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Introduction
� Focus of the second half of this tutorial 

is to clarify
� What source separation has been used for MIR?
� How does it improve performance of MIR tasks?

� Examples:
� Multi pitch estimation

Task itself is tightly coupled with source 
separation.

� Audio genre classification
How source separation is useful? 
Not straightforward.
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Part I: Brief Introduction of 
State-of-the-arts



Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 5

Singer Identification
� Task: Identify a singer from music audio with 

accompaniment
� Typical approach

Feature
Extraction

audio features Classifier
singer
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Feature extraction

� Pre-dominant F0 based voice separation
Accompaniment Sound Reduction [Fujihara2005]

by PreFEST [Goto2004]

Audio input

Fig.1 [Fujihara2005]
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� Only reliable frame is used for classification

Reliable Frame Selection [Fujihara2005]

Fig.1 [Fujihara2005]

Feature extraction

Classifier
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Evaluation by Confusing Matrix

baseline reduction only

selection only reduction and selection

� Male/female 
confusion is 
decreased by 
accompaniment 
reduction.

� Combination of 
reduction and 
selection much 
improves 
performance.

male female

Fig. 3 [Fujihara2005]
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Vocal Separation Based on Melody Transcriber
� Melody-F0-based Vocal Separation 

[Mesaros2007]
� Estimate melody-F0 by melody transcription 

system [Ryynanen2006].
� Generate harmonic overtones at multiple of 

estimated F0.
� Estimate amplitudes and phases of overtones 

based on cross correlation between original signal 
and complex exponentials.

� They evaluate the effect of separation in 
singer identification performance using by 
different classifiers.
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Evaluation by Identification Rate

Singing to Accompaniment Ratio: -5dB Singing to Accompaniment Ratio: 15dB
Generated by Table 1 and 2 [Mesaros2007]

Performance is much improved, especially 
in low singing-to-accompaniment ratio.
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Instrument Identification
� Task: Determine instruments present in music 

piece
� Typical approach

� Important Issue
� Source separation

is not perfect.
How to reduce errors?

Separation
to Notes

audio
spectrogram 
of notes

Classifier
instrument

Feature
Extraction

features



Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 12

Feature Weighting [Kitahara2007]
� Feature vectors of each instrument are collected 

from polyphonic music for training.
� Robustness of each feature is evaluated by 

ratio of intra-class variance to inter-class variance:
Applying Linear discriminant analysis (LDA) for 
feature weighting.

Modified from
Fig. 1 [Kitahara2007]

PCA LDA
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Effectiveness of Feature Weighting

Fig. 6 [Kitahara2007]
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Feature weighting by LDA improves recognition rate.
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Audio Tempo Estimation
� Task: Extract tempo from musical audio
� Typical approach:

STFT or
Filterbank

audio
subband
signals

detection
function

Onset 
Detection

Periodicity 
AnalysisTracking

tempo
tempo
candidates

t



Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 15

Applying Harmonic+Noise Model
� Harmonic+Noise model is applied 

before calculating detection function [Alonso2007]

Source separation based on 
harmonic + noise model

Detection functions are 
calculated from both of 
harmonic component
and noise component,
and then, they are merged.Fig. 2 [Alonso2007]
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Influence of H+N Model

Separation based on H+N model shows better results.

Algorithms of periodicity detection Fig. 14 [Alonso2007]
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Applying PLCA
� PLCA (Probabilistic

Latent Component
Analysis), NMF-like 
method is applied.

� It increases much
candidates of tempo.

� They report its 
effectiveness.

[Chordia2009]

Fig. 1 [Chordia2009]
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Part II: Harmonic/Percussive
Sound Separation
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Motivation and Goal of HPSS
� Motivation: Music consists of two different components

example of a popular music
(RWC-MDB-P034)

harmonic component percussive component

� Goal: Separation of a monaural audio signal 
into harmonic and percussive components

H-related
P-related

� Target: MIR-related tasks
� multi-pitch analysis, chord recognition…
� beat tracking, rhythm recognition…
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Related Works to H/P Separation
� Source separation into multiple components

followed by classification
� ICA and classification [Uhle2003]
� NMF and classification [Helen2005]

� Steady + Transient model
� Adaptive phase vocoder
� Subspace projection
� Matching persuit
…etc
Good review is provided in [Daudet2005]

� Baysian NMF [Dikmen2009]
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Point: Anisotropy of Spectrogram

harmonic component percussive component

horizontally
smooth

vertically
smooth
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H/P Separation Problem
� Problem: 

Find Ht,ω and Pt,ω from Wt,ω on power spectrogram

� Requirements:
1) Ht,ω : horizontally smooth
2) Pt,ω : vertically smooth
3) Ht,ω and Pt,ω : non-negative
4) Ht,ω + Pt,ω : should be close to Wt,ω

Wt,ω Ht,ω Pt,ω
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Formulation of H/P Separation (1/2)
� Formulation as an Optimization Problem: 
�Objective function to minimize

�Under constraints:
�Ht,ω ≧ 0
�Pt,ω ≧ 0

Smoothness costCloseness cost

In MAP estimation context,
they are corresponding 
likelihood term and prior term, 
respectively.
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� Closeness cost function: I-divergence

� Smoothness cost function: Square of difference

� A variance modeling based separation using
� Poisson observation distribution
� Gaussian continuity priors

Weights to control two smoothness

for scale invariance

Formulation of H/P Separation (2/2)

[Miyamoto2008, Ono2008, etc]
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Update Rules
� Update alternatively two kinds of variables:

� H and P:

� Auxiliary variables:
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Separation Examples

Music piece original H P

RWC-MDB-P-7 “PROLOGUE ”

RWC-MDB-P-12 “KAGE-ROU ”

RWC-MDB-P-18 “True Heart”

RWC-MDB-P-25 “tell me”

RWC-MDB-J-16 “Jive ”
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Real-Time Implementation
� Sliding Block Analysis

Iterations are applied 
only within sliding block
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Open Software:  Real-time H/P equalizer

� Control H/P balance of 
audio signal in real time

� Simple instructions:
1) Click “Load WAV” button 

and choose a WAV-
formatted audio file.

2) Click “Start” button, and 
then, audio starts.

3) Slide H/P balance bar as 
you like and listen how 
the sound changes. 1)

2)

3)

Available at http://www.hil.t.u-tokyo.ac.jp/software/HPSS/
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Part III: Applications of 
HPSS to MIR Tasks

III-1: Audio Chord Detection
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Audio Chord Detection
� Task: Estimate chord sequence and its 

segmentation from music audio
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� Feature: chroma [Fujishima1999]

� Chroma observation
probability

� Transition: chord progression
� Bigram probability

� Maximum a Posteriori Chord 
Estimation [Sheh2003]

� Viterbi algorithm for …

Typical Approach: Chroma Feature + HMM

emission transitionInitial prob.

)|( tt cxp

)|( 1−tt ccp

)|( tt cxp

)|( 1−tt ccp
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Feature-refined System [Ueda2009]

24 dim. features

HMM
training

Viterbi
decoding

Feature Extraction

Recognized chord 
sequence

acoustic model 
language model

HMM-based chord recognition

training         recognition
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Suppressing Percussive Sounds
� Percussive sounds are harmful in chord detection

Emphasize harmonic components
by HPSS
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� Covariance matrix of chroma
� Highly correlated components: 

diagonal-only approximation infeasible
� Caused by harmonic overtones or some 

pitches performed at the same time
� Results in large number of parameters

� Covariance matrix is near circulant
� Assuming …

� Harmonic overtones of all pitches have 
the same structure

� The amount of occurrence of the same 
intervals is the same

� Circulant matrix diagonalized by DFT
� Diagonal approximation of FT-

Chroma covariance
� Reduces the number of model 

parameters (statistically robust)

Fourier-transformed Chroma

FT-Chroma covariance

Chroma covariance



Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 35

Tuning Compensation
� Tuning difference among 

songs
� Neglecting this may blur 

chroma features
� Choose best tuning from  

multiple candidates
� Find maximum chroma

energy (sum of all bins of 
chroma)

� Assume: tuning does not 
change within a song

A A#G# BG

filterbank

tuning (log freq.)

A A

C C C
D D

F F F
G G

E

BB

E

440.0Hz 446.4Hz
(+25cent)
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Delta Chroma Features
� Improve chord boundary accuracy

� by features representing chord boundaries

� Chord tones largely changes at chord boundary
� Delta chroma： derivative of chroma features
� Cf. Delta cepstrum (MFCC)：Effective features of speech recognition

� Calculated by regression analysis of δ sample points
[Sagayama&Itakura1979]

� Robust to noise
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� Chroma changes from “onset” to “release”
� capture the change by having multiple states per chord
� tradeoff between data size and the number of states

Multiple States per Chord

G

C

F ･･･

D

C1 C2 C3

time

pi
tc

h
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� Test Data
� 180 songs (12 albums) of The Beatles (chord reference 

annotation provided by C. Harte)
� 11.025 kHz sampling, 16bit, 1ch, WAV file
� Frequency range: 55.0Hz-1661.2Hz (5 octaves)

� Labels
� 12×major/minor =24 chords + N (no chord)

� Evaluation
� Album filtered 3-fold cross validation

� 8 albums for training, 4 albums for testing
� Frame Recognition Rate

= (#correct frames) / (#total frames)
� Sampled every 100ms

Experimental Evaluation
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Chord Detection Results

HE：harmonic sound emphasized
TC: tuning compensation
FT:  FT chroma (diagonal covariance)
DC: Delta chroma

1 state 
sstatestate
態
2 states
3 states

Chroma HE HE+TC HE+TC+DC

MIREX2008
best score 
[Uchiyama2008]
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Err Reduc Rate
28.1%

Err Reduc Rate
11.0%

HE+TC+FT

HPSS improves chord 
detection performance
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Part III: Applications of 
HPSS to MIR Tasks

III-2: Melody Extraction
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Melody Extraction
� Task: Identify a melody pitch contour from 

polyphonic musical audio
� Typical approach:

�Singing voice enhancement will be 
useful pre-processing.

Pre-dominant
F0s extraction Tracking

audio melodyF0s
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Singing Voice in Spectrogram

A. Vertical component: Percussion
B. Horizontal component: Harmonic instrument 

(piano, guitar, etc..)
C. Fluctuated component: Singing voice

A

B
C

RWC-MDB-P-25 “tell me”
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Is Voice Harmonic or Percussive?

�On short-frame STFT domain, voice appears as “H”
(time direction clustered).

�On long-frame STFT domain, voice appears as “P”
(frequency direction clustered).

“Harmonic” “Percussive”

Depends on spectrogram resolution (frame-length)
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HPSS Results with Different Frame Length

H P

Vocal

H P

Frame length: 16ms

Frame length: 512ms

Example
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Two-stage HPSS [Tachibana2010]

Original

Sinusoidal 
Sound

Percussive
Sound

Stationary-
sinsoidal Sound

Fluctuating-
sinusoidal Sound 
(≒singing voice)

HPSS with short frame

HPSS with long frame
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Spectrogram Example
Original signal (from LabROSA dataset)
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Spectrogram Example
Voice-enhanced signal (by two-stage HPSS)
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Separation Examples
title original Extracted 

Vocal
Vocal 

Cancelled*
Genre

“tell me” F, R&B

“Weekend” F, Euro beat

“Dance Together” M, Jazz

“1999” M, Metal rock

“Seven little crows” F, Nursery rhyme

“La donna è mobile” from 
Verdi’s opera “Rigoletto”

M, Classical
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Melody Tracking by DP [Tachibana2010]
� Estimating hidden states by dynamic programming

t1 t2

Observation
(Voice-enhanced-

Spectrum)

t3

State
(Pitch series)

440

450

460

440

450

460

440

450

460

440

450

460

440

450

460

440

450

460
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Example of Melody Tracking
� train06.wav, distributed by LabROSA database



Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 51

Results in MIREX 2009
� Data: 379 songs, mixed in +5 dB, 0dB, and -5 dB.

Noise Robust ☺

Sensitive

Accompaniments

+5dB 0dB -5dB

original

processed

HPSS-based method

Robustness to large singer-to-accompaniment 
ratio is greatly improved.
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Part III: Applications of 
HPSS to MIR Tasks

III-3: Audio Genre Classification
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Audio Genre Classification
� Task: estimate genre from music audio
� Blues, classical, jazz, rock, ...

� Typical approach

� Example of features [Tzanetakis2001]
� Timbral information (MFCC, etc.)
� Melodic information
� Statistics about periodicities: Beat histogram

Feature
Extraction Classifier

audio features genre
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New Features I: Percussive Patterns

Feature Extraction

[Tsunoo2009]
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Motivation for Bar-long Percussive Patterns 
� Bar-long percussive patterns (temporal 

information) are frequently characteristic 
of a particular genre

� Difficulties
1) Mixture of harmonic and percussive components
2) Unknown bar-lines
3) Tempo fluctuation
4) Unknown multiple patterns

A B CA A A A A A C C C
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Rhythmic Structure Analysis 
by One-pass DP algorithm
� Assume that correct bar-line unit patterns are given.
� Problem: tempo fluctuation and unknown 

segmentation
� Analogous to continuous speech recognition problem
� One-pass dynamic programming algorithm can be used to 

segment

spectrogram
of percussive
sound
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Dynamic Pattern Clustering [Tsunoo2009]

� Actually, unit patterns also should be estimated.
� Chicken-and-egg problem
� Analogous to unsupervised learning problem

� Iterative algorithm based on k-means clustering
� Segment spectrogram using one-pass DP algorithm
� Update unit patterns by averaging segments

� Convergence is guaranteed mathematically
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Example of “Rhythm Map”

Rhythm 1
(Fundamental )

Interlude

Rhythm 2
(Fill-in)

Rhythm 3
(Interlude)

Rhythm 4
(Climax)

One-pass DP alignment

Fundamental melody Climax

FullSong
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Necessity of HPSS in Rhythm Map

With HPSS

Without HPSS

Rhythm patterns and structures are not extracted without HPSS!
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Extracting Common Patterns to a Particular Genre
� Apply to a collection of music pieces
� Alignment calculation by one-pass DP algorithm

� Use same set of templates
� Updating templates by k-means clustering

� Use whole music collection of a particular genre

60

Iteration
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Features and Classifiers
� Feature Vectors: 

Genre-pattern Occurrence Histogram (normalized) 
� Classifier: Support Vector Machine (SVM)

61

4

1

2

4/7

1/7

2/7

Histogram Normalize
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Experimental Evaluation

� Evaluation
� 10-fold cross-validation
� Classifier: linear SVM (toolkit “Weka” used)

� Dataset
{ GTZAN dataset
{ 22050Hz sampling, 1ch
{ 30 seconds clips
{ 10 genres

{ {blues, classical, country, disco, 
hiphop, jazz, metal, pop, reggae, 
rock}

{ 100 songs per genre: total 
1000 songs

{ Ballroom dataset
{ 22050Hz sampling, 1ch
{ 30 seconds clips
{ 8 styles

{ {chacha, foxtrot, quickstep, 
rumba, samba, tango, 
viennesewaltz, waltz}

{ 100 songs per style: total 
800 songs

(standard) (rhythm-intensive)
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Extracted Percussive Patterns
� Pattern set

� Divided the datasets into 2 parts and obtained 2 sets of 
10 templates for each genre

� Example of learned templates

63
10 templates learned from “blues”

classical

country

disco

hiphop

metal

pop

reggae

rock

jazz
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Genre Classification Accuracy
� Percussive pattern feature only

� Merged with timbral features
� Statistic features such as MFCC, etc. (68 dim.) [Tzanetakis 2008]

� Performed well on audio classification tasks in MIREX 2008

Features [number of dim.] GTZAN dataset Ballroom dataset

Baseline (Random) 10.0% 12.5%

Rhythmic (from template set #1) [10/8] 43.6% 54.0%

Rhythmic (from template set #2) [10/8] 42.3% 55.125%

Features [number of dim.] GTZAN dataset Ballroom dataset

Existing (Timbre) [68] 72.4% 57.625%

Merged (from template set #1) [78/76] 76.1% 70.125%

Merged (from template set #2) [78/76] 76.2% 69.125%

Classification accuracy is improved 
by combining percussive pattern features.
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New Features II: Bass-line Patterns
[Tsunoo2009]
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Examples of Extracted Bass-line Patterns
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Genre Classification Accuracy

Classification accuracy 
with only bass-line features

Classification accuracy 
merged with timbre features

Features GTZAN dataset Ballroom dataset
Baseline (random classifier) 10.0% 10.0%

Only bass-line (400 dim.) 42.0% 44.8%
Existing (timbre, 68 dim.) 72.4% 72.4%

Merged (468 dim.) 74.4% 76.0%
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Another Application of HPSS [Rump2010]

� Autoregressive MFCC Model applied to Genre 
Classification

� HPSS increases the number of channels
mono -> three (original, harmonic, percussive)
and improves
performance
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Conclusions
� Source separation techniques used to MIR
� F0-based harmonic separation
� Non-negative matrix factorization or PLCA
� Sinusoid + Noise model
� Harmonic/percussive sound separation

� Source separation is useful
� To enhance specific components
� To increase the number of channels 

and the dimension of feature vectors
� To generate new features
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Future Works
� Application of source separation to other MIR 

tasks
� Cover song identification, audio music similarity,...

� Improvement of separation performance itself 
by exploiting musicological knowledge 

� Using spatial (especially stereo) information
� Current works are limited to monaural separation 

� Feature weighting technique for overcoming 
errors due to imperfect source separation
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Reference Book Chapter
� Advances in Music Information Retrieval, ser. Studies in 

Computational Intelligence, Z. W. Ras and A. 
Wieczorkowska, Eds. Springer, 274
� N. Ono, K. Miyamoto, H. Kameoka, 

J. Le Roux, Y. Uchiyama, E. Tsunoo, 
T. Nishimoto and S. Sagayama,
“Harmonic and Percussive Sound 
Separation and its Application
to MIR-related Tasks,” pp.213-236
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Available Separation Softwares
� Harmonic Percussive Sound Separation (HPSS)

� http://www.hil.t.u-tokyo.ac.jp/software/HPSS/

� ICA Central: Early software restricted to mixtures of two 
sources
� http://www.tsi.enst.fr/icacentral/algos.html

� SiSEC Reference Software: Linear modeling-based software 
for panned or recorded mixtures
� http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-

determined+speech+and+music+mixtures

� QUAERO Source Separation Toolkit: Modular variance-
modeling based software implementing a range of structures: 
GMM, NMF, source-filter model, harmonicity, diffuse mixing, 
etc
� To be released Fall 2010: watch the music-ir list for an announcement!

http://www.hil.t.u-tokyo.ac.jp/software/HPSS/
http://www.tsi.enst.fr/icacentral/algos.html
http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-determined+speech+and+music+mixtures
http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-determined+speech+and+music+mixtures
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Advertisement: LVA/ICA 2010
� LVA/ICA 2010 will be 

held in St. Malo, 
France on September 
27-30, 2010. 

� More than 20 papers on 
music and audio source 
separation will be 
presented.
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