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Overview of the course

® Introduction
v sparsity & data compression

+ image deblurring, image inpainting,
+ channel equalization, signal separation,
+ tomography, MRI

v sparsity & under-determined inverse problems
+ relation to subset selection problem

® Pursuit Algorithms
v Greedy algorithms: Matching Pursuit & al
v L1 minimization principles
v L1 minimization algorithms
v (Complexity of Pursuit Algorithms)

L
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v Inverse problems in signal and image processing
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Overview of the course

® Recovery guarantees for Pursuit Algorithms
v Well-posedness
v Coherence vs Restricted Isometry Constant
v Worked examples
v Summary
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e Implement in Matlab / Scilab:
v Matching Pursuit (MP), Orthonormal MP (OMP)
v Basis Pursuit = L1 minimization [with CVX] (BP)

e Generate test problems
v Create matrix A (random Gaussian, normalize columns)
v Create k-sparse x and b=Ax

e Compute mp(b,Ak) / omp(b,A k) / bp(b,A)
e Measure quality (SNR on x) & computation time
e Curves of success as function of sparsity k
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Recovery guarantees
In various inverse problems
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Scenarios

® Range of “choices” for the matrix A

+ Ex 1: Dictionary modeling structures of signals
e Constrained choice = to fit the data.
e Ex: union of wavelets + curvelets + spikes

+ Ex2: «Transfer function» from physics of inverse problem
e Constrained choice = to fit the direct problem.
® [Ex: convolution operator / transmission channel

+ Ex3-4: Hybrid setting

+ Exb5: Designed / chosen « Compressed Sensing» matrix
e «Free» design = to maximize recovery performance vs cost of measures
e Ex: random Gaussian matrix... or coded aperture, efc.

e Estimation of the recovery regimes
v coherence for deterministic matrices
v typical results for random matrices
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Example 1: Multiscale Time-Frequency
Structures

e Audio = superimposition of structures :
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v transients = short, small scale
v harmonic part = long, IarIge s<r_ta_le

t) e T 2 ft
e Gabor atoms 957/ (1) = “zw | = ) ‘
e Dictionary matrix: An = {9sn,mn.fa ()}

(A=A Ay])
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Recovery conditions based on coherence

e Convention: normalized columns la;|ls =1
¢ Definition: coherence of dictionary

1(A) := max [(a;, a;)|
1]

¢ Theorem:
v Assume that

v Then

/ :
+ L minimizes the LO and L1 norm among all solutions X to the linear
inverse problem Az’ = Az
*

k steps of OMP performed on b = Ax recover L
e




Caricature of two-scale Gabor dictionary

N=2m

e Dirac-Fourier dictionary A =

2iTnt/m

3

® Coherence nw=1/v/m

® Sparsity thresholds #wur(A) >05vm

i
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Example 2: convolution operator

® Deconvolution problem with spikes

b=hxx-+e

v Matrix-vector form b = Ax + e with A = Toeplitz
or circulant matrix [A1,---, An]

(A’I’L (Z) — h(z - n)J by convention HAan = Zh(Z)Q =1

v Coherence = autocorrelation, can be large

p= max ATA, | = I?;%ch* h(0)

v Recovery guarantees

+ Worst case = close spikes, usually difficult and not robust
+ Stronger guarantees assuming distance between spikes [Dossal

lrrzia—~
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Example 3: Inpainting Problem

e Unknown image with N pixels
y € RY

e Partially observed image:
v.m < N observed pixels

blpl = y[p], p € Observed

e Measurement matrix .
u
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Example 3: Inpainting Problem

e Unknown image with N pixels
y € RY
e Sparse Model in wavelet domain

. T
+ wavelets coefficients are sparse r~ P Yy

+ sparse representation of unknown image Y ~ Py

e Measurement matrix

b =My b~ Mdx
A =Moo
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Example 3: image inpainting

Courtesy of: G. Peyré, Ceremade, Université Paris 9 Dauphine

Wavelets
y = Px
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Example 4: tomography

e MRI from incomplete data

[Candes, Romberg & Tao]

Tomobraphy
Model / knowledge Datato be  =incomplete
The (unknown) wavelet captured projection
transform is sparse :

Analog domain Digital domain

min ||z]]; s.t. 2 = M®x
A =M® J

4
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Restricted Isometry Constants (RIC)

¢ Definition: smallest ox such that for any k-sparse «

A 2
g < AT
|2
nel gl <k

e Computation ? / X\
HI<Ek, cERF

N!
N columns |:l:| AI max over i subsets |

| A re]ll3

lell3

_1‘

e NP-com plete [Kloiran & Zouzias 2011, Tillmann & Pfetsch 2012, Bandeira & al 2012]
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Recovery conditions based on RIC

¢ Definition: RIC of dictionary of order 2k
v for any 2k-sparse vector

(1= 0212113 < [|Az[I3 < (1 + 0a2i)lI213

¢ Theorem:
v Assume that

v Then

+ XL minimizes the LO and L1 norm among all solutions & to the linear
inverse problem Az’ = Ax
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Coherence vs RIP

e Deterministic matrix, such as Dirac-Fourier

dlctlonary ;
7 7
N A -
T Tl 2imnt/m mZCklo N/k
on(t)  ——e / &
v Pl < V2—1) =1
p=1/v/m

) Elad & Bruckstein 2002 [Donoho & Tanner 2009]
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Example : single-pixel camera, Rice
University

single photon detector

Low-cost, fast, sensitive

optical detection )>
PD Y
A/D

Compressed, encoded
image data sent via RF
for reconstruction

= ((y

Rcvr

/
"1
/ 2

Image encoded by PMM
and random basis

Random pattern on DMD array Image reconstruction

&z'u’a,-}
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Inverse problems

® Inverse problem : exploit indirect or
Incomplete obervation to recontruct
some data

Observations
Data

Reconstruct
2z =My
fewer equations than unknowns
e Sparsity : represent / approximate

high-dimensional & complex data using
few parameters

Data

(o=
.0
i)
(o}
)
(e
(O]
(72]
(O]
(&
(ol
()
(a'd

y~ Pr

Reduce the
dimension

few nonzero components

&'wz,.|
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Inverse problems

Signal space ~ RN

Set of signals of
interest

Nonlinear Z &

Approximation = Linear
projection

LX)

Observation space ~ R

Sparse recovery

Courtesy: M. Davies, U. Edinburgh M<<N

| &'zmz,.l
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Linear inverse problems

e Definition: a problem where a high-dimensional
vector must be estimated from its low dimensional
projection

® Generic form:

_~“b=Ay+e

° \ Y
observation/measure unknown noise

projection matrix

v m observations / measures b € R™ A ¢ RMXN
v Nunknowns y e R¥
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Classes of linear inverse problems

® Determined: the matrix A is square and invertible

v Unique solutionto b = Ay
v Linear function of observations
y=A"1b

A

® Over-determined: more equations than unknowns

v Unique solutionto b = Ay:
v Linear function of observations
v with pseudo-inverse  y = Afb

® Under-determined: fewer equations than un

v Infinitely many solutionsto b = Ay
v Need to choose one?

l &’zﬂ/a,-— ’

167

A

KNOWNS

A




Inverse Problems & Sparsity:
Mathematical foundations

e Bottleneck 1990-2000 : under-determined = fewer
equations than unknowns = ill-posed

A.CE() — Al’l 7é> Lo — L1
® Novelty 2001-20006 :

v Uniqueness of sparse solution:

+ if g, Tiare “sufficiently sparse” (in an appropriate «domainy),
+ then ACC() — AZBl — Lo — I1
v Recovery of To with efficient algorithms

+ Thresholding, Matching Pursuits, Minimisation of Lp norms p<=1,...

i
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Sparsity: definition
Not sparse u

e A vector is \

v sparse if it has (many) zero coefficients
v k-sparse if it has at most k nonzero coefficients

e Symbolic representation as column vector
e Support = indices of nonzero components
e Sparsity measured with LO pseudo-norm

3-sparse
0
HxHO . ﬂ{n Tn 7# O} Z ‘xN‘ Convention here
e In french: a’ =1(a > 0);0" =0
+ sparse -> «Creuxy, «parcimonieux»

+ sparsity, sparseness  -> «parcimoniey, %Sparsites
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Notion of sparse representation

e Audio : time-frequency representations (MP3)

| Black
= zero
® Images : wavelet transform (JPEG2000)
P 5 ANALYSIS > }
- Gray

ORIGINAL
128,129,125, 64,83, TRANSFORM COEFFICIENT S
4123,-12.4, 967,45,

170
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Mathematical expression
of the sparsity assumption

e Signal / image = high dimensional vector

y € RY
e Definition:

v Atoms: basis vectors , ¢ RY
+ ex: time-frequency atoms, wavelets

v Dictionary:
+ collection of atoms {90 }
kEJ1<k<K

+ matrix ® = [gpk]lngK which columns are the atoms
e Sparse signal model = combination of few atoms

Yy~ ek =B
k
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Sparsity and subset selection

e Under-determined system _
v Infinitely many solutions

e |f vector is sparse:

v If support is known (and columns independent)
+ nonzero values characterized by (over)determined linear problem

v If support is unknown
+ Main issue = finding the support!
+ This is the subset selection problem
e Objectives of the course

+ Well-posedness of subset selection
+ Efficient subset selection algorithms = pursuit algorithms
e

+ Stability guarantees of pursuits




Complexity of Ideal Sparse Approximation

_ min |b — Azx||2 s.t. support(z) = 1
e Naive: Brute force search z

3 /
ai1| @11 @13 | [ T1 ) _
az1| a21 a23 T3

N9/

Many k-tuples to try!
® Theorem (Davies et al, Natarajan)
Solving the LO optimization problem is NP-complete

g I —




| Coz

Lp “norms” level sets

e Strictly convex e Convex p=1 e Nonconvex
when p>1

‘o —

N

p<1

(7

)

Observation: the minimizer is sparse
{z s.t.b = Az}
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Global Optimization : from Principles to
Algorithms

T T 1
* Optimization principle ;) ~ | Az — b2 + Az

v Sparse representation 1—~0 Ax =Db

v Sparse approximation r>0 Az =~Db
NP-hard
combinatorial FOCUSS / IRLS Iterative thresholding / proximal algo. Linear

< T

= = 1 Not sparsity inducing P =2

4 N
Lasso [Tibshirani 199¢], Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]
Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008, Beck & Teboulle 2009 ...]
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Summary

Global optimization Iterative greedy algorithms

1 iterative decomposition T; = b — Az,
Principle min —||Ax — bH% + )\qug * select new components
z 2 * update residual

stopping criterion
(nb of iterations, error level, ...)

|zillo =k [[rifl < e

Tuning

quality/sparsity regularization parameter A\

* choice of sparsity measure p
Variants (@ optimization algorithm
* initialization

eselection criterion (weak, stagewise ...)
eupdate strategy (orthogonal ...)

onia
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Notions of Kruskal rank / spark
Well-posedness of LO problem

¢ Definition: Kruskal rank K-rank(A):
v maximal L such that every L columns linearly indep.

e Definition: spark(A)
v size of minimal set of linearly dependent columns
® Property: K-rank(A) = spark(A) — 1 < rank(A)

® Theorem:let b:= Az
v if x is k-sparse with 2k < K-rank(A)
v then x is the unique k-sparse vector satisfying b = Ax

v hence r=arg min |z||o
x'|b=Ax’

‘&Z?@‘
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Recovery conditions based on coherence

e Convention: normalized columns la;|ls =1
¢ Definition: coherence of dictionary

1(A) := max [(a;, a;)|
1]

¢ Theorem:
v Assume that

v Then

/ :
+ L minimizes the LO and L1 norm among all solutions X to the linear
inverse problem Az’ = Az
*

k steps of OMP performed on b = Ax recover L
e




Conclusions

e Sparsity: prior to solve ill-posed inverse problems

e |f solution sufficiently sparse, reasonable algorithms
are guaranteed to find it

e Computational efficiency still a challenge
+ problem sizes up to 1000 x 10000 efficiently tractable.

e Theoretical guarantees are mostly worst-case

+ Empirical recovery goes far beyond, but is not fully understood.
e Challenging practical issues include:
v choosing / learning / designing dictionaries;

v exploiting structures beyond sparsity;
v designing feasible compressed sensing hardware.
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Hot Topics, not covered in this course

e Structured sparsity: group LASSO, etc.

® Analysis vs synthesis sparsity

e Combinatorial algorithms: submodular functions, etc.
e Approximate Message Passing algorithms

=
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