

Inverse problems and sparse models (5/6)

Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

remi.gribonval@inria.fr

Overview of the course

Introduction

- √ sparsity & data compression
- √ inverse problems in signal and image processing
 - → image deblurring, image inpainting,
 - channel equalization, signal separation,
 - tomography, MRI
- √ sparsity & under-determined inverse problems
 - relation to subset selection problem

Pursuit Algorithms

- ✓ Greedy algorithms: Matching Pursuit & al
- √ L1 minimization principles
- √ L1 minimization algorithms
- √ (Complexity of Pursuit Algorithms)

Overview of the course

Recovery guarantees for Pursuit Algorithms

- ✓ Well-posedness
- √ Coherence vs Restricted Isometry Constant
- √ Worked examples
- ✓ Summary

Exercice at home

- Write Matlab code for MP
- Idem for OMP
- Idem for L1 minimization with CVX
- Idem for Iterative Hard Thresholding

Exercice: Matlab code for (O)MP

 Full clean code would include some checking (column normalization, dimension checking, etc.)

```
function [x res] = mp(b,A,k)
% explain here what the function should do
....
end

function [x res] = omp(b,A,k)
% explain here what the function should do
....
end
```


Exercice: Matlab code for (O)MP

 Full clean code would include some checking (column normalization, dimension checking, etc.)

Sparse recovery: well-posedness

Inverse problems

Courtesy: M. Davies, U. Edinburgh

Sparsity and subset selection

- Under-determined system
 - ✓ Infinitely many solutions
- If vector is sparse:
 - √ If support is known (and columns independent)
 - ◆ nonzero values characterized by (over)determined linear problem
 - √ If support is unknown
 - → Main issue = finding the support!
 - → This is the subset selection problem
- Objectives of the course

- Efficient subset selection algorithms = pursuit algorithms
- Well-posedness of subset selection
- Stability guarantees of pursuits

Well-posedness?

• What property should **A** satisfy such that, for any pair of k-sparse vectors x_0, x_1

$$\mathbf{A}x_0 = \mathbf{A}x_1 \Rightarrow x_0 = x_1$$

Identifiability

Identifiability of 1-sparse vectors, with A 2x3 matrix

 Here (k=1): identifiable iff every pair of columns is linearly independent

Well-posedness = identifiability of *k*-sparse vectors

• **Theorem**: if every 2k columns of **A** are linearly independent, then for every k-sparse vectors x_0, x_1

$$\mathbf{A}x_0 = \mathbf{A}x_1 \Rightarrow x_0 = x_1$$

- **Proof**: define the vector $z = x_0 x_1$
 - ✓ Its support $I := \{i : z_i \neq 0\}$ is of size at most 2k

$$\sharp I = \|z\|_0 \le \|x_0\|_0 + \|x_1\|_0 \le 2k$$

- \checkmark It is in the **null space** of **A** hence $\sum_{i \in I} z_i \mathbf{a}_i = \mathbf{A}z = 0$
- \checkmark The columns indexed by I are linearly independent hence z=0

Notions of spark / Kruskal rank

- Definition: spark(A)
 ✓ size of minimal set of linearly dependent columns
- Definition: Kruskal rank K-rank(A):
 ✓ maximal L such that every L columns linearly indep.
- Property K-rank $(\mathbf{A}) = \operatorname{spark}(\mathbf{A}) 1 \le \operatorname{rank}(\mathbf{A})$
- Well-posedness for k-sparse vectors iff

$$2k \leq \text{K-rank}(\mathbf{A})$$

... but the computation of K-rank for an arbitrary A is NP-complete

Linearly independent vs linearly dependent

are the columns of A_I linearly independent?

Examples / Exercices

- Definition: Kruskal rank K-rank(A):
 - √ maximal L such that every L columns linearly indep.
- Small spark / Kruskal-rank
 - ✓ if A contains two copies of the same column
- Largest spark:

$$K$$
-rank $(\mathbf{A}) = ??$

✓ $m \times N$ «Vandermonde» matrix with $\omega_i \neq \omega_j, \forall i \neq j$

$$\mathbf{A} = \begin{pmatrix} \omega_1^0 & \dots & \omega_N^0 \\ \vdots & \dots & \vdots \\ \omega_1^{m-1} & \dots & \omega_N^{m-1} \end{pmatrix} \qquad \qquad \mathbf{K}\text{-rank}(\mathbf{A}) = ??$$

NB: by convention here $0^0 = 1$

- ✓ Random Gaussian matrix: $\mathbf{A} = (a_{ij})$ $a_{ij} \sim \mathcal{N}(0,1)$
 - with probability one:

$$K$$
-rank(\mathbf{A}) =??

Success of Ideal Sparse Approximation

- Theorem: if $2k \leq K$ -rank(A) then
 - √ Well-posedness
 - ullet for every pair of k-sparse vectors $\,x_0,x_1\,$

$$\mathbf{A}x_0 = \mathbf{A}x_1 \Rightarrow x_0 = x_1$$

- √ Recovery by L0 minimization
 - ullet for every k-sparse vector x_0 we have

$$x_0 = \arg\min_{x} ||x||_0 \text{ s.t. } \mathbf{A}x = \mathbf{A}x_0$$

Sparse recovery:
Provably good (efficient) algorithms?

Monte-Carlo simulations

Ínría

R. GRIBONVAL - SPARSE METHODS

2013

 $k_1(\mathbf{A})$

Exercice at home

- Implement in Matlab / Scilab:
 - ✓ Matching Pursuit (MP), Orthonormal MP (OMP)
 - √ Basis Pursuit = L1 minimization [with CVX] (BP)
- Generate test problems
 - ✓ Create matrix A (random Gaussian, normalize columns)
 - √ Create k-sparse x and b=Ax
- Compute mp(b,A,k) / omp(b,A,k) / bp(b,A)
- Measure quality (SNR on x) & computation time
- Curves of success as function of sparsity k

Equivalence between L0, L1, OMP

ullet Theorem : assume that ${f b}={f A}x_0$

$$||x_0||_0 \le k_0(\mathbf{A}) \quad \text{then} \quad x_0 = x_0^\star$$

$$||x_0||_0 \le k_1(\mathbf{A}) \quad \text{then} \quad x_0 = x_1^\star$$

where
$$x_p^* = \arg\min_{\mathbf{A}x = \mathbf{A}x_0} \|x\|_p$$

- Donoho & Huo 01 : pair of bases, coherence
- Donoho & Elad, Gribonval & Nielsen 2003 : dictionary, coherence
- Tropp 2004: Orthonormal Matching Pursuit, cumulative coherence
- Candes, Romberg, Tao 2004: random dictionaries, restricted isometry constants

