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Overview of the course

® Introduction
v sparsity & data compression

v Inverse problems in signal and image processing
+ image deblurring, image inpainting,
+ channel equalization, signal separation,
+ tomography, MRI

v sparsity & under-determined inverse problems
+ relation to subset selection problem

® Pursuit Algorithms
v Greedy algorithms: Matching Pursuit & al
v L1 minimization principles

L1 minimization algorithms

v
v (Complexity of Pursuit Algorithms)
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Overview of the course

® Recovery guarantees for Pursuit Algorithms
v Well-posedness
v Coherence vs Restricted Isometry Constant
v Worked examples
v Summary
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e Write Matlab code for MP

e |dem for OMP

e |[dem for L1 minimization with CVX
¢ |dem for lterative Hard Thresholding
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I &I/Z@- R. GRIBONVAL - SPARSE METHODS 2013




Exercice: Matlab code for (O)MP

e Full clean code would include some checking
(column normalization, dimension checking, etc.)

function [x res] = mp(b,A,k)
% explain here what the function should do

end

function [x res] = omp(b,A,k)
% explain here what the function should do

end

o
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Exercice: Matlab code for (O)MP

® Full clean code would include some checking
(column normalization, dimension checking, etc.)

function [x res] = mp(b,A,k)
compute k-sparse approximation to b with matrix A using Matching pursuit

%

[m,N] = size(A);
X = zeros(N,1l);
res = b;

for i=1:k

% compute correlation between residual and columns of A

corr = A'*res;
¢ find position n (and value c) of the maximally correlated column

[c n] = max(abs(corr)); % NB: modern Matlab notation allows [~ n] = max(abs(corr))
% update the representation

X(n) = x(n) + corr(n);

% update the residual

res = res - corr(n)*A(:,n)

end
| 7o)
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Sparse recovery: well-posedness

7
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Inverse problems

Signal space ~ RN

Set of signals of
interest

Nonlinear

Approximation = Linear
projection

Observation space ~ R™
Courtesy: M. Davies, U. Edinburgh m<<N

Sparse recovery
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Sparsity and subset selection

e Under-determined system
v Infinitely many solutions
e |f vector is sparse:

v If support is known (and columns independent)
+ nonzero values characterlzed by (over)determined linear problem

v If support is unknown

+ Main issue = finding the support!
+ This is the subset selection problem
e Objectives of the course ~
» + Efficient subset selection algorithms = pursuit algorithms

+ Well-posedness of subset selection
+ Stability guarantees of pursuits
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Well-posedness ?

e \What property should A satisfy such that,
for any pair of k-sparse vectors T, L1

=

Axg =Axi = 20 = 11
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|dentifiability

e |dentifiability of 7-sparse vectors, with A 2x3 matrix

A

|dentifiable ? |dentifiable ? |dentifiable?

e Here (k=1): identifiable iff every pair of columns is
linearly independent

o
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Well-posedness = identifiability
of k-sparse vectors

® Theorem: if every 2k columns of A are linearly
independent, then for every k-sparse vectors zg, 21
AZEO — Axry = ro = I

® Proof: define the vector z = 2o — x4
v Its support [ := {i: z; # 0} is of size at most 2k

11 = ||z]lo < ||zollo + ||z1llo < 2k

v ltis in the null space of Ahence ) ,.;za; = Az =0
v The columns indexed by [ are linearly independent hence
z=0
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Notions of spark / Kruskal rank

® Definition: spark(A)
v size of minimal set of linearly dependent columns

® Definition: Kruskal rank K-rank(A):
v maximal L such that every L columns linearly indep.

® Property K-rank(A) = spark(A) — 1 < rank(A)
e Well-posedness for k-sparse vectors iff
2k < K-rank(A)

e ... but the computation of K-rank for an arbitrary A
Is NP-complete
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Linearly independent vs linearly dependent

are the columns of A; linearly independent ?

All possible
index sets I

>
L = #I

1 2 .o

5
0 s
N 0}
e e "
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Examples / Exercices

¢ Definition: Kruskal rank K-rank(A):
v maximal L such that every L columns linearly indep.

e Small spark / Kruskal-rank
v if A contains two copies of the same column

_ 297
e Largest spark: K-rank(A) =73

v mx N «Vandermonde» matrix with w; # w;, Vi # j

WY W m < N
0 W
A= S
Wl K-rank(A) =77

. UJN
NB: by convention here =1

v Random Gaussian matrix: A = (a;;)  ag; ~ N(0,1)
+ with probability one: K—rank(A) _279
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Success of |ldeal Sparse Approximation

® Theorem: if 2k < K-rank(A) then

v Well-posedness
+ for every pair of k-sparse vectors I, T

Axg=Axi = 29 = 14

v Recovery by LO minimization
+ for every k-sparse vector I we have

ro = argmin ||x||g s.t. Az = Axg
T
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Sparse recovery:
Provably good (efficient) algorithms?
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Monte-Carlo simulations

P(xo)

draw ground truth

Typical observation
P(x™ = xo)

>,le0

> b= A$()

direct model

inverse problem

v

arg min
Ax:ACCO

*

x |E2(

Vi

[EI
>
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e Implement in Matlab / Scilab:
v Matching Pursuit (MP), Orthonormal MP (OMP)
v Basis Pursuit = L1 minimization [with CVX] (BP)

® Generate test problems
v Create matrix A (random Gaussian, normalize columns)
v Create k-sparse x and b=Ax

e Compute mp(b,A,k) / omp(b,AKk) / bp(b,A)
® Measure quality (SNR on x) & computation time
e Curves of success as function of sparsity k
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Equivalence between
LO, L1, OMP

e Theorem : assume that b = Az
v if Tollo < /{O(A) then I = IIJS

v if Tollo < kl (A) then Lo = CB’{

* .
where =z =arg min ||x
P gA:I::AZEQ H Hp
® Donoho & Huo 01 : pair of bases, coherence
e Donoho & Elad, Gribonval & Nielsen 2003 : dictionary, coherence
e Tropp 2004 : Orthonormal Matching Pursuit, cumulative coherence
e (Candes, Romberg, Tao 2004 : random dictionaries, restricted isometry constants
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