

#### Inverse problems and sparse models (4/6)

Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr

# **Reminder of last sessions**

### Introduction

- ✓ sparsity & data compression
- ✓ inverse problems in signal and image processing
  - image deblurring, image inpainting,
  - channel equalization, signal separation,
  - tomography, MRI
- ✓ sparsity & under-determined inverse problems
  - relation to subset selection problem

## Pursuit Algorithms

- ✓ Greedy algorithms: Matching Pursuit & al
- ✓ L1 minimization principles
- ✓ L1 minimization algorithms
- Complexity of Pursuit Algorithms



| Summary                    |                                                                                                          |                                                                                                                      |
|----------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                            | Global optimization                                                                                      | Iterative greedy algorithms                                                                                          |
| Principle                  | $\min_{x} \frac{1}{2} \ \mathbf{A}x - \mathbf{b}\ _{2}^{2} + \lambda \ x\ _{p}^{p}$                      | iterative decomposition $\mathbf{r}_i = \mathbf{b} - \mathbf{A} x_i$<br>• select new components<br>• update residual |
| Tuning<br>quality/sparsity | regularization parameter $~\lambda$                                                                      | stopping criterion<br>(nb of iterations, error level,)<br>$\ x_i\ _0 \ge k  \ \mathbf{r}_i\  \le \epsilon$           |
| Variants                   | <ul> <li>choice of sparsity measure p</li> <li>optimization algorithm</li> <li>initialization</li> </ul> | <ul> <li>selection criterion (weak, stagewise)</li> <li>update strategy (orthogonal)</li> </ul>                      |

# Global Optimization : from Principles to Algorithms





# L1 *induces* sparsity (1)

### Real-valued case

- $\checkmark$  **A** = an *m* x *N* real-valued matrix, where m < N
- ✓ b = an *m*-dimensional real-valued vector
- $\checkmark$  X = set of all minimum L1 norm solutions to Ax = b

$$\tilde{x} \in X \Leftrightarrow \|\tilde{x}\|_1 = \min_x \|x\|_1 \text{ s.t. } \mathbf{A}x = \mathbf{b}$$

 Fact 1: X is convex and contains a "sparse" solution

$$\exists x_0 \in X \subset \mathbb{R}^N, \|x_0\|_0 \le m < N$$

## **Proof ? Exercice!**

Ínría

## Proof ? Exercice!

## • Convexity of the set of solutions X:

✓ let  $x, x' \in X, \ 0 \le \theta \le 1$ ✓ convexity of constraint

$$\mathbf{A}x = \mathbf{A}x' = \mathbf{A}(\theta x + (1 - \theta)x') = \mathbf{b}$$

✓ by definition  $||x||_1 = ||x'||_1 = \min ||\tilde{x}||_1$  s.t.  $A\tilde{x} = b$ 

✓ convexity of objective function  $\|(\theta x + (1 - \theta)x')\|_1 \le \theta \|x\|_1 + (1 - \theta)\|x'\|_1 = \|x\|_1$ ✓ hence  $\theta x + (1 - \theta)x' \in X$ 

# **Proof? Exercice!**

### Existence of a sparse solution

m

 $\|x + \epsilon z\|_1 = \sum |x_i + \epsilon z_i|$ 

 $i \in I$ 

 $\checkmark$  let x satisfy  $\mathbf{A}x = \mathbf{b}$  with  $(||x||_0 \ge m+1)$ 

• support  $I := \operatorname{supp}(x) := \{i, x_i \neq 0\}$   $\ell \ge m+1$ 

sub-matrix

 $\checkmark$  for small  $\epsilon$ 

✓ existence of nontrivial null space vector 
$$A_I z = 0$$
  
✓ other solution  $x' = x + \epsilon z$ 

cost function is not minimum

$$=\sum_{i\in I} \operatorname{sign}(x_i)(x_i + \epsilon z_i) = \|x\|_1 + \epsilon \sum_{i\in I} \operatorname{sign}(x_i) z_i$$

 $\rightarrow m$ 

 $\mathbf{A}_{I}$ 

Convexity of the set of minimizers

Unique solution



Non unique solution





Ínría

# L1 induces sparsity (2)

#### Real-valued case

- $\checkmark$  **A** = an *m* x *N* real-valued matrix, m<N
- ✓ b = an *m*-dimensional real-valued vector
- ✓ X = set of al solutions to regularization problem  $\mathcal{L}(x) := \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_2^2 + \lambda \|x\|_1$   $\tilde{x} \in X \Leftrightarrow \mathcal{L}(\tilde{x}) = \min \mathcal{L}(x)$
- Fact 2: X is a convex set and contains a "sparse" solution

$$\exists x_0 \in X \subset \mathbb{R}^N, \|x_0\|_0 \le m < N$$

## **Proof ? Exercice at home!**

Ínría

# L1 induces sparsity

- A word of caution: this does not hold true in the complex-valued case
- Counter example: there is a construction where
  - $\checkmark$  **A** = a 2 x 3 complex-valued matrix
  - ✓ b = a 2-dimensional complex-valued vector
  - ✓ the minimum L1 norm solution is unique and has 3 **NONZERO COMPONENTS** [E.Vincent, Complex Nonconvex Optimization I\_p norm minimization for underdetermined source

separation, Proc. ICA 2007.]



### **Convex Pursuit Algorithms**

Sparse optimization *principles* L1 minimization *induces* sparsity Algorithms for L1 minimization

Ínría

**R. GRIBONVAL - SPARSE METHODS** 

# Algorithms for L1: Linear Programming

### • L1 minimization problem of size $m \ge N$

$$\min_{x} \|x\|_1, \text{ s.t. } \mathbf{A}x = \mathbf{b}$$

• Equivalent **linear program** of size *m* x 2*N* 

$$\min_{\substack{z \ge 0 \\ \mathbf{c} = (c_i), \ c_i = 1, \forall i }} \mathbf{c}^T z, \text{ s.t. } [\mathbf{A}, -\mathbf{A}] z = \mathbf{b}$$



Basis Pursuit (BP) LASSO

## L1 regularization: Quadratic Programming

### • L1 minimization problem of size *m* x *N*

-1

Basis Pursuit Denoising (BPDN)

$$\min_{x} \frac{1}{2} \|\mathbf{b} - \mathbf{A}x\|_{2}^{2} + \lambda \|x\|_{1}$$

• Equivalent **quadratic program** of size *m* x 2*N* 

$$\min_{z \ge 0} \frac{1}{2} \|\mathbf{b} - [\mathbf{A}, -\mathbf{A}]z\|_2^2 + \mathbf{c}^T z$$
$$\mathbf{c} = (c_i), \ c_i = 1, \forall i$$

## Generic approaches vs specific algorithms

- Many algorithms for linear / quadratic programming
- Matlab Optimization Toolbox: linprog /qp
- But ...
  - ✓ The problem size is "doubled"
  - Specific structures of the matrix A can help solve BP and BPDN more efficiently
  - More efficient toolboxes have been developed
- CVX package (Michael Grant & Stephen Boyd):
  - ✓ <u>http://www.stanford.edu/~boyd/cvx/</u>



# Example of CVX program

#### Matlab code

### How is it implemented? SDPT3 or SeDuMi packages ...



### **Convex Pursuit Algorithms**

Sparse optimization *principles* L1 minimization *induces* sparsity Algorithms for L1 minimization

Do it yourself!

Ínría

# Wavelet Domain Denoising

Courtesy: G. Peyré, Ceremade, Université Paris 9 Dauphine



111

Ínría\_

R. GRIBONVAL - SPARSE METHODS

# Denoising problem

- Original NxN image is corrupted by noise  $\mathbf{b} = \mathbf{y} + \mathbf{e}$
- Original image is sparse in wavelet basis  $\mathbf{b} = \mathbf{\Phi} x + \mathbf{e} \qquad x = \mathbf{\Phi}^T \mathbf{y} \qquad \|x\|_0 \ll N \times N$
- Wavelet basis is an **orthonormal basis**  $\Phi \Phi^T = \mathbf{Id}$   $\Phi^T \Phi = \mathbf{Id}$

Idealized denoising problem:

$$\hat{x} := \arg\min_{x} \frac{1}{2} \|\mathbf{b} - \mathbf{\Phi}x\|_{2}^{2} + \lambda \|x\|_{0}$$

## Exploiting the fact that A is orthonormal

- Assumption : m=N and  $\mathbf{A}$  is orthonormal  $\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I} \mathbf{d}_N$  $\|\mathbf{b} - \mathbf{A} x\|_2^2 = \|\mathbf{A}^T \mathbf{b} - x\|_2^2$
- Expression of BPDN criterion to be minimized  $\sum_{n} \frac{1}{2} ((\mathbf{A}^T \mathbf{b})_n - x_n)^2 + \lambda |x_n|^p$
- Minimization can be done coordinate-wise  $\min_{x_n} \frac{1}{2} (c_n x_n)^2 + \lambda |x_n|^p$







## Matlab code ?

### Soft thresholding

- @softthresh(c,lambda)(sign(c).\*max(abs(c)-lambda,0))
- x = softthresh(c,lambda);

### Hard-thresholding

• @hardthresh(c,lambda)(c.\*(abs(c)>=sqrt(2\*lambda)))

117

• x = hardthresh(c,lambda);

## Iterative thresholding

### • Definition: proximity operator

$$\Theta_{\lambda}^{p}(c) = \arg \min_{x} \frac{1}{2} (x - c)^{2} + \lambda |x|^{p}$$
• Goal = compute \_1

$$\arg\min_{x} \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_{2}^{2} + \lambda \|x\|_{p}^{p}$$

### Iterative algorithm:

✓ gradient descent on fidelity term

$$x^{(i+1/2)} := x^{(i)} + \alpha^{(i)} \mathbf{A}^T (\mathbf{b} - \mathbf{A}x^{(i)})$$

✓ thresholding

$$x^{(i+1)} := \Theta_{\lambda^{(i)}}^p (x^{(i+1/2)})$$

## **Iterative Thresholding**

• Theorem : [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008]  $\checkmark$  consider the iterates  $x^{(i+1)} = f(x^{(i)})$  defined by the thresholding function, with  $p \ge 1$ 

$$f(x) = \Theta_{\alpha\lambda}^p(x + \alpha \mathbf{A}^T(\mathbf{b} - \mathbf{A}x))$$

✓ assume that  $\forall x$ ,  $\|\mathbf{A}x\|_2^2 \le c \|x\|_2^2$  and  $\alpha < 2/c$ 

 $\checkmark$  then, the iterates converge strongly to a limit  $x^{\star}$ 

$$\|x^{(i)} - x^\star\|_2 \to_{i \to \infty} 0$$

 $\checkmark$  the limit  $x^*$  is a global minimum of  $\frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_2^2 + \lambda \|x\|_p^p$ 

✓ if *p*>1, or if **A** is invertible,  $x^*$  is the *unique* minimum



Iterative Thresholding: convex penalties

Strong convergence to global minimum

- Accelerated convergence:
  - ✓ Nesterov schemes
  - ✓ see e.g. Beck & Teboulle 2009;
- Many variants of iterative thresholding
  - ✓ depends on properties of penalty terms
    - smoothness
    - strong convexity
    - + etc.

# Iterative Thresholding: nonconvex penalties

### • Example: Iterative Hard Thresholding for L0

✓ keep components above threshold

### ✓ or rather keep k largest components

• [IHT: Blumensath & Davies 2009]

### • More generally, with *nonconvex* cost functions

- ✓ Possible 'spurious' local minima
- ✓ Convergence: fixed point, under certain assumptions
- ✓ Limit = global min: under certain assumptions (RIP)

### • Pruning strategies:

- ✓ ex: keep 2k components, project, keep k components
  - + ex: CoSAMP [Needell &Tropp 2008], ALPS [Cevher 2011], ...



## Code for Iterative Thresholding?

```
• Proximal operator (or prox)

\operatorname{prox}_{f}(\mathbf{c}) := \arg\min_{x} \left\{ \frac{1}{2} \|x - \mathbf{c}\|_{2}^{2} + f(x) \right\}
```

#### Prox of the absolute value = soft-thresholding

@prox(c,lambda)(sign(c).\*max(abs(c)-lambda,0))

### Iterative thresholding with general prox

```
function xhat = iterate_thresh(b,A,prox,step,niter)
xhat = 0;
for i=1:niter
    xhat =prox(xhat+ step * A'*(b-A*xhat))
end
```

## Exercice at home

- Write Matlab code for MP
- Idem for OMP
- Idem for L1 minimization with CVX
- Idem for Iterative Hard Thresholding



## Exercice: Matlab code for (O)MP

### Full clean code would include some checking (column normalization, dimension checking, etc.)

```
function [x res] = mp(b,A,k)
% explain here what the function should do
....
end
```

```
function [x res] = omp(b,A,k)
% explain here what the function should do
....
end
```

