Mua

Inverse problems and sparse models (4/6)
Rémi Gribonval
INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr

Reminder of last sessions

- Introduction
\checkmark sparsity \& data compression
\checkmark inverse problems in signal and image processing
↔ image deblurring, image inpainting,
- channel equalization, signal separation,
- tomography, MRI
\checkmark sparsity \& under-determined inverse problems
+ relation to subset selection problem
- Pursuit Algorithms
\checkmark Greedy algorithms: Matching Pursuit \& al
\checkmark L1 minimization principles
\checkmark L1 minimization algorithms
\checkmark Complexity of Pursuit Algorithms

Summary

	Global optimization	Iterative greedy algorithms				
Principle	$\min _{x} \frac{1}{2}\\|\mathbf{A} x-\mathbf{b}\\|_{2}^{2}+\lambda\\|x\\|_{p}^{p}$	iterative decomposition $\quad \mathbf{r}_{i}=\mathbf{b}-\mathbf{A} x$ - select new components - update residual				
Tuning quality/sparsity	regularization parameter λ	stopping criterion (nb of iterations, error level, ...) $\left\\|x_{i}\right\\|_{0} \geq k \quad\left\\|\mathbf{r}_{i}\right\\| \leq \epsilon$				
Variants	- choice of sparsity measure p - optimization algorithm - initialization	-selection criterion (weak, stagewise ...) -update strategy (orthogonal ...)				

Global Optimization : from Principles to Algorithms

- Optimization principle

$$
\min _{x} \frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{p}^{p}
$$

\checkmark Sparse representation

$$
\begin{array}{ll}
\lambda \rightarrow 0 & \mathbf{A} x=\mathbf{b} \\
\lambda>0 & \mathbf{A} x \approx \mathbf{b}
\end{array}
$$

\checkmark Sparse approximation NP-hard combinatorial

FOCUSS / IRLS
Iterative thresholding / proximal algo.
Linear

Lasso [Tibshirani 1996], Basis Pursuit (Denoising) [Chen, Donoho \& Saunders, 1999]
Linear/Quadratic programming (interior point, etc.)
Homotopy method [Osborne 2000] / Least Angle Regression [Efron \&al 2002]
Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes \& Pesquet 2008, Beck \& Teboulle 2009 ...]

Lp "norms" level sets

- Strictly convex when $p>1$
- Convex $p=1$

- Nonconvex $p<1$

Observation: the minimizer is sparse

$$
-\{x \text { s.t. } \mathbf{b}=\mathbf{A} x\}
$$ when $p<=$ I

L1 induces sparsity (1)

- Real-valued case
$\checkmark \mathbf{A}=$ an $m \times N$ real-valued matrix, where $\mathrm{m}<\mathrm{N}$
$\checkmark \mathbf{b}=$ an m-dimensional real-valued vector
$\checkmark X=$ set of all minimum L1 norm solutions to $\mathbf{A} x=\mathbf{b}$

$$
\tilde{x} \in X \Leftrightarrow\|\tilde{x}\|_{1}=\min _{x}\|x\|_{1} \text { s.t. } \mathbf{A} x=\mathbf{b}
$$

- Fact 1: X is convex and contains a "sparse" solution

$$
\exists x_{0} \in X \subset \mathbb{R}^{N},\left\|x_{0}\right\|_{0} \leq m<N
$$

Proof ? Exercice!

Inria

Proof ? Exercice!

- Convexity of the set of solutions X :
\checkmark let $x, x^{\prime} \in X, 0 \leq \theta \leq 1$
\checkmark convexity of constraint

$$
\mathbf{A} x=\mathbf{A} x^{\prime}=\mathbf{A}\left(\theta x+(1-\theta) x^{\prime}\right)=\mathbf{b}
$$

\checkmark by definition $\|x\|_{1}=\left\|x^{\prime}\right\|_{1}=\min \|\tilde{x}\|_{1}$ s.t. $\mathbf{A} \tilde{x}=\mathbf{b}$
\checkmark convexity of objective function

$$
\left\|\left(\theta x+(1-\theta) x^{\prime}\right)\right\|_{1} \leq \theta\|x\|_{1}+(1-\theta)\left\|x^{\prime}\right\|_{1}=\|x\|_{1}
$$

\checkmark hence

$$
\theta x+(1-\theta) x^{\prime} \in X
$$

Proof? Exercice!

- Existence of a sparse solution

\checkmark let x satisfy $\mathbf{A} x=\mathbf{b}$ with $\|x\|_{0} \geq m+1$

- support

$$
I:=\operatorname{supp}(x):=\left\{i, x_{i} \neq 0\right\} \quad \ell \geq m+1
$$

- sub-matrix

\checkmark existence of nontrivial null space vector $\mathbf{A}_{I} z=0$
\checkmark other solution $x^{\prime}=x+\epsilon z$
\checkmark for small ϵ
$\|x+\epsilon z\|_{1}=\sum_{i \in I}\left|x_{i}+\epsilon z_{i}\right|$
cost function
is not minimum

$$
=\sum_{i \in I} \operatorname{sign}\left(x_{i}\right)\left(x_{i}+\epsilon z_{i}\right)=\|x\|_{1}+\epsilon \sum_{i \in I} \operatorname{sign}\left(x_{i}\right) z_{i}
$$

Convexity of the set of minimizers

- Unique solution

- Non unique solution

L1 induces sparsity (2)

- Real-valued case
$\checkmark \mathbf{A}=$ an $m \times N$ real-valued matrix, $\mathrm{m}<\mathrm{N}$
$\checkmark \mathbf{b}=$ an m-dimensional real-valued vector
$\checkmark X=$ set of al solutions to regularization problem

$$
\begin{gathered}
\mathcal{L}(x):=\frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{1} \\
\tilde{x} \in X \Leftrightarrow \mathcal{L}(\tilde{x})=\min _{x} \mathcal{L}(x)
\end{gathered}
$$

- Fact 2: X is a convex set and contains a "sparse" solution

$$
\exists x_{0} \in X \subset \mathbb{R}^{N},\left\|x_{0}\right\|_{0} \leq m<N
$$

Proof ? Exercice at home!

L1 induces sparsity

- A word of caution: this does not hold true in the complex-valued case
- Counter example: there is a construction where
$\checkmark \mathbf{A}=$ a 2×3 complex-valued matrix
\checkmark b = a 2-dimensional complex-valued vector
\checkmark the minimum L1 norm solution is unique and has 3 nonzero components
[E.Vincent, Complex Nonconvex Optimization I_p norm minimization for underdetermined source separation, Proc. ICA 2007.]

Convex Pursuit Algorithms

Sparse optimization principles
L1 minimization induces sparsity Algorithms for L. 1 minimization

Algorithms for L1: Linear Programming

- L1 minimization problem of size $m \times N$

Basis Pursuit (BP) LASSO

$$
\min _{x}\|x\|_{1}, \text { s.t. } \mathbf{A} x=\mathbf{b}
$$

- Equivalent linear program of size $m \times 2 N$

$$
\begin{aligned}
& \min _{z \geq 0} \mathbf{c}^{T} z, \text { s.t. }[\mathbf{A},-\mathbf{A}] z=\mathbf{b} \\
& \quad \mathbf{c}=\left(c_{i}\right), c_{i}=1, \forall i
\end{aligned}
$$

L1 regularization: Quadratic Programming

- L1 minimization problem of size $m \times N$

Basis Pursuit Denoising (BPDN)

$$
\min _{x} \frac{1}{2}\|\mathbf{b}-\mathbf{A} x\|_{2}^{2}+\lambda\|x\|_{1}
$$

- Equivalent quadratic program of size $m \times 2 N$

$$
\begin{gathered}
\min _{z \geq 0} \frac{1}{2}\|\mathbf{b}-[\mathbf{A},-\mathbf{A}] z\|_{2}^{2}+\mathbf{c}^{T} z \\
\mathbf{c}=\left(c_{i}\right), \quad c_{i}=1, \forall i
\end{gathered}
$$

Generic approaches vs specific algorithms

- Many algorithms for linear / quadratic programming
- Matlab Optimization Toolbox: linprog /qp
- But ...
\checkmark The problem size is "doubled"
\checkmark Specific structures of the matrix A can help solve BP and BPDN more efficiently
\checkmark More efficient toolboxes have been developed
- CVX package (Michael Grant \& Stephen Boyd):
\checkmark http://www.stanford.edu/~boyd/cvx/

Example of CVX program

- Matlab code

```
m=100;
N=1000;
A = randn (m,N);
b = randn(m,1);
cvx_begin
    variable x(N)
    minimize ( norm(x,1) )
    subject to
        A*x = b
cvx_end
```

- How is it implemented? SDPT3 or SeDuMi packages ...

Convex Pursuit Algorithms

Sparse optimization principles
L1 minimization induces sparsity Algorithms for $L 1$ minimization

Do it yourself!

Incia

Wavelet Domain Denoising

Courtesy: G. Peyré, Ceremade, Université Paris 9 Dauphine

Original

Coefficients

Noisy

Thresholded coefficients

Smoothed

Denoised

Denoising problem

- Original $N x N$ image is corrupted by noise

$$
\mathbf{b}=\mathbf{y}+\mathbf{e}
$$

- Original image is sparse in wavelet basis

$$
\mathbf{b}=\mathbf{\Phi} x+\mathbf{e} \quad x=\boldsymbol{\Phi}^{T} \mathbf{y} \quad\|x\|_{0} \ll N \times N
$$

- Wavelet basis is an orthonormal basis

$$
\boldsymbol{\Phi} \boldsymbol{\Phi}^{T}=\mathbf{I d} \quad \boldsymbol{\Phi}^{T} \boldsymbol{\Phi}=\mathbf{I d}
$$

- Idealized denoising problem:

$$
\hat{x}:=\arg \min _{x} \frac{1}{2}\|\mathbf{b}-\boldsymbol{\Phi} x\|_{2}^{2}+\lambda\|x\|_{0}
$$

Exploiting the fact that \mathbf{A} is orthonormal

- Assumption : $m=N$ and \mathbf{A} is orthonormal

$$
\begin{aligned}
& \mathbf{A}^{T} \mathbf{A}=\mathbf{A A}^{T}=\mathbf{I d}_{N} \\
& \|\mathbf{b}-\mathbf{A} x\|_{2}^{2}=\left\|\mathbf{A}^{T} \mathbf{b}-x\right\|_{2}^{2}
\end{aligned}
$$

- Expression of BPDN criterion to be minimized

$$
\sum_{n} \frac{1}{2}\left(\left(\mathbf{A}^{T} \mathbf{b}\right)_{n}-x_{n}\right)^{2}+\lambda\left|x_{n}\right|^{p}
$$

- Minimization can be done coordinate-wise

$$
\min _{x_{n}} \frac{1}{2}\left(c_{n}-x_{n}\right)^{2}+\lambda\left|x_{n}\right|^{p}
$$

Exercice

- Given c, find the solution to

$$
\begin{aligned}
& \min _{x_{n}} \frac{1}{2}\left(c_{n}-x_{n}\right)^{2}+\lambda\left|x_{n}\right|^{p} \\
& \vee \mathrm{p}=0 \\
& \vee \mathrm{p}=1
\end{aligned}
$$

Hard-thresholding ($\mathrm{p}=0$)

$$
\min _{x} \frac{1}{2}(c-x)^{2}+\lambda \cdot|x|^{0}
$$

Soft-thresholding ($\mathrm{p}=1$)

$$
\min _{x} \frac{1}{2}(c-x)^{2}+\lambda \cdot|x|
$$

Matlab code?

- Soft thresholding

- @softthresh(c,lambda)(sign(c).*max(abs(c)-lambda,0))
- $\mathrm{x}=$ softthresh(c,lambda);
- Hard-thresholding
- @hardthresh(c,lambda)(c.*(abs(c)>=sqrt(2*lambda)))
- $\mathrm{x}=$ hardthresh(c,lambda);

Iterative thresholding

- Definition: proximity operator

$$
\Theta_{\lambda}^{p}(c)=\arg \min _{x} \frac{1}{2}(x-c)^{2}+\lambda|x|^{p}
$$

- Goal = compute

$$
\arg \min _{x} \frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{p}^{p}
$$

- Iterative algorithm:
\checkmark gradient descent on fidelity term

$$
x^{(i+1 / 2)}:=x^{(i)}+\alpha^{(i)} \mathbf{A}^{T}\left(\mathbf{b}-\mathbf{A} x^{(i)}\right)
$$

\checkmark thresholding

$$
x^{(i+1)}:=\Theta_{\lambda(i)}^{p}\left(x^{(i+1 / 2)}\right)
$$

Iterative Thresholding

- Theorem: [Daubechies, de Mol, Defrise 2004, Combettes \& Pesquet 2008]
\checkmark consider the iterates $x^{(i+1)}=f\left(x^{(i)}\right)$ defined by the thresholding function, with $p \geq 1$

$$
f(x)=\Theta_{\alpha \lambda}^{p}\left(x+\alpha \mathbf{A}^{T}(\mathbf{b}-\mathbf{A} x)\right)
$$

\checkmark assume that $\forall x,\|\mathbf{A} x\|_{2}^{2} \leq c\|x\|_{2}^{2}$ and $\alpha<2 / c$
\checkmark then, the iterates converge strongly to a limit x^{\star}

$$
\left\|x^{(i)}-x^{\star}\right\|_{2} \rightarrow_{i \rightarrow \infty} 0
$$

\checkmark the limit x^{\star} is a global minimum of $\frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{p}^{p}$
\checkmark if $p>1$, or if \mathbf{A} is invertible, x^{\star} is the unique minimum

Iterative Thresholding: convex penalties

- Strong convergence to global minimum
- Accelerated convergence:
\checkmark Nesterov schemes
\checkmark see e.g. Beck \& Teboulle 2009;
- Many variants of iterative thresholding
\checkmark depends on properties of penalty terms
- smoothness
\downarrow strong convexity
\uparrow etc.

Iterative Thresholding: nonconvex penalties

- Example: Iterative Hard Thresholding for L0
\checkmark keep components above threshold
\checkmark or rather keep k largest components
* [IHT: Blumensath \& Davies 2009]
- More generally, with nonconvex cost functions
\checkmark Possible 'spurious' local minima
\checkmark Convergence: fixed point, under certain assumptions
\checkmark Limit = global min: under certain assumptions (RIP)
- Pruning strategies:
\checkmark ex: keep 2k components, project, keep k components - ex: CoSAMP [Needell \&Tropp 2008], ALPS [Cevher 2011], ...

Code for Iterative Thresholding?

- Proximal operator (or prox)

$$
\operatorname{prox}_{f}(\mathbf{c}):=\arg \min _{x}\left\{\frac{1}{2}\|x-\mathbf{c}\|_{2}^{2}+f(x)\right\}
$$

- Prox of the absolute value = soft-thresholding

@prox(c,lambda) (sign(c). *max(abs (c)-lambda, 0))

- Iterative thresholding with general prox

```
function xhat = iterate_thresh(b,A,prox,step,niter)
        xhat = 0;
        for i=1:niter
        xhat =prox(xhat+ step * A'*(b-A*xhat))
    end
```


Exercice at home

- Write Matlab code for MP
- Idem for OMP
- Idem for L1 minimization with CVX
- Idem for Iterative Hard Thresholding

Exercice: Matlab code for (O)MP

- Full clean code would include some checking (column normalization, dimension checking, etc.)

```
function [x res] = mp(b,A,k)
% explain here what the function should do
end
function [x res] = omp(b,A,k)
% explain here what the function should do
...
end
```

