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• Approaches to robust Automatic Speech Recognition (ASR)

• STFT-domain, log-feature-domain and notation

• Uncertainty Handling, brief tutorial overview

Introduction Overview



3

Approaches to robust Automatic Speech Recognition (ASR)

Ideal World ASR

Automatic Speech Recognition (ASR)

• ASR system learns acoustic (and language) models from large corpora

• During recognition most probable sequence(s) of words acording to model provided

• This works assuming that input signal and trained models match

Machine-based transcription of an acoustic speech signal 
into written words“

”
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The Effect of the Environment

• Aerial channel
 

Background noises
        Reverberation

Gain oscilations

• A/D channel:
 

Microphone characterictics 
Packet loss
Signal processing artifacts

• Many unknown sorces of distortion!

Aerial Channel

Background Noises

A/D Channel

Approaches to robust Automatic Speech Recognition (ASR)
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Approaches to Robust ASR

• Speech (Feature) Domain Techniques

Reseach field of its own (STFT domain speech enhancement)

Decoupled from ASR system 

Low computational cost

Limited improvements in performance

Approaches to robust Automatic Speech Recognition (ASR)
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Approaches to Robust ASR

• Model Domain Techniques

Compensate ASR model to better match corrupted signal

Computational cost scales with size of ASR model 

High computational cost

Bigger improvements in performance than feature compensation

Approaches to robust Automatic Speech Recognition (ASR)
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Approaches to Robust ASR

• Mixed training (very large corpora)

Include corrupted speech into training data

Current corpora/model sizes allow partial modeling of corrupted acoustic 
space

Feature and model compensation brings little additional improvement

Approaches to robust Automatic Speech Recognition (ASR)
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Approaches to Robust ASR

• Uncertainty Handling

Methods with a common characteristic: Model how much do we know

Includes both feature and model domain techniques

Good trade-offs between computational complexity and robustness

Approaches to robust Automatic Speech Recognition (ASR)
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Short-Time Fourier transform (STFT):

• Input signal divided into overlapping 
analysis frames

• Discrete Fourier transform (DFT) 
computed for each frame

F
re

qu
en

cy
 (

k)

time (l)

STFT-domain, log-feature-domain and notation

Properties

• Time-frequency representation

• Linear, invertible transform

• Convolution multiplicative

• Optimal domain for speech processing
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Non-linear (log) feature extractions:

• Inter/Intra-transformations of DFT 
frames

• MFCCs, RASTA-PLPs 

• Often involve logarithm

• Often non-invertible

• Good compression of acoustic space

• Optimal domain for machine learning 
of speech

Properties

STFT-domain, log-feature-domain and notation
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Clean Speech Corrupted Speech

STFT-domain, log-feature-domain and notation

ASR
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• Find a probabilistic relation between the unseen clean features       and the available 

information ( features    ,  STFT    , ... )

• Update ASR model parameters (trained for     )  to correctly recognize  (   ,    , ... )

• Train models for clean speech      from the available information  (   ,    , ... ) 

1

2

Uncertainty Handling, three main problems

3

Uncertainty Handling, brief tutorial overview
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Well known example of        , Uncertainty Decoding

• Conventional ASR: Find the most probable sequence of words given 

• Where the acoustic model                   is a GMM-HMM and the likelihood of frame l   
on state q is

• The most probable sequence is then retrieved by the Viterby algorithm or token 
passing

2
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Well known example of        , Uncertainty Decoding2

• Under observation uncertainty we do not know the clean features     , but have a 
probabilistic description of its value (obtained through        )

• A solution for inference can be attained by integrating out the unseen 

• After some approximations this leads to the modified state likelihood 

1
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Log-Feature and Model Domain Approaches to Uncertainty Handling in ASR

 

   

Tutorial Overview

[Li Deng, 1h]

Classification of many environment-robust ASR techniques (for handling 
uncertainty) 

Example of structured approach in log-feature and in model domains: Use of a phase 

sensitive model of speech distortion (    )

Example of hybrid approach in feature-model domain: Noise adaptive training 
(NAT)

Other uncertainty-handling techniques: NAT extensions

1

Uncertainty Handling, brief tutorial overview

(Log) Feature- vs model-domain approaches
Structured vs unstructured approaches
Hybrid feature- and model-domain approaches
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Linear-STFT Domain Approaches to Uncertainty Handling in ASR

Tutorial Overview

[R. F. Astudillo, 1h]

Speech enhancement and uncertainty estimation, in STFT domain (    )

STFT Uncertainty Propagation (    ), for

Integration of Speech Enhancement and ASR (    )

1

11

2

Uncertainty Handling, brief tutorial overview

MFCC features
RASTA-PLP features
MLP features
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[E. Vincent, 30min]

Learning from Noisy data

Wrap-up and Perspectives 

Tutorial Overview

[E. Vincent, 15min]

Bayesian uncertainty estimation for STFT-domain enhancement (    )

Expectation maximization training of acoustic models with unreliable input 

features (    )

11

13

Uncertainty Handling, brief tutorial overview
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Outline

• Classification of many environment-robust ASR 
techniques (for handling uncertainty)
– (Log) Feature- vs model-domain approaches
– Structured vs unstructured approaches

• Hybrid feature- and model-domain approaches
• Example of structured approaches: Use of a phase 

sensitive model of speech distortion
• Example of hybrid approaches: Noise adaptive 

training (NAT)
• Uncertainty-handling techniques: NAT extensions

Ref: Li Deng, Front-End, Back-End, and Hybrid Techniques to Noise-
Robust Speech Recognition, in D. Kolossa and R. Hab-Umbach (eds.) 
Robust Speech Recognition of Uncertain Data, pp. 67-99, Springer Verlag, 
2011



Taxonomy of Uncertainty Handling Techniques

3



Feature-Domain vs Model-domain

• Feature-domain approach: feature 
enhancement (independent of speech classes)

• Model-domain approach: HMM adaptation to 
the noisy condition 

• Hybrid: HMM adaptation to the feature 
enhanced condition; noise adaptive training; 
Aurora evaluation paradigm



Structured vs Unstructured

• Structured approach: Use of a parametric model of 
speech distortion 

• Distortion model can apply to either feature- or 
model-domain 

• Prominent examples of speech distortion models: 
– vector Taylor series (VTS)
– Algonquin model
– phase-sensitive model

• Unstructured approach: no use of speech-
distortion models

• Prominent Examples: 
– SPLICE, spectral subtraction (feature enhancement)
– MLLR, MAP, multi-style training (model adaptation



Example of structured approach: 

Use of phase-sensitive model of speech 

distortion for

1) feature enhancement (log features)

Ref: Li Deng, Jasha Droppo, and Alex Acero, Enhancement of log Mel power 

spectra of speech using a phase-sensitive model of the acoustic 

environment and sequential estimation of the corrupting noise, IEEE 

Transactions on Speech and Audio Processing, vol. 12, no. 2, pp. 133–143, 

March 2004

2) model adaptation
Ref: Jinyu Li, Dong Yu, Li Deng, Yifan Gong, and Alex Acero, A unified 

framework of HMM adaptation with joint compensation of additive 

and convolutive distortions, Computer Speech and Language, vol. 23, 

pp. 389-405, 2009
6



A Phase-Sensitive Model for Speech Distortion

• Clean-speech=x; noise=n; channel=h; noisy-speech=y

• relationship in waveform-sample and DFT:

Relationship in power-spectrum:

• The last term was usually assumed zero (phase-

insensitive), which is correct only in expected  sense

Instantaneous
mixing phase



Phase-Sensitive Model (cont’d)

• relationship in Mel-filter power spectrum:

or ( )2 lα

( )lα



Distribution of Phase Factor 
(Droppo, Acero, Deng, ICASSP2002)

-- Sum of many uniformly distributed random variables (filter banks)
-- Central limit theorem at work



Phase-Sensitive Model (cont’d)

• relationship in log-power-spectrum:

Define log-power-spectrum vectors:

then:

or2αααα 2αααα

2αααα 2αααα



Phase-Sensitive Model (cont’d)

• Gaussian assumption for phase factor

• Computing conditional prob.:

• Jacobian computation:

• Final result for conditional dependency:



Speech Enhancement Using Phase Modeling (F2)

• After specifying conditional dependency, carry out 

estimation and inference

• Inference on the clean-speech layer in the Bayes net 

� speech feature enhancement

• Results (iterative enhancement algorithm):

(using 2nd-order Taylor series expansion)



Noisy Speech Recognition Experiments

• Aurora 2 noisy speech data

• Using power of true noise  (i.e., no est. error)

• Recognition accuracy (%) using enhanced features:

• Best spectral subtraction (phase insensitive):    95.90%

• Use of phase model reduces errors by half, if noise “estimate” is accurate

(Deng, Droppo, Acero, 2004)



Experiments (cont’d)

Recognition
Accuracy

Automatic 
noise est.
algorithm 

Assuming
no noise 
est. errors

no phase info 
(low-fidelity)

84.80% 95.90%

phase info 
(high-fidelity)

85.74% 98.27%

--- Much lower relative error reduction when noise estimation errors are introduced
--- Why?



Model Adaptation Using Phase Model (M2)

Recognition
Accuracy

Automatic 
noise Est.
algorithm 

Assuming
no noise 
Est. errors

HMM Adapt
(better noise 
est.)

no phase info 84.80% 95.90% 91.70%

phase info 85.74% 98.27% 93.32%



Noise Adaptive Training

• Prominent example of Hybrid approach

• It performs feature enhancement 

• It also modifies HMM parameters using 
enhanced features

• High performance
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NAT Varieties & Extensions

• Unstructured (H1): NAT-SS, NAT-SPLICE, NAT-

LR, IVN

• Structured (H2): NAT-VTS, uncertainty 

decoding, joint UD

18



Summary

• Hundreds of techniques for noise-robust ASR 

can be classified into 6 classes

• Using two axes: Structured or otherwise; 

feature, model, or hybrid domains

• H1 or H2 gives best performance, exemplified 

by noise adaptive training (NAT) with various 

extensions

19
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• STFT-Speech enhancement and residual uncertainty
             The complex Gaussian uncertainty model

Residual uncertainty estimation (Empirical/MSE)

• STFT Uncertainty Propagation 
Mel-Frequency Cepstral Coefficients
RASTA-Perceptual-Linear-Prediction
Multi-Layer Perceptron

• Integration of STFT speech enhancement and robust ASR
Uncertainty Propagation as MMSE estimator
Uncertainty Propagation & Decoding
Experiments and Results

Overview



3

• STFT-Speech enhancement and residual uncertainty
             The complex Gaussian uncertainty model

Residual uncertainty estimation (Empirical/MSE)

• STFT Uncertainty Propagation 
Mel-Frequency Cepstral Coefficients
RASTA-Perceptual-Linear-Prediction
Multi-Layer Perceptron

• Integration of STFT speech enhancement and robust ASR
Uncertainty Propagation as MMSE estimator
Uncertainty Propagation & Decoding
Experiments and Results

Overview
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Speech enhancement and residual uncertainty

• Time (l)-frequency (k) representation of 
speech

• Speech corruption easy to model e.g.

           Aditivity of sources  
           Reverberation (early, late)
           Cocktail Party Problem

• Active research field e.g hearing aids, 
telecommunications

• Targets humans, but usable for ASR

STFT Domain Speech Enhancement: 
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• Provides a wide range of methods for 
robust ASR

      Single Channel
             Additive noise suppression
             Late reverberation supression
             ...

     Multichannel
            Blind source separation
            Beamforming
            ...

• But integration poor (only point-estimate 
passed)

Speech enhancement and residual uncertainty

STFT Domain Speech Enhancement: 
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• Uncertainty of estimation:
 

• Only model possible is probabilitic 

• Posterior distribution of each clean Fourier 
coefficient given I     

• Feature extraction results in a posterior of 
the clean features given I

Speech enhancement and residual uncertainty

STFT Uncertainty Propagation: 

“ It is not possible to completely 
 determine the clean signal from I

”
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• STFT-Uncertainty Propagation

• Antecedents

• Complex Gaussian Uncertainty Model 
[Astudillo 2010c, Astudillo 2011]

     Constrained Gaussian model
     [Kolossa 2005]

     GMM model of spectral amplitude
     [Srinivasan 2006]

Speech enhancement and residual uncertainty

STFT Uncertainty Propagation: 

“
”

Transform an uncertain description 
of the STFT into feature domain
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Circularly symmetric Complex Gaussian 
Model

• Real, imaginary components

    Gaussian distributed
    Uncorrelated
    Same variance 

• Mean equal to speech enhancement 
estimation

• Variance equal to uncertainty

• But how to compute uncertainty?

Estimated Clean Spectrum

Speech enhancement and residual uncertainty
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Circularly symmetric Complex Gaussian 
Model

• Real, imaginary components

    Gaussian distributed
    Uncorrelated
    Same variance 

• Mean equal to speech enhancement 
estimation

• Variance equal to uncertainty

• But how to compute uncertainty?

Uncertain Clean Spectrum

Speech enhancement and residual uncertainty
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Empirical Uncertainty Estimation

• Uncertainty as function of the amount of change at  given signal processing stage

• The bigger the change, the bigger the uncertainty

• Ad hoc solution, not very elegant but effective

• Valid with any method, does not depend on complexity

Speech enhancement and residual uncertainty
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• Example, post-processing of blind source separation [Kolossa 2010]

• Uncertainty assumed proportional to change at time-frequency masking step

• Additional parameter trained from examples

Empirical Uncertainty Estimation

Speech enhancement and residual uncertainty
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Residual Uncertainty in Minimum Mean Square Error (MMSE) speech 
enhancement methods

Well known methods
 

 Wiener filter (MMSE Fourier coefficient estimator) 
 Ephraim-Malah filters (MMSE of amplitude, log-amplitude) 
 ... 

 
 

       Additive noise 
 Late reverberation 
 Channel-decorrelated noise 

       Post-Processing (NMF, ICA, Beamforming)
       ...

Speech enhancement and residual uncertainty

Wide range of supression techniques and implementations
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• A priori models assumed for speech and 
distortion

• This leads to the likelihood

Complex Gaussian Model of Speech Distortion

Speech enhancement and residual uncertainty
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• A priori models assumed for speech and 
distortion

• This leads to the likelihood

• But how to compute the variances?

Complex Gaussian Model of Speech Distortion

Speech enhancement and residual uncertainty
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• Variances determined e.g. from voice 
activity detection and stationarity

• Other alternatives

Spatial information (beamforming)
Statistical independence (ICA)
Late reverberation models

Complex Gaussian Model of Speech Distortion

Speech enhancement and residual uncertainty

no speech speech no speech
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Wiener filter: MMSE estimation of each Fourier coefficient 

The cost function is the expected error with respect to observable and hidden variables

The solution is the expectation of the posterior distribution

Speech enhancement and residual uncertainty
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Wiener filter: MMSE estimation of each Fourier coefficient 

where the posterior is attained through Bayes

Speech enhancement and residual uncertainty
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We can use this posterior as an uncertain description of the signal [Astudillo 2009]

Wiener filter: MMSE estimation of each Fourier coefficient 

Speech enhancement and residual uncertainty

where the posterior is attained through Bayes
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The uncertainty in this model is equal to the residual MSE

This error assumes a priori information is perfect (ignores variance errors)!

• Same model as in the empirical 
uncertainty case

• Variance derived on solid mathematical 
grounds

Speech enhancement and residual uncertainty
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• STFT-Speech enhancement and residual uncertainty
 The complex Gaussian uncertainty model
 Residual uncertainty estimation (Empirical/MSE)

• STFT Uncertainty Propagation 
Mel-Frequency Cepstral Coefficients
RASTA-Perceptual-Linear-Prediction
Multi-Layer Perceptron

• Integration of STFT speech enhancement and robust ASR
Uncertainty Propagation as MMSE estimator
Uncertainty Propagation & Decoding
Experiments and Results

Overview
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• Can be attained in multiple ways

• Closed form (variable change)

• Numerical approximation (e.g. Monte Carlo)

• Closed forms (if available) a better option for ASR (10ms ~ 256 random var.)

Short-time Fourier Transform Uncertainty Propagation (STFT-UP)

Transforming a complex random matrix (uncertain spectrum) 
through a non-linear, multivariate, feature extraction“

”

STFT Uncertainty Propagation
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• Uses a combination of closed-form and pseudo-Monte Carlo methods

• Feature extraction divided into different steps (e.g amplitude, logarithm)

• Optimal method used for each step

• We need to know uncertainty distribution between steps

• Here recipes presented for

Mel-Frequency Cepstral Coefficients
RASTA-Perceptual-Linear-Prediction
Multi-layer perceptron features

Short-time Fourier Transform Uncertainty Propagation (STFT-UP)

STFT Uncertainty Propagation
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Mel-frequency Cepstral Coefficients (MFCCs)

• Extract Amplitude from STFT

• Log-spaced filterbank, perceptually motivated (Linear, non-invertible)

• Logarithm

• Discrete cosine transform (Linear)

STFT Uncertainty Propagation



24

Perceptual Linear Prediction Cepstra (LPCCs)

• Squared amplitude from STFT

• Log-spaced filterbank, perceptually motivated (Linear, non-invertible)

• Equal loudness, power law of hearing (exponentiation)

• All-pole model (Levinson-Durbin recursion)

• LPCs to ceptral coefficients

STFT Uncertainty Propagation
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Common step: N-th power of Magnitude + Linear filterbank

STFT Uncertainty Propagation
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Uncertainty distribution in STFT domain 

We can integrate out the phase to get the 
amplitude 

This results in a Rice distribution (n=1)

Powers of Magnitude

STFT Uncertainty Propagation
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We can not compute the distribution, of the 
n-th power of the magnitude

Fortunately, the n-th moment of the 
amplitude can be computed 

Powers of Magnitude

STFT Uncertainty Propagation
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• We can compute the nth moment

• Linear transform, no problem

• Dimension reduced ~10 times

• Induces feature correlation!

+Mel/Bark Filterbanks

Next transformations

• MFCC (logarithm)

• LPCC (log + various non-linear transf.)

STFT Uncertainty Propagation
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For n=2 (squared magnitude) 

• Distribution approx. Log-normal

• Log-features then Gaussian

• Many feature extractions linear on log 
domain

DCT       (completing MFCCs)
RASTA  (IIR) 
CMS
Deltas, Accelerations
Blind Equalization

              LDA

Logarithm

STFT Uncertainty Propagation
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What if n not 2? 

• Unscented Tranform, or

• Cumulant generating function (CGF)

• Taylor approximation p=2, has the 
same effect as log-normality

• Stronger assumption, no Gaussianity 
garanteed (DCT helps)

Logarithm

STFT Uncertainty Propagation
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• Feature dimension (N) reduced after 
filterbank ~1 order of magnitude

• If uncertainty not too skewed...

• The unscented transform yields good 
results

• Approx. discrete distribution of 2N+1 
points

• ~45 Transformations trough g needed

Generic Non-Linear Transforms

STFT Uncertainty Propagation
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Example: MFCCs with STFT-UP

• Usually we would compute MFCCs as

• But in the real world we only have

• Applying STFT-UP (diagonal cov.) we get a posterior                                        
with parameters:                                                

STFT Uncertainty Propagation
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with

Example: MFCCs with STFT-UP

STFT Uncertainty Propagation
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with

Example: MFCCs with STFT-UP

STFT Uncertainty Propagation

Computational cost around twice that of conventional MFCCs (plus noise estimation)
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Multi-Layer Perceptrons (MLPs)

• As Feature Extraction (uncertainty Propagation)

            Bottleneck Features
            Multi-stream TANDEM approach

• As Acoustic Model (uncertainty decoding)

             ANN-HMM 
             CD-DNN-HMM 

• Basic structure: coupled layers of perceptrons     
 

STFT Uncertainty Propagation
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Multi-Layer Perceptrons (MLPs)
• Linear step

    

• Non-linear step: Sigmoid

     

• Assumption for propagation 

           Output linear step Gaussian
           Outputs statistically independent

• Problem reduced to Gaussian 
propagation through Sigmoid

STFT Uncertainty Propagation
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Multi-Layer Perceptrons (MLPs) • Piecewise Sigmoid approximation

    

• Exact propagation solutions exist for 
this approximation

STFT Uncertainty Propagation
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Multi-Layer Perceptrons (MLPs) • Piecewise Sigmoid approximation

    

• Exact propagation solutions exist for 
this approximation

STFT Uncertainty Propagation
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Multi-Layer Perceptrons (MLPs)

• The expected sigmoid output yields [Astudillo 2011b]

• Similar formulas exist for the variance and node covariance

• Piecewise Sigmoid approximation

    

• Exact propagation solutions exist for 
this approximation

STFT Uncertainty Propagation
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• STFT-Speech enhancement and residual uncertainty
             The complex Gaussian uncertainty model

Residual uncertainty estimation (Empirical/MSE)

• STFT Uncertainty Propagation 
Mel-Frequency Cepstral Coefficients
RASTA-Perceptual-Linear-Prediction
Multi-Layer Perceptron

• Integration of STFT speech enhancement and robust ASR
Uncertainty Propagation as MMSE estimator
Uncertainty Propagation & Decoding
Experiments and Results

Overview
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Computing MMSE estimates with STFT-UP

• We saw the MMSE estimator of the clean Fourier coefficient (Wiener filter)

• MMSE estimators of non-linear speech transformations are, however, better

• Non-linear estimators better related to percieved sound quality and ASR feature 
extractions 

• Amplitude, log-Amplitude (Ephraim-Malah filters)

• MMSE-MFCC estimators [Yu 2008]

Integration of STFT speech enhancement and robust ASR
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Computing MMSE estimates with STFT-UP

Fourier coeficient Amplitude A=|X|:

Integration of STFT speech enhancement and robust ASR

Fourier coeficient log-Amplitude log(|X|):
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Computing MMSE estimates with STFT-UP

Generic MMSE estimator of non-linear feature extraction  f

Integration of STFT speech enhancement and robust ASR

Fourier coeficient Amplitude A=|X|:

Fourier coeficient log-Amplitude log(|X|):
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Computing MMSE estimates with STFT-UP

• The solution is always the expectation of the Wiener filter posterior transformed 
through  f

• This is in fact what STFT-UP solves [Astudillo 2010]! 

• Propagating the Wiener posterior yields  MMSE estimates in MFCC, RASTA-LPCC, 
and MLP domain 

• Also provides a variance that can be combined with observation uncertainty

Integration of STFT speech enhancement and robust ASR
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Uncertainty Decoding and Propagation

Integration of STFT speech enhancement and robust ASR

• We derived UD from the modified Bayesian decoding rule (tutorial introduction)

• The same applies to the posterior attained from STFT-UP
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Uncertainty Decoding and Propagation

Integration of STFT speech enhancement and robust ASR

• We can also extend this easily to acoustic models based on neural networks. 

• For each class q (diphone, senone) modeled by the multi-layer perceptron (MLP) 

• The expected multi-layer perceptron output can be computed with the uncertainty 
propagation formulas here presented
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Uncertainty Decoding and Propagation

Integration of STFT speech enhancement and robust ASR

• Another method that provides better results with STFT-UP is modified imputation 
[Kolossa 2005]

• State likelihood:                                       ,  Uncertain features:     
 

• The most likely feature value is obtained from

• yielding
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Integration of STFT speech enhancement and robust ASR

• Small Vocabulary (TI-Digits)
• Non-stationary additive noise, reveberant speech
• ETSI Advanced-Front-End features
• Empirical uncertainty estimation
• Tested: Uncertainty Decoding (UD) and Modified Imputation (MI) 

Improving the ETSI Advanced Front-End on the AURORA5 Task [Astudillo 2010b] 
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• Small Vocabulary (TI-Digits)
• Non-stationary additive noise, reveberant speech
• ETSI Advanced-Front-End features
• Empirical uncertainty estimation
• Tested: Uncertainty Decoding (UD) and Modified Imputation (MI) 

Improving the ETSI Advanced Front-End on the AURORA5 Task [Astudillo 2010b] 

Integration of STFT speech enhancement and robust ASR
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Integration of STFT speech enhancement and robust ASR

SNR SNR SNR

• Small Vocabulary (TI-Digits)
• Non-stationary additive noise, reveberant speech
• ETSI Advanced-Front-End features
• Empirical uncertainty estimation
• Tested: Uncertainty Decoding (UD) and Modified Imputation (MI) 

Additive Noise +Reverberant Office +Reverb. Living Room

UD -4% rel
MI -1% rel

UD -15% rel
MI -23% rel

UD -7% rel
MI -15% rel
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Improving the ETSI Advanced Front-End on the AURORA5 Task [Astudillo 2010b] 
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Results on AURORA4 Task against conventional STFT Speech Enhancement

• Not-so-small Vocabulary (Wall Street-Journal, 5K-Words)
• Non-stationary additive noise
• IMCRA noise estimator + decision directed method
• MFCC features, with deltas and delta-deltas (no delay otherwise)
• Compared with amplitude, log-amplitude and Wiener estimators

Integration of STFT speech enhancement and robust ASR
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Results on AURORA4 Task against conventional STFT Speech Enhancement

Integration of STFT speech enhancement and robust ASR

Word Error Rate Word Error Rate Word Error Rate

MMSE Amplitude

Wiener filter

MMSE log-Amplitude

MMSE MFCC + MI (F)

MMSE MFCC + MI

MMSE MFCC + UD

MMSE MFCC

Clean Speech Stationary Noise Non-Stationary

• MMSE-MFCC outperforms all other MMSE estimators
• Use of MI achieves -17% / -19% relative WER reduction against best STFT MMSE
• Large reduction for stationary noise -40% rel. (-29% vs Wiener) 
• Non-stationary noise reduction -17% rel. (affected by noise estimation errors)
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Closing Remarks

• STFT Uncertainty Propagation allows for the integration of speech 
enhancement and ASR

• Exploits existing (and prospective) expertise in the speech enhancement field 
through empirical or MSE uncertainty propagation

• Recipes were presented to attain propagation through various feature 
extractions

• STFT-UP requires low computational costs and minimal modifications of ASR 
systems

Conclusions
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Thank You!

Code for STFT-UP (including HTK patches for MI, UD) available 
from http://www.astudillo.com/ramon/research/stft-up/
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Overview

• Bayesian uncertainty estimation for STFT-domain enhancement

Theoretical Bayesian uncertainty estimator

Variational Bayesian approximation

Example results

• Expectation maximization training of acoustic models with unreliable input features

EM training algorithm

Example results
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Example results
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Example results
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Bayesian uncertainty estimation for STFT-domain enhancement

Remember empirical uncertainty estimation and residual MSE?

Uncertainty estimators previously described in this tutorial:

• empirical nonlinear distortion estimator λkl = α

∣∣∣|Zkl| − |X̂kl|
∣∣∣
2

with Z output of linear

beamformer

Ad hoc solution, not very elegant but effective

• residual MSE estimator λkl =
λ̂Xkl

λ̂Dkl

λ̂Xkl
+ λ̂Dkl

stemming from the Wiener filter

Exact expression of the Wiener filter posterior given the estimated speech and distortion

variances λ̂Xkl
and λ̂Dkl

: p(Xkl|Ykl, λ̂Xkl
, λ̂Dkl

) = NC(X̂MMSE
kl , λkl)

Wait, this does not account for the uncertainty about these variances!
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Bayesian uncertainty estimation for STFT-domain enhancement

What are the parameters of the speech enhancement method?

What’s more, the variances λXkl
and λDkl

often derive from a set of parameters θ, which are

themselves uncertain!!

Examples:

• steering/blocking vectors for beamforming, ICA,

• hidden states, initial/transition probabilities, and state means/variances for GMM, HMM,

• basis spectra and scaling coefficients for NMF, harmonic NMF, and variants thereof,

• decay parameters for late reverberation models.

Flexible FASST framework generalizing some of these enhancement methods.

Toolbox available from http://bass-db.gforge.inria.fr/fasst/
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Bayesian uncertainty estimation for STFT-domain enhancement

Theoretical Bayesian uncertainty estimator

The theoretical Bayesian uncertainty estimator is given by

p(X|Y) =

∫
p(X,θ|Y) dθ

Problem: this integral typically involves thousands of dimensions!
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Bayesian uncertainty estimation for STFT-domain enhancement

Approximate variational Bayesian uncertainty estimator

Variational Bayes (VB): approximate the joint posterior p(X, θ|Y) by the closest distribution

q(X, θ) for which the integral is tractable.

When q is assumed to factor as q(X, θ) =
∏

kl q(Xkl)q(θ), the posterior over Xkl is simply

obtained as

p(Xkl|Y) ≈ q(Xkl).

6



Bayesian uncertainty estimation for STFT-domain enhancement

VB inference: the theory

The closeness between p and q is measured via the Kullback-Leibler divergence

KL(q||p) =

∫
q(X, θ) log

q(X, θ)

p(X, θ|Y)
.

Minimizing this quantity is equivalent to maximizing the so-called variational free energy

L (q) =

∫
q(X, θ) log

p(Y,X, θ)

q(X, θ)
dX dθ

This function is sometimes not maximizable in closed form and minorization by a parametric

bound f(Y,X, θ,Ω) ≤ p(Y,X, θ) may be needed.

Assuming q(X, θ) =
∏

kl q(Xkl)
∏

i q(θi), the solution is iteratively estimated by

1. tightening the bound w.r.t. the variational parameters Ω,

2. q(θi) ∝ exp[EX,θ
i′ 6=i

log f(Y,X, θ,Ω)]

3. q(Xkl) ∝ exp[EX
k′l′ 6=kl

,θ log f(Y,X, θ,Ω)]
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Bayesian uncertainty estimation for STFT-domain enhancement

VB inference in practice

This results in a VB expectation-maximization (EM) algorithm where posterior distributions

over the parameters are updated instead of deterministic parameter values as in the usual

maximum likelihood (ML)-based EM algorithm.

Resulting approximating distributions for FASST given in [Adiloğlu 2012]:

• complex-valued Gaussian for Xkl and for the steering vectors,

• generalized inverse Gaussian for the NMF parameters (generalization of gamma and

inverse-gamma distributions).
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Bayesian uncertainty estimation for STFT-domain enhancement

Speaker recognition benchmark

We here consider speaker recognition with a baseline classifier rather than ASR because it

allows us to focus on the performance improvement due to acoustic modeling alone.

Data: 2011 PASCAL CHiME Speech Separation and Recognition Challenge

http://spandh.dcs.shef.ac.uk/projects/chime/challenge.html

Short spoken commands mixed with genuine noise backgrounds recorded in a family home.

Training: 20 clean utterances from each of 34 speakers

Test: 20 other utterances per speaker, each mixed at 6 different SNRs

Enhancement: multichannel NMF (ML or VB).

Features: static MFCCs (2 to 20), log-normal UP

Baseline classifier: 32-component GMMs with diagonal covariances, initialized by

hierarchical K-means
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Bayesian uncertainty estimation for STFT-domain enhancement

Signal enhancement accuracy

Average SDR (dB) over the estimated target signals

without UP

ML enhancement 1.58

VB enhancement 1.70

VB performs similarly to ML in terms of signal enhancement accuracy. . .
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Bayesian uncertainty estimation for STFT-domain enhancement

MMSE feature estimation accuracy

Average RMS error over the estimated MMSE MFCCs x̂MMSE
il

without UP with UP

ML enhancement 0.869 0.767

VB enhancement 0.862 0.763

. . . VB performs similarly to ML in terms of MMSE feature estimation accuracy. . .
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Bayesian uncertainty estimation for STFT-domain enhancement

Speaker recognition accuracy

. . . but it performs better in terms of speaker recognition accuracy

−6 −3 0 3 6 9
0

20

40

60

80

100

SNR (dB)

%
 C

o
rr

ec
t

 

 

VB−UP

ML−UP

noisy data

For the particular task, data, and enhancement method considered here, signal enhancement

decreases classification accuracy and ML-UP makes it even worse (yes, this can happen!)

But VB-UP improves it by 9% absolute compared to using noisy data.
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Overview

• Bayesian uncertainty estimation for STFT-domain enhancement

Theoretical Bayesian uncertainty estimator

Variational Bayesian approximation

Example results

• Expectation maximization training of acoustic models with unreliable input features

EM training algorithm

Example results
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Expectation maximization training of acoustic models with unreliable input features

What about mixed training?

So far, we (and others) have assumed that the acoustic models have been trained on clean data

but. . .

• speaker-dependent clean data may not be available,

• mixed training is an effective technique aside from feature and model compensation.

NAT is complementary to UD because

• the Gaussian parametric model (or other models) of uncertainty may not fit the actual

distribution of uncertainty,

• even when it does, its covariance Σ
x
l (or their parameters) are never perfectly estimated.

NAT allows to learn from data the residual distortion that UP failed to represent.
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Expectation maximization training of acoustic models with unreliable input features

Naive approach

Naive approach: conventional training on noisy or enhanced training data, followed by UD on

the test data.

Problem: although this is sometimes effective, the model compensation is biased.

The variance of the distortion is counted twice:

• the distortion on the training data is accounted for by the parameters of the acoustic model,

• the distortion on the test data is accounted for by the uncertainty estimator,

• the variances of both distortions add up in the UD rule.

We don’t want the model parameters to account for the distortion on the training data.

The model parameters should represent clean data only (and the small residual distortion over

the training data not represented by UP).
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Expectation maximization training of acoustic models with unreliable input features

EM training algorithm for GMMs (1)

Again, let us focus on GMM-based speaker recognition first for simplicity.

Notations:

• GMM parameters {µq,Σq, ωq} for each speaker class C,

• uncertain data p(xl|Y) ∼ N (µx
l ,Σx

l ).

Reminder: assuming {µq,Σq, ωq} have been trained on clean data, UD relies on the modified

likelihood

p(µx
l ,Σx

l |C) =
∏

l

∑

q

ωq N (µx
l |µq,Σq+Σ

x
l )

In order to train on noisy data, we simply maximize the UD likelihood on the training data.

This can be achieved via the EM algorithm considering both the states ql and the clean data xl

as hidden data [Ozerov 2012].
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Expectation maximization training of acoustic models with unreliable input features

EM training algorithm for GMMs (2)

E-step: estimation of the underlying clean feature moments by Wiener filtering

γq,l ∝ ωq N (µx
l |µq,Σq+Σ

x
l ),

Wq,l = Σq(Σq + Σ
x
l )−1,

x̂q,l = µq + Wq,l

(
µx

l − µq

)
,

R̂xx,q,l = x̂q,lx̂
T
q,l+(I − Wq,l)Σq.

M-step: update GMM parameters

ωq =
1

L

∑

l

γq,l,

µq =
1∑
l γq,l

∑

l

γq,lx̂q,l,

Σq = diag

(
1∑
l γq,l

∑

l

γq,lR̂xx,q,l − µqµq
T

)
.

By analogy with UD, we call this algorithm uncertainty training.

Toolbox available from http://bass-db.gforge.inria.fr/amulet/
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Bayesian uncertainty estimation for STFT-domain enhancement

Speaker recognition benchmark

Same data, enhancement algorithm and baseline classifier as above.

Empirical STFT uncertainty estimation (better than MSE here) + log-normal UP.

Training: 20 clean utterances from each of the 34 speakers, each mixed at 6 different SNRs

Results averaged into 4 training conditions:

• clean,

• matched (same SNR),

• unmatched (different SNR),

• multicondition (all SNRs, hence more noisy data)
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Expectation maximization training of acoustic models with unreliable input features

Results

Speaker recognition accuracy (average over all SNRs)

Enhanced Training Decoding Training condition

signal approach approach Clean Matched Unmatched Multi

No Conventional Conventional 65.17 71.81 69.34 84.09

Yes Conventional Conventional 55.22 82.11 80.91 90.12

Yes Conventional Uncertainty 75.51 78.60 77.58 85.02

Yes Uncertainty Uncertainty 75.51 82.87 81.52 91.13

The naive approach decreases performance in this setting.

Uncertainty training overcomes this issue and improves by up to 1% absolute in all training

conditions. Improvements up to 4% may be observed with other uncertainty estimators.

Conclusion: Uncertainty training makes it possible to exploit all available training data,

whatever their noise level. The more data, the better.
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Expectation maximization training of acoustic models with unreliable input features

EM training algorithm for HMMs (1)

Notations (M states, Q components):

• HMM parameters M = {µmq,Σmq, ωmq, πm, amn},

• uncertain training data p(xl|Y) ∼ N (µx
l ,Σx

l ),

• observation probabilities bm(µx
l ,Σx

l ) = p(µx
l ,Σx

l |sl = m,M),

• forward probabilities αm,l = p(µ1:l,Σ1:l, sl = m|M),

• backward probabilities βm,l = p(µl+1:L,Σl+1:L|sl = m,M),

• γmq,l = p(sl = m, ql = q|µ,Σ,M),

• ξmn,l = p(sl = m, sl+1 = n|µ,Σ,M)
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Expectation maximization training of acoustic models with unreliable input features

EM training algorithm for HMMs (2)

E-step:

bm(µx
l ,Σx

l ) =
∑

q

ωmq N (µx
l |µmq,Σmq+Σ

x
l ),

αm,l computed via the forward algorithm using bm(µx
l ,Σx

l ),

βm,l computed via the backward algorithm using bm(µx
l ,Σx

l ),

γmq,l ∝ αm,l βm,l ωmq N (µx
l |µmq,Σmq+Σ

x
l ),

ξmn,l ∝ αm,l amn bn(µx
l+1,Σ

x
l+1) βn,l+1,

Wmq,l = Σmq(Σmq + Σ
x
l )−1,

x̂mq,l = µmq + Wmq,l(µ
x
l − µmq),

R̂xx,mq,l = x̂mq,lx̂
T
mq,l+(I − Wmq,l)Σmq.
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Expectation maximization training of acoustic models with unreliable input features

EM training algorithm for HMMs (3)

M-step:

πm =
∑

q

γmq,1,

amn =
1∑

l

∑
q γmq,l

∑

l

ξmn,l,

ωmq =
1∑

l

∑
q′ γmq′,l

∑

l

γmq,l,

µmq =
1∑

l γmq,l

∑

l

γmq,lx̂mq,l,

Σmq = diag

(
1∑

l γmq,l

∑

l

γmq,lR̂xx,mq,l − xmqx
T
mq

)
.
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Expectation maximization training of acoustic models with unreliable input features

Other variants

This algorithm is also applicable with minor modification to

• maximum a posteriori (MAP) acoustic model adaptation,

• maximum likelihood linear regression (MLLR) acoustic model adaptation,

• other data than audio.

For MAP/MLLR, only the M-step should be modified, while the E-step remains unchanged.

Connections with NAT-VTS [Kalinli 2009] and JUD [Liao 2007] designed for more stationary

noise.
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Wrap-up and perspectives

One-slide wrap-up

Noise-robust ASR techniques can be classified into 6 classes, among which hybrid approaches

combining feature and model compensation perform best.

The uncertainty p(x|Y) estimated via a parametric model of speech distortion can be exploited

for dynamic model compensation using the modified acoustic likelihood
Z

RI.L

p(x|W)

p(x)
p(x|Y)dx ≈

Z

RI.L

p(x|W)p(x|Y)dx instead of p(Y|W)

This modified acoustic likelihood can be used both for decoding (UD) or training. In the case

of HMM/GMMs, the variances of the acoustic model and the uncertainty simply add up.

Compared to feature-domain uncertainty estimation techniques, STFT-domain uncertainty

estimation followed by uncertainty propagation (UP) enables the exploitation of additional

enhancement cues (f0, spatial position, etc).

UP recipes exist for a variety of features (MFCC, RASTA-PLP, MLP, ETSI-AFE).
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Wrap-up and perspectives

Is it used in practice?

Back to the 2011 CHiME Speech Separation and Recognition Challenge [Barker, to appear].

http://spandh.dcs.shef.ac.uk/projects/chime/PCC/results.html

Feature Robust Model

compensation features compensation

Delcroix et al. X X

Maas et al. X X

Weninger et al. X X X

Nesta & Matassoni X X X

Kolossa et al. X X X

Hurmalainen et al. X X

Ozerov & Vincent X X

Ma et al. X X X

Koldovský et al. X

Kim et al. X X X

Gemmeke et al. X X

Vipperla et al. X X

Kallasjoki et al. X X X

11 hybrid approaches among 13.

5 exploited boolean or Gaussian

uncertainty:

• fragment decoding [Ma 2011] or

channel-attentive decoding [Kim

2011],

• UD [Kallasjoki 2011], MI [Ma

2011] or dynamic variance adap-

tation [Delcroix 2011].
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Wrap-up and perspectives

How well does it work? (1)
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Wrap-up and perspectives

How well does it work? (2)

The most effective strategies are the simplest ones:

• mixed training,

• careful handling of model size and speaker adaptation,

• enhancement based on spatial cues.

Uncertainty handling improves accuracy by up to 10% absolute alone, but by 1% absolute only

when used in combination with the best front ends and back ends.
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Wrap-up and perspectives

Perspective 1: greater enhancement

A research field of its own.

Tighter communication needed with the Audio and Acoustic Signal Processing (AASP) and

Machine Learning for Signal Processing (MLSP) communities.

See the annual Signal Separation Evaluation Campaign (SiSEC) for recent achievements

http://sisec.wiki.irisa.fr/

Localization and separation of moving sources or sources within a strongly reverberant

environment remain very challenging.

5

http://sisec.wiki.irisa.fr/


Wrap-up and perspectives

Perspective 2: more accurate uncertainty estimation

The potential of uncertainty handling is much greater than what has been achieved so far,

according to experiments using oracle uncertainty [Deng 2005, Ozerov 2012].

STFT-domain uncertainty estimation still involves many heuristics and approximations.

Better theoretical understanding of successful heuristics is needed.

This should help deriving improved approximations.
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Wrap-up and perspectives

Perspective 3: exploitation of underexploited uncertainties

Uncertainties used so far:

• target and background spectra,

• some hyper-parameters: steering vectors, NMF basis spectra and scaling coefficients, late

reverberation decay parameters.

The uncertainty about other hyper-parameters remains to be better exploited:

• target spatial direction,

• uncertainty in other modalities, e.g., video [Vorwerk 2011].
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Wrap-up and perspectives

Perspective 4: understanding the big picture

Why is it that uncertainty handling sometimes degrades performance?

System components often studied in isolation:

• feature enhancement,

• uncertainty estimation,

• decoding rule.

But strong interplay exists: certain uncertainty estimators better estimate uncertainty for

certain forms of speech distortion than others.

Again, better understanding of interplay should help designing improved noise-robust ASR

systems.
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Wrap-up and perspectives

The 2nd CHiME Speech Separation and Recognition Challenge

Goal: recognizing distant-microphone speech mixed in two-channel nonstationary noise

recorded over a period of several weeks in a real family house.

Two tracks:

• medium vocabulary: WSJ 5k sentences uttered by a static speaker (similar to Aurora 4)

• small vocabulary: simpler commands but small head movements.

Deadline: January 15, 2013

ICASSP satellite workshop: June 1, 2013, Vancouver, Canada

Any approach is welcome, whether emerging or established!

http://spandh.dcs.shef.ac.uk/chime challenge/
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Wrap-up and perspectives

Let’s join efforts

We (Ramón and Emmanuel) are proposing to create an ISCA SIG on robust speech processing.

What about?

• robustness to noise, reverberation, inter- and intra-speaker variability, speaking style. . .

• application to speech enhancement, ASR, speaker recognition. . .

What for?

• share problems, resources and good practices,

• promote our area within the communities involved (SL, AASP, MSLP) and the industry,

• support initiatives (special sessions, workshops, challenges, etc.),

• ultimately increase funding and foster new research directions.

If you are interested, please come and meet us.
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