra

Following advances in source localization for instantaneous mixtures [1], we define \(\phi_{\text{SNR}}(\tau) \) as the signal-to-noise ratio between the signal power along direction \(\tau \) vs. other directions.

From now on, we consider a single time-frequency bin \((t, f)\) and omit its indices.

SNR estimation by probabilistic modeling

An alternative approach is to jointly estimate the signal power \(v_s \) in direction \(\tau \) and the residual power \(v_r \) according to some probabilistic model. Assuming that the predominant source and the residual are zero-mean Gaussian and that the residual is spatially diffuse, the mixture signal is zero-mean Gaussian with covariance matrix

\[
\Phi_{xx} = v_s \Phi_s + v_r \Phi_r
\]

where

\[
\Psi = \frac{1}{\sin(2\pi f d/c_{\text{f}})}
\]

\(v_s \) and \(v_r \) can be estimated in closed form in the maximum likelihood (ML) sense using the algorithm in [3].

We then compute the SNR by

\[
\phi_{\text{SNR}}(\tau) = \frac{v_s}{v_r}
\]

To this aim, we express the relationship between the above two forms of SNR when the input signal consists of a source of TDOA \(\tau = 0 \) and a diffuse noise.

By plugging (4) into (2) and (3), we obtain

\[
\phi_{\text{SNR}}(\tau) = \frac{1 + 2 v_s/v_r + \sin(2\pi f d/c_{\text{f}})}{1 - \sin(2\pi f d/c_{\text{f}})}
\]

By inverting these equations, we define

\[
\phi_{\text{SNR}}(\tau) = \frac{v_s}{v_r} W_d \phi_{\text{SNR}}(\tau) + W_d - 1
\]

\[
\phi_{\text{SNR}}(\tau) = \frac{v_s}{v_r} W_d \phi_{\text{SNR}}(\tau) - \frac{1}{2}
\]

where

\[
W_d = \frac{1 - \sin(2\pi f d/c_{\text{f}})}{2}
\]

is a frequency weighting curve depending on the distance \(d \) between microphones.

SNR estimation by weighted beamforming

Beamforming can be used to estimate the power along direction \(\tau \) and subtract it from the total power.

Denoting by \(d = [1, e^{-2\pi f d/c_{\text{f}}}]^T \) the steering vector associated with TDOA \(\tau \) and by \(\Phi_s \) the covariance matrix of the input signal, we get

\[
\phi_{\text{SLD}}(\tau) = \frac{d^T \Phi_s d}{2 \pi f \Phi_s d - d^T \Phi_s d}
\]

Minimum variance distortionless response (MVDR) beamforming provides enhanced peaks compared to delay-and-sum (DS) beamforming, but overestimates the SNR at low frequencies.

Experimental evaluation

We evaluated the proposed methods on 4446 mixture signals with
- 2 to 6 sources
- reverberation times from 50 ms to 750 ms
- microphone spacings from 5 cm to 1 m
- distances between the sources and the microphones from 20 cm to 2 m
- several source DOAs
- three source types (male speech, female speech and music)

\(\phi_{\text{MVDR}} \) outperforms all other algorithms both in terms of recall and precision for most microphone spacings and for all reverberation times.

Conclusion

The proposed angular spectrum \(\phi_{\text{SNR}}(\tau) \) is robust to reverberation thanks to MVDR beamforming and to small microphone spacing thanks to frequency weighting.

Our latest work indicates no improvement compared to GCC-PHAT however when replacing the sum over time in (1) by the maximum [2].

References

