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Overview of the course

• Introduction
✓ sparsity & data compression
✓ inverse problems in signal and image processing

✦ image deblurring, image inpainting, 
✦ channel equalization, signal separation, 
✦ tomography, MRI

✓ sparsity & under-determined inverse problems
✦ relation to subset selection problem

• Pursuit Algorithms
✓ Greedy algorithms: Matching Pursuit & al
✓ L1 minimization principles
✓ L1 minimization algorithms
✓ (Complexity of Pursuit Algorithms)
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Overview of the course

• Recovery guarantees for Pursuit Algorithms
✓ Well-posedness
✓ Coherence vs Restricted Isometry Constant
✓ Worked examples
✓ Summary
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Exercice for next time

• Implement in Matlab / Scilab:
✓ Matching Pursuit (MP), Orthonormal MP (OMP)
✓ Basis Pursuit = L1 minimization [with CVX] (BP)

• Generate test problems
✓ Create matrix A (random Gaussian, normalize columns) 
✓ Create k-sparse x and b=Ax

• Compute mp(b,A,k) / omp(b,A,k) / bp(b,A)

• Measure quality (SNR on x) & computation time

• Curves of success as function of sparsity k
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Exercice at home
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Recovery guarantees 
in various inverse problems
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Scenarios

• Range of  “choices” for the matrix A 
✦ Ex 1: Dictionary modeling structures of signals
• Constrained choice = to fit the data. 
• Ex: union of wavelets + curvelets + spikes

✦ Ex2: «Transfer function» from physics of inverse problem
• Constrained choice = to fit the direct problem.
• Ex: convolution operator / transmission channel

✦ Ex3-4: Hybrid setting
✦ Ex5: Designed / chosen «Compressed Sensing» matrix
• «Free» design = to maximize recovery performance vs cost of measures
• Ex: random Gaussian matrix... or coded aperture, etc.

• Estimation of the recovery regimes
✓ coherence for deterministic matrices
✓ typical results for random matrices
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• Audio = superimposition of structures

✓ transients       = short, small scale
✓ harmonic part = long, large scale

• Gabor atoms

• Dictionary matrix:

Example 1: Multiscale Time-Frequency 
Structures
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gs,⇥,f (t) :=
1p
s
w

✓
t� �

s

◆
e2i�ft

b = {b(t)}t x = {x(s, �, f)}s,�,f

A = [A1 . . .AN ]

An = {gsn,�n,fn(t)}t
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• Convention: normalized columns

• Definition: coherence of dictionary

• Theorem: 
✓ Assume that

✓ Then
✦     minimizes the L0 and L1 norm among all solutions      to the linear 

inverse problem
✦ k steps of OMP performed on                  recover 

Recovery conditions based on coherence
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kaik2 = 1

µ(A) := max

i 6=j
|�ai,aj⇥|

k = kxk0 <

1
2
(1 + 1/µ)

Ax

0 = Ax

x

x

0

b = Ax
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Caricature of two-scale Gabor dictionary

• Dirac-Fourier dictionary

• Coherence

• Sparsity thresholds
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N=2m
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• Deconvolution problem with spikes

✓ Matrix-vector form                         with A = Toeplitz 
or circulant matrix                  

✓ Coherence =  autocorrelation, can be large

✓ Recovery guarantees 
✦ Worst case = close spikes, usually difficult and not robust 
✦ Stronger guarantees assuming distance between spikes [Dossal 

Example 2: convolution operator
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b = Ax + e
[A1, . . . ,AN ]

An(i) = h(i� n) �An�2
2 =

�

i

h(i)2 = 1by convention

b = h � x + e

µ = max

n 6=n0
|AT

nAn0 | = max

` 6=0
h ? ˜h(`)
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• Unknown image with N pixels

• Partially observed image: 
✓ m < N observed pixels

• Measurement matrix

Example 3: Inpainting Problem
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b y

y
y 2 RN

b[�p] = y[�p], �p 2 Observed

b = My



2013R. GRIBONVAL - SPARSE METHODS

• Unknown image with N pixels

• Sparse Model in wavelet domain
✦ wavelets coefficients are sparse

✦ sparse representation of unknown image

• Measurement matrix

Example 3: Inpainting Problem
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y
y 2 RN

b = My

y ⇡ �x

x ⇡ �T y

b ⇡M�x

A := M�
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Example 3: image inpainting
Courtesy of: G. Peyré, Ceremade, Université Paris 9 Dauphine

Image

Result

Inpainting
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Mask b = My = M�x

y = �x

Wavelets

A = M�
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Example 4: tomography

• MRI from incomplete data
[Candès, Romberg & Tao]

Sparse reconstruction 

(Candes et al 2004)

Tomography
= incomplete 

projection 
Data to be
captured

Measured observations 
 (incomplete FFT)

FFT-1

Reconstruction

Model / knowledge
The (unknown) wavelet 

transform is sparse

Analog domain Digital domain

y = �x

y zx

z = My

min kxk1 s.t. z = M�x
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A = M�
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Restricted Isometry Constants (RIC)

• Definition: smallest     such that for any k-sparse 

• Computation ?

• NP-complete [Kloiran & Zouzias 2011, Tillmann & Pfetsch 2012, Bandeira & al 2012]
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A
N columns AI max over                    subsets I

�k := sup
⇤I�k, c⇥Rk

����
⇤AIc|⇤2

2
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2

� 1
����

n ⇥ I, ⇤I � k

N !
k!(N � k)!

�k

1� �k  kAxk22
kxk22
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• Definition: RIC of dictionary of order 2k
✓ for any 2k-sparse vector

• Theorem: 
✓ Assume that                      and

✓ Then
✦     minimizes the L0 and L1 norm among all solutions      to the linear 

inverse problem

Recovery conditions based on RIC
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Ax

0 = Ax

x

x

0

�2k <
p

2� 1 ⇡ 0.414kxk0  k

(1� �2k)kzk22  kAzk22  (1 + �2k)kzk22

z

Restricted Isometry Property (RIP)
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Coherence vs RIP

• Deterministic matrix, such as Dirac-Fourier 
dictionary

Am

N=2m

m

N

Recovery regimes
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A
kk

1�
m

e2i�nt/m�n(t)

µ = 1/
�

m

atn � P (a), i.i.d.

m � Ck log N/k

P (�2k <
⇤

2� 1) ⇥ 1

k1(A) � 0.914
⇥

m

[Donoho & Tanner 2009][Elad & Bruckstein 2002]

with high
 probability

for Gaussian A
k*MP(A) � 0.5

⇥
m

k1(A) � m

2e log N/m
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Example : single-pixel camera, Rice 
University

single photon detector

Random pattern on DMD array image reconstruction
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Summary
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Inverse problems

• Inverse problem : exploit indirect or 
incomplete obervation to recontruct 
some data

• Sparsity : represent / approximate  
high-dimensional & complex data using 
few parameters
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Signal space ~ RN

Set of signals of 
interest

Observation space ~ RM 
M<<N

Linear 
projection

Nonlinear 
Approximation = 

Sparse recovery

Inverse problems

165

Courtesy: M. Davies, U. Edinburgh
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Linear inverse problems

• Definition: a problem where a high-dimensional 
vector must be estimated from its low dimensional 
projection

• Generic form:

✓ m observations / measures
✓ N unknowns 
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b = Ay + e
observation/measure

projection matrix

unknown noise

b 2 Rm

y 2 RN A 2 Rm⇥N
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Classes of linear inverse problems

• Determined: the matrix A is square and invertible
✓ Unique solution to               
✓ Linear function of observations 

• Over-determined: more equations than unknowns
✓ Unique solution to               :
✓ Linear function of observations 
✓ with pseudo-inverse

• Under-determined: fewer equations than unknowns
✓ Infinitely many solutions to
✓ Need to choose one?
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b = Ay

b = Ay

b = Ay

y = A�1b
A

A

A

y = A†b
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Inverse Problems & Sparsity:
Mathematical foundations

• Bottleneck 1990-2000 : under-determined = fewer 
equations than unknowns = ill-posed

• Novelty 2001-2006 : 
✓ Uniqueness of sparse solution:

✦ if             are “sufficiently sparse” (in an appropriate «domain»), 

✦ then

✓ Recovery of        with efficient algorithms 
✦ Thresholding, Matching Pursuits, Minimisation of Lp norms p<=1,...
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x0, x1

Ax0 = Ax1 ⇥� x0 = x1

Ax0 = Ax1 � x0 = x1

x0
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Sparsity: definition

• A vector is 
✓ sparse if it has (many) zero coefficients
✓ k-sparse if it has at most k nonzero coefficients

• Symbolic representation as column vector

• Support = indices of nonzero components

• Sparsity measured with L0 pseudo-norm

• In french: 
✦ sparse                           ->  «creux», «parcimonieux»
✦ sparsity, sparseness     ->  «parcimonie»,  «sparsité» 
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Not sparse

3-sparse
⇧x⇧0 := ⇥{n, xn �= 0} =

�

n

|xn|0

a0 = 1(a > 0); 00 = 0
Convention here
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Notion of sparse representation

• Audio : time-frequency representations (MP3)

• Images : wavelet transform  (JPEG2000)

Black 
= zero

Gray 
= zero
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ANALYSIS

ANALYSIS

SYNTHESIS

SYNTHESIS
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Mathematical expression 
of the sparsity assumption

• Signal / image = high dimensional vector

• Definition: 
✓ Atoms: basis vectors 

✦ ex: time-frequency atoms, wavelets
✓ Dictionary: 

✦ collection of atoms

✦ matrix                                        which columns are the atoms

• Sparse signal model = combination of few atoms

171

y 2 RN

y ⇡
X

k

xk'k = �x

'k 2 RN

{'k}1kK

� = ['k]1kK
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x

Sparsity and subset selection

x• Under-determined system
✓ Infinitely many solutions

• If vector is sparse: 
✓ If support is known (and columns independent)

✦ nonzero values characterized by (over)determined linear problem
✓ If support is unknown

✦ Main issue = finding the support! 
✦ This is the subset selection problem

• Objectives of the course
✦ Well-posedness of subset selection
✦ Efficient subset selection algorithms = pursuit algorithms
✦ Stability guarantees of pursuits

b ~ A

b ~
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Complexity of Ideal Sparse Approximation

• Naive: Brute force search

• Theorem (Davies et al, Natarajan)

  Solving the L0 optimization problem is NP-complete

Many k-tuples to try!

173

min

x

kb�Axk2 s.t. support(x) = I
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Lp “norms” level sets

• Strictly convex 
when p>1

• Convex p=1 • Nonconvex 
p<1
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{x s.t.b = Ax}
Observation: the minimizer is sparse
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Global Optimization : from Principles to 
Algorithms

• Optimization principle

✓ Sparse representation
✓ Sparse approximation

local minima convex : global minimum

NP-hard 
combinatorial Iterative thresholding / proximal algo.FOCUSS / IRLS Linear
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�� 0
� > 0

min
x

1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

Ax = b
Ax � b

Sparsity inducing Not sparsity inducing
Lasso [Tibshirani 1996],  Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008, Beck & Teboulle 2009 ...]
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Principle
iterative decomposition
• select new components
• update residual

Tuning 
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants
• choice of sparsity measure p
• optimization algorithm 
• initialization

•selection criterion (weak, stagewise ...)
•update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Summary
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�

ri = b�Axi

⇥ri⇥ � �

min
x

1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

⇥xi⇥0 � k
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Notions of Kruskal rank / spark
Well-posedness of L0 problem

• Definition: Kruskal rank K-rank(A): 
✓ maximal L such that every L columns linearly indep.

• Definition: spark(A)
✓ size of minimal set of linearly dependent columns

• Property:
• Theorem: let
✓ if x is k-sparse with
✓ then x is the unique k-sparse vector satisfying  

✓ hence
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2k  K-rank(A)

K-rank(A) = spark(A)� 1  rank(A)
b := Ax

b = Ax

x = arg min
x

0|b=Ax

0
kxk0
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• Convention: normalized columns

• Definition: coherence of dictionary

• Theorem: 
✓ Assume that

✓ Then
✦     minimizes the L0 and L1 norm among all solutions      to the linear 

inverse problem
✦ k steps of OMP performed on                  recover 

Recovery conditions based on coherence
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kaik2 = 1

µ(A) := max

i 6=j
|�ai,aj⇥|

k = kxk0 <

1
2
(1 + 1/µ)

Ax

0 = Ax

x

x

0

b = Ax

x
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Conclusions

• Sparsity: prior to solve ill-posed inverse problems
• If solution sufficiently sparse, reasonable algorithms 

are guaranteed to find it
• Computational efficiency still a challenge

✦ problem sizes up to 1000 x 10000 efficiently tractable.

• Theoretical guarantees are mostly worst-case
✦ Empirical recovery goes far beyond, but is not fully understood.

• Challenging practical issues include: 
✓ choosing / learning / designing dictionaries;
✓ exploiting structures beyond sparsity;
✓ designing feasible compressed sensing hardware.

179



2013R. GRIBONVAL - SPARSE METHODS

Hot Topics, not covered in this course

• Structured sparsity: group LASSO, etc.

• Analysis vs synthesis sparsity

• Combinatorial algorithms: submodular functions, etc.

• Approximate Message Passing algorithms
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