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Reminder of last sessions

• Introduction
✓ sparsity & data compression
✓ inverse problems in signal and image processing

✦ image deblurring, image inpainting, 
✦ channel equalization, signal separation, 
✦ tomography, MRI

✓ sparsity & under-determined inverse problems
✦ relation to subset selection problem

• Pursuit Algorithms
✓ Greedy algorithms: Matching Pursuit & al
✓ L1 minimization principles
✓ L1 minimization algorithms
✓ Complexity of Pursuit Algorithms 
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Principle
iterative decomposition
• select new components
• update residual

Tuning 
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants
• choice of sparsity measure p
• optimization algorithm 
• initialization

•selection criterion (weak, stagewise ...)
•update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Summary
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Global Optimization : from Principles to 
Algorithms

• Optimization principle

✓ Sparse representation
✓ Sparse approximation

local minima convex : global minimum

NP-hard 
combinatorial Iterative thresholding / proximal algo.FOCUSS / IRLS Linear
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Sparsity inducing Not sparsity inducing
Lasso [Tibshirani 1996],  Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008, Beck & Teboulle 2009 ...]
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Lp “norms” level sets

• Strictly convex 
when p>1

• Convex p=1 • Nonconvex 
p<1
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{x s.t.b = Ax}
Observation: the minimizer is sparse

when p<=1
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L1 induces sparsity (1)

• Real-valued case
✓ A = an m x N real-valued matrix, where m < N
✓ b = an m-dimensional real-valued vector
✓ X = set of all minimum L1 norm solutions to

• Fact 1: X is convex and contains a “sparse” 
solution 

97

Ax = b
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9x0 2 X ⇢ RN
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Proof ? Exercice!
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Proof ? Exercice!

• Convexity of the set of solutions X: 
✓ let
✓ convexity of constraint

✓ by definition

✓ convexity of objective function

✓ hence
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• Existence of a sparse solution
✓ let x satisfy               with

✦ support 

✦ sub-matrix

✓ existence of nontrivial null space vector
✓ other solution 
✓ for small

Proof? Exercice!
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Convexity of the set of minimizers

• Unique solution • Non unique solution
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L1 induces sparsity (2)

• Real-valued case
✓ A = an m x N real-valued matrix, m<N
✓ b = an m-dimensional real-valued vector
✓ X = set of al solutions to regularization problem

• Fact 2: X is a convex set and contains a 
“sparse” solution 
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Proof ? Exercice at home!
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L1 induces sparsity

• A word of caution: this does not hold true in 
the complex-valued case 

• Counter example: there is a construction 
where
✓ A = a 2 x 3 complex-valued matrix
✓ b = a 2-dimensional complex-valued vector
✓ the minimum L1 norm solution is unique and has 3 

nonzero components
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[E. Vincent, Complex Nonconvex Optimization l_p norm minimization for underdetermined source 
separation, Proc. ICA 2007.]



2013 - R. GRIBONVAL - SPARSE METHODS

Sparse optimization principles
L1 minimization induces sparsity
Algorithms for L1 minimization

Convex Pursuit Algorithms
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Algorithms for L1: 
Linear Programming

• L1 minimization problem of size m x N

• Equivalent linear program of size m x 2N
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L1 regularization:  Quadratic Programming

• L1 minimization problem of size m x N

• Equivalent quadratic program of size m x 2N
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Generic approaches vs specific algorithms

• Many algorithms for linear / quadratic programming 

• Matlab Optimization Toolbox: linprog /qp

• But ...
✓ The problem size is “doubled”
✓ Specific structures of the matrix A can help solve BP 

and BPDN more efficiently
✓ More efficient toolboxes have been developed

• CVX package (Michael Grant & Stephen Boyd): 
✓ http://www.stanford.edu/~boyd/cvx/
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Example of CVX program

• Matlab code

m=100;
N=1000;
A = randn(m,N);
b = randn(m,1);
cvx_begin

variable x(N)
minimize ( norm(x,1) )
subject to

A*x = b

cvx_end

• How is it implemented? SDPT3 or SeDuMi packages ...
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Sparse optimization principles
L1 minimization induces sparsity
Algorithms for L1 minimization

Convex Pursuit Algorithms

Do it yourself!



2013R. GRIBONVAL - SPARSE METHODS

Wavelet Domain Denoising

Original f Noisy F Smoothed F � h�

Coe�cients �f, �m⇥ Thresholded coe�cients Denoised f̄

(f)

(a) (b)

(d) (e)

(c)

Figure 6: Denoising with a thresholding in a wavelet basis.

necessary to adapt the geometry of the finite elements, using for instance an anisotropic
adaptive triangulation.

Given a triangulation of [0, 1]2 with M triangles, one can define an approximation f̃M

of f which is the best piecewise linear approximation on this triangulation. The goal of
an adaptive triangulation is to optimize the shape of the triangles in order to minimize
the approximation error ||f � f̃M ||. Near a discontinuity, the triangle should be thin and
stretched along the singularity curve, as displayed on figure 10. The lengths of the triangles
should be of order M�1 and their widths should be of order M�2. If f is C2 outside a set
of C2 contours, then one has for such an adapted triangulation

||f � f̃M ||2 = O(M�2). (5)

This construction can be generalized by replacing triangles by higher order geometric prim-
itives whose boundaries are polynomial curves of degree �, as shown on the right side of
figure 10. The adapted approximation using polynomials defined on M such higher order
primitives leads to an approximation error ||f � f̃M ||2 = O(M��) for a function f that is
C� outside a set of C� contours.

Adaptive triangulations have proven very useful in numerical analysis where shocks
or boundary layers require anisotropic refinement, see for instance the work of Aguilar
and Goodman [?]. However, it exists currently no algorithm that can guaranty such an
approximation result as (5) for functions as complex as images [?]. Indeed, the connectivity
and shape of the triangulation should adapt itself to the local regularity of the image. When
an image is smoothed by an unknown kernel of width s, the triangulation should depend
on s in order to get the result of equation (5), as shown on figure 11. To reach an error
decay of O(M�2), in the neighborhood of a contour smoothed by a kernel of width s, the
triangle should have a length of order s1/4M�1/2 and a width of order s3/4M�1/2. The
scale s is most of the time unknown and one thus need an automatic algorithm to devise
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Courtesy: G. Peyré, Ceremade, Université Paris 9 Dauphine
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Denoising problem

• Original NxN image is corrupted by noise

• Original image is sparse in wavelet basis

• Wavelet basis is an orthonormal basis

• Idealized denoising problem:
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b = y + e

b = �x + e
x = �T y
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Exploiting the fact that A is orthonormal

• Assumption : m=N and A is orthonormal

• Expression of BPDN criterion to be minimized

• Minimization can be done coordinate-wise
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AT A = AAT = IdN
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Exercice

• Given c, find the solution to

✓ p=0
✓ p=1

114

min
xn

1
2
�
cn � xn

⇥2 + �|xn|p



2013R. GRIBONVAL - SPARSE METHODS

Hard-thresholding (p=0)

• Solution of
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H�(c)
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Soft-thresholding (p=1)

• Solution of

�

��
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Matlab code ?

• Soft thresholding
• @softthresh(c,lambda)(sign(c).*max(abs(c)-lambda,0))

• x = softthresh(c,lambda);

• Hard-thresholding
• @hardthresh(c,lambda)(c.*(abs(c)>=sqrt(2*lambda)))

• x = hardthresh(c,lambda);

•
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Iterative thresholding
• Definition: proximity operator

• Goal = compute

• Iterative algorithm:
✓ gradient descent on fidelity term

✓ thresholding
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Iterative Thresholding

• Theorem : [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008]

✓ consider the iterates                                defined by 
the thresholding function, with                       

✓ assume that                                  and
✓ then, the iterates converge strongly to a limit

✓ the limit     is  a global minimum of 

✓ if p>1, or if A is invertible,      is the unique minimum 
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x(i+1) = f(x(i))

x�
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p � 1
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Iterative Thresholding: 
convex penalties

• Strong convergence to global minimum

• Accelerated convergence: 
✓ Nesterov schemes
✓ see  e.g. Beck & Teboulle 2009; 

• Many variants of iterative thresholding 
✓ depends on properties of penalty terms

✦ smoothness 
✦ strong convexity
✦ etc.
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Iterative Thresholding: 
nonconvex penalties

• Example: Iterative Hard Thresholding for L0
✓ keep components above threshold
✓ or rather keep k largest components 

✦ [IHT: Blumensath & Davies 2009]

• More generally, with nonconvex cost functions
✓ Possible ‘spurious’ local minima
✓ Convergence: fixed point, under certain assumptions 
✓ Limit = global min: under certain assumptions (RIP)

• Pruning strategies:
✓ ex: keep 2k components, project, keep k components

✦ ex: CoSAMP [Needell  &Tropp 2008], ALPS [Cevher 2011], ...
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Code for Iterative Thresholding?

• Proximal operator (or prox)

• Prox of the absolute value = soft-thresholding
@prox(c,lambda)(sign(c).*max(abs(c)-lambda,0))

• Iterative thresholding with general prox
function xhat = iterate_thresh(b,A,prox,step,niter)

xhat = 0;
for i=1:niter

xhat =prox(xhat+ step * A’*(b-A*xhat))
end
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Exercice at home

• Write Matlab code for MP

• Idem for OMP

• Idem for L1 minimization with CVX

• Idem for Iterative Hard Thresholding

123



2013R. GRIBONVAL - SPARSE METHODS

Exercice: Matlab code for (O)MP

• Full clean code would include some checking 
(column normalization, dimension checking, etc.)

function [x res] = mp(b,A,k)
% explain here what the function should do
....
end

function [x res] = omp(b,A,k)
% explain here what the function should do
....
end
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