
Inverse problems and sparse models (4/6)

Rémi Gribonval
INRIA Rennes - Bretagne Atlantique, France

remi.gribonval@inria.fr

2013R. GRIBONVAL - SPARSE METHODS

Reminder of last sessions

• Introduction
✓ sparsity & data compression
✓ inverse problems in signal and image processing

✦ image deblurring, image inpainting,
✦ channel equalization, signal separation,
✦ tomography, MRI

✓ sparsity & under-determined inverse problems
✦ relation to subset selection problem

• Pursuit Algorithms
✓ Greedy algorithms: Matching Pursuit & al
✓ L1 minimization principles
✓ L1 minimization algorithms
✓ Complexity of Pursuit Algorithms

93

2013R. GRIBONVAL - SPARSE METHODS

Principle
iterative decomposition
• select new components
• update residual

Tuning
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants
• choice of sparsity measure p
• optimization algorithm
• initialization

•selection criterion (weak, stagewise ...)
•update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Summary

94

�

ri = b�Axi

⇥ri⇥ � �

min
x

1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

⇥xi⇥0 � k

2013R. GRIBONVAL - SPARSE METHODS

Global Optimization : from Principles to
Algorithms

• Optimization principle

✓ Sparse representation
✓ Sparse approximation

local minima convex : global minimum

NP-hard
combinatorial Iterative thresholding / proximal algo.FOCUSS / IRLS Linear

95

�� 0
� > 0

min
x

1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

Ax = b
Ax � b

Sparsity inducing Not sparsity inducing
Lasso [Tibshirani 1996], Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008, Beck & Teboulle 2009 ...]

2013R. GRIBONVAL - SPARSE METHODS

Lp “norms” level sets

• Strictly convex
when p>1

• Convex p=1 • Nonconvex
p<1

96

{x s.t.b = Ax}
Observation: the minimizer is sparse

when p<=1

2013R. GRIBONVAL - SPARSE METHODS

L1 induces sparsity (1)

• Real-valued case
✓ A = an m x N real-valued matrix, where m < N
✓ b = an m-dimensional real-valued vector
✓ X = set of all minimum L1 norm solutions to

• Fact 1: X is convex and contains a “sparse”
solution

97

Ax = b
x̃ 2 X , kx̃k1 = min

x

kxk1 s.t. Ax = b

9x0 2 X ⇢ RN
, kx0k0 m < N

2013R. GRIBONVAL - SPARSE METHODS

Proof ? Exercice!

98

2013R. GRIBONVAL - SPARSE METHODS

Proof ? Exercice!

• Convexity of the set of solutions X:
✓ let
✓ convexity of constraint

✓ by definition

✓ convexity of objective function

✓ hence

99

Ax = Ax0 = A(�x + (1� �)x0) = b

x, x0 2 X, 0 � 1

kxk1 = kx0k1 = min kx̃k1 s.t. Ax̃ = b

k(�x + (1� �)x0)k1 �kxk1 + (1� �)kx0k1 = kxk1

�x + (1� �)x0 2 X

2013R. GRIBONVAL - SPARSE METHODS

• Existence of a sparse solution
✓ let x satisfy with

✦ support

✦ sub-matrix

✓ existence of nontrivial null space vector
✓ other solution
✓ for small

Proof? Exercice!

100

I := supp(x) := {i, xi �= 0}

A AI

� � m + 1

!m

N

AIz = 0

✏
�x + �z�1 =

X

i2I

|xi + �zi| +
X

i/2I

|xi + �zi|

=
X

i2I

sign(xi)(xi + �zi) = kxk1 + �
X

i2I

sign(xi)zi

Ax = b kxk0 � m + 1

m

x0 = x + �z
cost function

is not minimum

2013R. GRIBONVAL - SPARSE METHODS

Convexity of the set of minimizers

• Unique solution • Non unique solution

101

2013R. GRIBONVAL - SPARSE METHODS

L1 induces sparsity (2)

• Real-valued case
✓ A = an m x N real-valued matrix, m<N
✓ b = an m-dimensional real-valued vector
✓ X = set of al solutions to regularization problem

• Fact 2: X is a convex set and contains a
“sparse” solution

102

L(x) :=
1
2
⇤Ax� b⇤2

2 + �⇤x⇤1

x̃ ⇥ X � L(x̃) = min
x
L(x)

9x0 2 X ⇢ RN
, kx0k0 m < N

2013R. GRIBONVAL - SPARSE METHODS

Proof ? Exercice at home!

103

2013R. GRIBONVAL - SPARSE METHODS

L1 induces sparsity

• A word of caution: this does not hold true in
the complex-valued case

• Counter example: there is a construction
where
✓ A = a 2 x 3 complex-valued matrix
✓ b = a 2-dimensional complex-valued vector
✓ the minimum L1 norm solution is unique and has 3

nonzero components

104

[E. Vincent, Complex Nonconvex Optimization l_p norm minimization for underdetermined source
separation, Proc. ICA 2007.]

2013 - R. GRIBONVAL - SPARSE METHODS

Sparse optimization principles
L1 minimization induces sparsity
Algorithms for L1 minimization

Convex Pursuit Algorithms

2013R. GRIBONVAL - SPARSE METHODS

Algorithms for L1:
Linear Programming

• L1 minimization problem of size m x N

• Equivalent linear program of size m x 2N

106

min
x

�x�1, s.t. Ax = b

min
z�0

cT z, s.t. [A,�A]z = b

c = (ci), ci = 1,�i

Basis Pursuit (BP)
LASSO

2013R. GRIBONVAL - SPARSE METHODS

L1 regularization: Quadratic Programming

• L1 minimization problem of size m x N

• Equivalent quadratic program of size m x 2N

107

min
x

1
2
⇥b�Ax⇥2

2 + �⇥x⇥1

min
z�0

1
2
⇥b� [A,�A]z⇥2

2 + cT z

c = (ci), ci = 1,�i

Basis Pursuit Denoising
(BPDN)

2013R. GRIBONVAL - SPARSE METHODS

Generic approaches vs specific algorithms

• Many algorithms for linear / quadratic programming

• Matlab Optimization Toolbox: linprog /qp

• But ...
✓ The problem size is “doubled”
✓ Specific structures of the matrix A can help solve BP

and BPDN more efficiently
✓ More efficient toolboxes have been developed

• CVX package (Michael Grant & Stephen Boyd):
✓ http://www.stanford.edu/~boyd/cvx/

108

2013R. GRIBONVAL - SPARSE METHODS

Example of CVX program

• Matlab code

m=100;
N=1000;
A = randn(m,N);
b = randn(m,1);
cvx_begin

variable x(N)
minimize (norm(x,1))
subject to

A*x = b

cvx_end

• How is it implemented? SDPT3 or SeDuMi packages ...

109

2013 - R. GRIBONVAL - SPARSE METHODS

Sparse optimization principles
L1 minimization induces sparsity
Algorithms for L1 minimization

Convex Pursuit Algorithms

Do it yourself!

2013R. GRIBONVAL - SPARSE METHODS

Wavelet Domain Denoising

Original f Noisy F Smoothed F � h�

Coe�cients �f, �m⇥ Thresholded coe�cients Denoised f̄

(f)

(a) (b)

(d) (e)

(c)

Figure 6: Denoising with a thresholding in a wavelet basis.

necessary to adapt the geometry of the finite elements, using for instance an anisotropic
adaptive triangulation.

Given a triangulation of [0, 1]2 with M triangles, one can define an approximation f̃M

of f which is the best piecewise linear approximation on this triangulation. The goal of
an adaptive triangulation is to optimize the shape of the triangles in order to minimize
the approximation error ||f � f̃M ||. Near a discontinuity, the triangle should be thin and
stretched along the singularity curve, as displayed on figure 10. The lengths of the triangles
should be of order M�1 and their widths should be of order M�2. If f is C2 outside a set
of C2 contours, then one has for such an adapted triangulation

||f � f̃M ||2 = O(M�2). (5)

This construction can be generalized by replacing triangles by higher order geometric prim-
itives whose boundaries are polynomial curves of degree �, as shown on the right side of
figure 10. The adapted approximation using polynomials defined on M such higher order
primitives leads to an approximation error ||f � f̃M ||2 = O(M��) for a function f that is
C� outside a set of C� contours.

Adaptive triangulations have proven very useful in numerical analysis where shocks
or boundary layers require anisotropic refinement, see for instance the work of Aguilar
and Goodman [?]. However, it exists currently no algorithm that can guaranty such an
approximation result as (5) for functions as complex as images [?]. Indeed, the connectivity
and shape of the triangulation should adapt itself to the local regularity of the image. When
an image is smoothed by an unknown kernel of width s, the triangulation should depend
on s in order to get the result of equation (5), as shown on figure 11. To reach an error
decay of O(M�2), in the neighborhood of a contour smoothed by a kernel of width s, the
triangle should have a length of order s1/4M�1/2 and a width of order s3/4M�1/2. The
scale s is most of the time unknown and one thus need an automatic algorithm to devise

7

(f)

(a) (b)

(d) (e)

(c)

Figure 6: Denoising with a thresholding in a wavelet basis.

necessary to adapt the geometry of the finite elements, using for instance an anisotropic
adaptive triangulation.

Given a triangulation of [0, 1]2 with M triangles, one can define an approximation f̃M

of f which is the best piecewise linear approximation on this triangulation. The goal of
an adaptive triangulation is to optimize the shape of the triangles in order to minimize
the approximation error ||f � f̃M ||. Near a discontinuity, the triangle should be thin and
stretched along the singularity curve, as displayed on figure 10. The lengths of the triangles
should be of order M�1 and their widths should be of order M�2. If f is C2 outside a set
of C2 contours, then one has for such an adapted triangulation

||f � f̃M ||2 = O(M�2). (5)

This construction can be generalized by replacing triangles by higher order geometric prim-
itives whose boundaries are polynomial curves of degree �, as shown on the right side of
figure 10. The adapted approximation using polynomials defined on M such higher order
primitives leads to an approximation error ||f � f̃M ||2 = O(M��) for a function f that is
C� outside a set of C� contours.

Adaptive triangulations have proven very useful in numerical analysis where shocks
or boundary layers require anisotropic refinement, see for instance the work of Aguilar
and Goodman [?]. However, it exists currently no algorithm that can guaranty such an
approximation result as (5) for functions as complex as images [?]. Indeed, the connectivity
and shape of the triangulation should adapt itself to the local regularity of the image. When
an image is smoothed by an unknown kernel of width s, the triangulation should depend
on s in order to get the result of equation (5), as shown on figure 11. To reach an error
decay of O(M�2), in the neighborhood of a contour smoothed by a kernel of width s, the
triangle should have a length of order s1/4M�1/2 and a width of order s3/4M�1/2. The
scale s is most of the time unknown and one thus need an automatic algorithm to devise

7

Courtesy: G. Peyré, Ceremade, Université Paris 9 Dauphine

111

2013R. GRIBONVAL - SPARSE METHODS

Denoising problem

• Original NxN image is corrupted by noise

• Original image is sparse in wavelet basis

• Wavelet basis is an orthonormal basis

• Idealized denoising problem:

112

b = y + e

b = �x + e
x = �T y

��T = Id �T � = Id

kxk0 ⌧ N ⇥N

x̂ := arg min
x

1
2
kb��xk2

2 + �kxk0

2013R. GRIBONVAL - SPARSE METHODS

Exploiting the fact that A is orthonormal

• Assumption : m=N and A is orthonormal

• Expression of BPDN criterion to be minimized

• Minimization can be done coordinate-wise

113

AT A = AAT = IdN

⇥b�Ax⇥2
2 = ⇥AT b� x⇥2

2

⇤

n

1
2
�
(AT b)n � xn

⇥2 + �|xn|p

min
xn

1
2
�
cn � xn

⇥2 + �|xn|p

2013R. GRIBONVAL - SPARSE METHODS

Exercice

• Given c, find the solution to

✓ p=0
✓ p=1

114

min
xn

1
2
�
cn � xn

⇥2 + �|xn|p

2013R. GRIBONVAL - SPARSE METHODS

Hard-thresholding (p=0)

• Solution of

115

H�(c)

c

min
x

1
2
(c� x)2 + � · |x|0

�
2�

�
⇥

2�

2013R. GRIBONVAL - SPARSE METHODS

Soft-thresholding (p=1)

• Solution of

�

��

116

S�(c)

c

min
x

1
2
(c� x)2 + � · |x|

2013R. GRIBONVAL - SPARSE METHODS

Matlab code ?

• Soft thresholding
• @softthresh(c,lambda)(sign(c).*max(abs(c)-lambda,0))

• x = softthresh(c,lambda);

• Hard-thresholding
• @hardthresh(c,lambda)(c.*(abs(c)>=sqrt(2*lambda)))

• x = hardthresh(c,lambda);

•

117

2013R. GRIBONVAL - SPARSE METHODS

Iterative thresholding
• Definition: proximity operator

• Goal = compute

• Iterative algorithm:
✓ gradient descent on fidelity term

✓ thresholding

118

arg min
x

1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

x(i+1/2) := x(i) + �(i)AT (b�Ax(i))

�p
�(c) = arg min

x

1
2
(x� c)2 + �|x|p

x(i+1) := �p
�(i)(x(i+1/2))

2013R. GRIBONVAL - SPARSE METHODS

Iterative Thresholding

• Theorem : [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008]

✓ consider the iterates defined by
the thresholding function, with

✓ assume that and
✓ then, the iterates converge strongly to a limit

✓ the limit is a global minimum of

✓ if p>1, or if A is invertible, is the unique minimum

119

x(i+1) = f(x(i))

x�
⇥x, ⇤Ax⇤2

2 � c⇤x⇤2
2 � < 2/c

x�

⇤x(i) � x�⇤2 ⇥i�⇥ 0
1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

x�

p � 1

f(x) = �p
�⇥(x + �AT (b�Ax))

2013R. GRIBONVAL - SPARSE METHODS

Iterative Thresholding:
convex penalties

• Strong convergence to global minimum

• Accelerated convergence:
✓ Nesterov schemes
✓ see e.g. Beck & Teboulle 2009;

• Many variants of iterative thresholding
✓ depends on properties of penalty terms

✦ smoothness
✦ strong convexity
✦ etc.

120

2013R. GRIBONVAL - SPARSE METHODS

Iterative Thresholding:
nonconvex penalties

• Example: Iterative Hard Thresholding for L0
✓ keep components above threshold
✓ or rather keep k largest components

✦ [IHT: Blumensath & Davies 2009]

• More generally, with nonconvex cost functions
✓ Possible ‘spurious’ local minima
✓ Convergence: fixed point, under certain assumptions
✓ Limit = global min: under certain assumptions (RIP)

• Pruning strategies:
✓ ex: keep 2k components, project, keep k components

✦ ex: CoSAMP [Needell &Tropp 2008], ALPS [Cevher 2011], ...

121

2013R. GRIBONVAL - SPARSE METHODS

Code for Iterative Thresholding?

• Proximal operator (or prox)

• Prox of the absolute value = soft-thresholding
@prox(c,lambda)(sign(c).*max(abs(c)-lambda,0))

• Iterative thresholding with general prox
function xhat = iterate_thresh(b,A,prox,step,niter)

xhat = 0;
for i=1:niter

xhat =prox(xhat+ step * A’*(b-A*xhat))
end

122

prox

f

(c) := arg min

x

⇢
1

2

kx� ck2
2 + f(x)

�

2013R. GRIBONVAL - SPARSE METHODS

Exercice at home

• Write Matlab code for MP

• Idem for OMP

• Idem for L1 minimization with CVX

• Idem for Iterative Hard Thresholding

123

2013R. GRIBONVAL - SPARSE METHODS

Exercice: Matlab code for (O)MP

• Full clean code would include some checking
(column normalization, dimension checking, etc.)

function [x res] = mp(b,A,k)
% explain here what the function should do
....
end

function [x res] = omp(b,A,k)
% explain here what the function should do
....
end

124

