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Model-based audio source separation

The source separation problem

Many sound scenes are mixtures of several concurrent sound sources.

When facing such scenes, humans are able to perceive and listen to
individual sources.

Source separation is the problem of recovering the source signals
underlying a given mixture.
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Model-based audio source separation

Scenario 1: recorded speech mixture
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Example applications:
@ speech enhancement,

@ automatic speech and speaker recognition.
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Model-based audio source separation

Scenario 2: synthesized music mixture
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Example applications:

@ post-production and multichannel upmixing,

@ browsing by content.

Audio Source Separation

E. Vincent (IRISA-INRIA)

microphones Direct Anechoic
(point sources) sound recording
—field
near—coincident
microphone pair
L Multitrack Mixing Synthesized
recording software mixture



Model-based audio source separation

Computational auditory scene analysis (CASA)

CASA achieves source separation by emulating the human auditory system.
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Source segregation cues are exploited in some precedence order, assuming
that small time-frequency regions are dominated by a single source.

This bottom-up approach is fast but not robust.
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Model-based audio source separation

Model-based audio source separation

An alternative approach consists of finding the source signals that best fit
the expected properties of audio sources.

In a probabilistic framework, this translates into
@ building generative models of the source and mixture signals,

@ inferring latent variables in a maximum a posteriori (MAP) sense.

This top-down approach is more robust than CASA since
@ all source segregation cues are exploited at the same time,

@ the number of active sources per time-frequency region is not
restricted.
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Model-based audio source separation

Overview of the talk
Hundreds of model-based source separation systems were designed in the
last 20 years, based on e.g.

@ frequency-domain independent component analysis (FDICA),

@ sparse component analysis (SCA),

@ hidden Markov models (HMM)),

@ nonnegative matrix factorization (NMF).

30 systems submitted by 15 research groups were evaluated during the
2008 Signal Separation Evaluation Campaign (SiSEC'08).

In this talk, we will
@ show that all systems boil down to one of two modeling paradigms:
linear modeling vs. hierarchical phase-invariant modeling,
@ illustrate state-of-the-art performance as measured by SiSEC'08,
@ consequently identify the most promising paradigm for future research.

For simplicity, we will focus on stereo (two-channel) mixtures.
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Linear modeling

Paradigm 1: linear modeling

The established linear modeling paradigm relies on two assumptions:
© point sources
@ low reverberation

Under assumption 1, the sources and the mixing process can be modeled
as single-channel source signals and a linear filtering process.

Under assumption 2, this filtering process is equivalent to complex-valued
multiplication in the time-frequency domain via the short-time Fourier
transform (STFT).

In each time-frequency bin (n, f)
X,r: vector of mixture STFT coeff.

J J: number of sources
Xnf = Z SJ'"fAJ'f Sjnr: jth source STFT coeff.
Jj=1 Ajs: jth mixing vector
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Priors over the mixing vectors

The mixing vectors Ajr encode the apparent sound direction in terms of
@ interchannel time difference (ITD) gjr,
@ interchannel intensity difference (IID) 7jf.

For non-echoic mixtures, ITDs and IIDs are constant over frequency and
related to the direction of arrival (DOA) 6; of each source

1
Ajf X <g:/,e—2i7rf7'j>

For echoic mixtures, ITDs and |IDs follow a smeared distribution P(Aj¢|6;)
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Linear modeling

l.i.d. priors over the source STFT coefficients

Most systems assume that the sources have random spectra, i.e. their
STFT coefficients Sj,r are independent and identically distributed (i.i.d.).

The magnitude STFT coefficients of audio sources are sparse: at each
frequency, few coefficients have large values while most are close to zero.

This property is well modeled by the generalized exponential distribution
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Coarser binary priors have also been employed.
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Linear modeling

Inference algorithms

Given the above priors, source separation is typically achieved by joint
MAP estimation of the source STFT coefficients S;,r and other latent
variables (Aj¢, gj, 7, p, Bj) via alternating nonlinear optimization.

This objective is called sparse component analysis (SCA).

For typical values of p (p < 0.74), the MAP source STFT coefficients are
nonzero for at most two sources. SCA then consists of finding the pair of
sources with minimum ¢, norm.

When the number of sources is J = 2, SCA is renamed nongaussianity-
based frequency-domain independent component analysis (FDICA).
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Practical illustration of separation using i.i.d. priors
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Time-frequency bins dominated by the center source are often erroneously
associated with the two other sources, leading to musical noise artifacts.

E. Vincent (IRISA-INRIA) Audio Source Separation 14 / 42



Linear modeling

Spectral priors based on arbitrary sound atoms

In order to avoid such errors, the spectral characteristics of each source
must be exploited in addition to its spatial characteristics.

In the framework of linear modeling, this translates into representing each
source as a linear combination of a set of wideband sound atoms Bjy,s

weighted by sparse activation weights ajx
K
Sine = Z i Bjknf
k=1

Different strategies have been proposed to learn these atoms:
@ speaker-independent training on separate single-source data,
@ MAP adaptation to one mixture channel with a uniform prior.
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Example sound atoms adapted to a speech mixture

N = R
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Linear modeling

Separation results on recordings of 2 sources
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Linear modeling

Separation results on panned mixtures of 3 or 4 sources
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Linear modeling

Summary limitations of linear modeling

To sum up, state-of-the-art linear modeling-based systems exhibit two
theoretical limitations:

@ the mixture must consist of non-reverberated point sources,

@ at most two sources can be separated in each time-frequency bin and
the two predominant sources are often wrongly identified.

These limitations are due respectively to the modeling of the sources as
single-channel signals and to intrinsic ambiguities of ITD and IID cues.
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Idea 1: from sources to source components

Diffuse or semi-diffuse sources cannot be modeled as single-channel signals
and not even as finite dimensional signals.

Instead of considering the signal produced by each source, one may
consider its contribution to each channel of the mixture signal.

Source separation becomes the problem of estimating the multichannel
source components underlying the mixture.

In each time-frequency bin (n, f)
X,r: vector of mixture STFT coeff.

J
X,r = Z Cjnf J: nurT1ber of sources
= Cjnf: jth source component
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Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, additional spectral
cues are needed.

Most audio sources are translation- and phase-invariant: a given sound
may be produced at any time with any relative phase across frequency.

This property is not efficiently accounted for by linear modeling. The
number of sound atoms needed to represent a given source is virtually
infinite and a finite number of atoms leads to phase ringing artifacts.

Translation and phase invariance must be explicitly accounted for.
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Hierarchical phase-invariant modeling

Paradigm 2: hierarchical phase-invariant modeling

Hierarchical phase-invariant modeling combines the two ideas by modeling
the STFT coefficients of individual source components by a circular
multivariate distribution whose parameters vary over time and frequency.

The non-sparsity of source STFT coefficients over small time-frequency
regions suggests the use of a non-sparse distribution.

Speech source S Inf Generalized Gaussian shape parameter p
4 g = = 60
5 == = 40 .
2?2 2
< 20
0 0 0

10" 10° 10°
neighborhood size (Hz X s)

Log-Gaussian and Poisson distributions over magnitude STFT coefficients
have been widely used for single-channel data but do not easily generalize
to multichannel data.
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The Gaussian model

The zero-mean Gaussian distribution provides a simpler model.

1 —CH X2 Cnr ¥ .f: jth component
P(CiflX; = —_ jnf = jnf Jnf-lj p -
(Cor Zjor) det(sznf) covariance matrix

The covariance matrix X ;¢ of each source component can be factored as
the product of a scalar nonnegative variance Vj,r and a mixing covariance
matrix Rjr respectively modeling spectral and spatial properties

2jor = VinrRjr

Under this model, the mixture STFT coefficients also follow a Gaussian
distribution whose covariance is the sum of the component covariances

1

-1
e_Xan(Zle anijf) Xnf
J
det (W >im1 anijf)

P(Xnf|Vinf, Rje) =
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Hierarchical phase-invariant modeling

General inference algorithm

Independently of the priors over Vj,r and Rjf, source separation is typically
achieved in two steps:
@ joint MAP estimation of all model parameters using the expectation
maximization (EM) algorithm,
@ MAP estimation of the source STFT coefficients conditional to the
model parameters by multichannel Wiener filtering

-1
J

Cinr = VinrRjr z ViineRjrf Xt
=
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Hierarchical phase-invariant modeling

Rank-1 priors over the mixing covariances

The mixing covariances Rjr encode the apparent spatial direction and
spatial spread of sound in terms of

o ITD,
o |ID,
@ normalized interchannel correlation a.k.a. interchannel coherence.

For non-reverberated point sources, the interchannel coherence is equal to
one, i.e. Rjr has rank 1

Rjr = AjrA7

The priors P(Aj|6;) used with linear modeling can then be simply reused.
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Hierarchical phase-invariant modeling

Full-rank priors over the mixing covariances

For reverberated or diffuse sources, the interchannel coherence is smaller
than one, i.e. Rjf has full rank.

The theory of statistical room acoustics suggests the direct-+diffuse model

. Aj: direct-to-reverberant ratio
Rjr o /\jAijjf + Bf Aj: d_irect mixing vector
B¢: diffuse noise covariance

with
A — 2 1 72 ITD of direct sound
A1 F gj2 gje 2t g |ID of direct sound
B 1 sinc(27fd/c) d: microphone spacing
f sinc(2rfd/c) 1 c: sound speed

More accurate models remain to be found.
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l.i.d. priors over the source variances

Baseline systems rely again on the assumption that the sources have
random spectra and model the source variances Vj,r as i.i.d. and locally
constant within small time-frequency regions.

When these follow a mildly sparse prior, it can be shown that the MAP
variances are nonzero for up to four sources.

Discrete priors constraining the number of nonzero variances to one or two
have also been employed.

When the number of sources is J = 2, this model is also called
nonstationarity-based FDICA.
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Benefit of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguities of ITD and 11D
and identify the predominant sources more accurately.
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Hierarchical phase-invariant modeling

Practical illustration of separation using i.i.d. variance
priors
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Spectral priors based on template spectra

Hierarchical modeling eases the design of phase-invariant spectral priors.

The Gaussian mixture model (GMM) represents the variance V¢ of each
source at a given time by one of K template spectra wjr indexed by a
discrete state gj,

\/jnf - Vquj"f with P(an = k) = Tjk

Different strategies have been proposed to learn these spectra:
@ speaker-independent training on separate single-source data,
@ speaker-dependent training on separate single-source data,
@ MAP adaptation to the mixture using model selection or interpolation,
@ MAP inference from a coarse initial separation.

Smooth autoregressive (AR) parameterization of the template spectra has
also been studied so as to avoid overfitting to the fundamental frequencies
of sounds in the training data.
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rarchical phase-invariant mod

Practical illustration of separation using template spectra
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Spectral priors based on basis spectra

The GMM does not efficiently model polyphonic musical instruments such
as the piano, which can play several notes at a time.

The variance Vj,r of each source is then better represented as the linear
combination of K basis spectra wjs multiplied by time-varying scale
factors hjip

Vipe = § hjknWjks

K
k=1

This model is also called nonnegative matrix factorization (NMF).

Again, a range of strategies have been used to learn these spectra:
@ instrument-dependent training on separate single-source data,
@ MAP adaptation to the mixture using uniform priors,
@ MAP adaptation to the mixture using trained priors.
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Practical illustration of separation using basis spectra
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Hierarchical phase-invariant modeling

Reported performance improvements

Compared to SCA, hierarchical modeling-based systems have achieved
SDR improvements as reported by their authors on the order of

@ +1 dB with i.i.d. priors,
@ +2 dB with adapted template spectra,

@ up to +10 dB with instrument-dependent learned basis spectra.

Smaller improvements were however measured during SiISEC'08.
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Hierarchical phase-invariant modeling

Separation results on recordings of 2 sources
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Hierarchical phase-invariant modeling

Separation results on panned mixtures of 3 or 4 sources
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Summary and remaining challenges

Summary principles of model-based source separation

Most model-based source separation systems rely on modeling the STFT
coefficients of each source as a function of

@ a scalar variable (Sjyr or Vjur) encoding spectral cues,

@ a vector or matrix variable (Ajr or Rjr) encoding spatial cues.

Robust source separation requires priors over both types of cues:

@ spectral cues alone cannot discriminate sources with similar pitch
range and timbre,

@ spatial cues alone cannot discriminate sources with the same DOA.

A range of informative priors have been proposed, relating for example
@ Sjnr or Vjur to discrete or continuous latent states,

@ Ajr or Rjs to the source DOAs.
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Summary and remaining challenges

Summary advantages of hierarchical phase-invariant
modeling

Hierarchical phase-invariant modeling exhibits three theoretical advantages
compared to linear modeling:

@ the mixture may contain diffuse or reverberated sources,

@ spatial cues allow the separation of more sources per time-frequency
bin and more accurate identification of the predominant sources,

@ in addition, phase-invariant spectral cues can be efficiently exploited.
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Remaining challenges

Three great challenges remain:

@ separate complex mixtures involving many reverberated and/or
moving sources,

@ build fully blind systems able to separate any mixture without any
prior knowledge,

@ find a robust output representation so as to integrate source
separation within a range of applications.

The Bayesian framework provides a principled way of tackling these
challenges by

@ designing higher-level priors based on meaningful latent variables,

@ building modular systems combining alternative priors and enabling
them to select the most appropriate priors for the mixture at hand,

@ computing the posterior probability of the separated sources.
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Summary and remaining challenges

Conclusion

To sum up, source separation is a core problem of audio signal processing
with huge potential applications.

Existing systems have found few practical applications yet, due to their
@ insufficient performance on real-world mixtures,
@ need for prior knowledge,

@ poor application integration.

We believe that these limitations could be addressed in the next 5 to 10

years by exploiting the full power of Bayesian inference as applied to
hierarchical phase-invariant models.

For more information
http://sisec.wiki.irisa.fr/

emmanuel .vincent@irisa.fr
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