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Reminder of last sessions

• Introduction
✓ sparsity & data compression
✓ inverse problems in signal and image processing

✦ image deblurring, image inpainting, 
✦ channel equalization, signal separation, 
✦ tomography, MRI

✓ sparsity & under-determined inverse problems
✦ relation to subset selection problem

• Pursuit Algorithms
✓ Greedy algorithms: Matching Pursuit & al
✓ L1 minimization principles
✓ L1 minimization algorithms
✓ Complexity of Pursuit Algorithms 
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Sparsity: definition

• A vector is 
✓ sparse if it has (many) zero coefficients
✓ k-sparse if it has at most k nonzero coefficients

• Symbolic representation as column vector

• Support = indices of nonzero components

• Sparsity measured with L0 pseudo-norm

• In french: 
✦ sparse                           ->  «creux», «parcimonieux»
✦ sparsity, sparseness     ->  «parcimonie»,  «sparsité» 
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Not sparse

3-sparse
⇧x⇧0 := ⇥{n, xn �= 0} =

�

n

|xn|0

a0 = 1(a > 0); 00 = 0
Convention here
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Linear inverse problems: definition

• Definition: a problem where a high-dimensional 
vector must be estimated from its low dimensional 
projection

• Generic form:

✓ m observations / measures
✓ N unknowns 
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b = Ay + e
observation/measure

projection matrix

unknown noise

b 2 Rm

y 2 RN
A 2 Rm⇥N
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Signal space ~ RN

Observation space ~ Rm 
m<<N

Linear 
projection

Nonlinear 
Approximation = 

Sparse recovery

Set of signals of 
interest

Inverse problems
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Courtesy: M. Davies, U. Edinburgh

b

x

A
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x

Sparsity and subset selection

x• Under-determined system
✓ Infinitely many solutions

• If vector is sparse: 
✓ If support is known (and columns independent)

✦ nonzero values characterized by (over)determined linear problem
✓ If support is unknown

✦ Main issue = finding the support! 
✦ This is the subset selection problem

• Objectives of the course
✦ Well-posedness of subset selection
✦ Efficient subset selection algorithms = pursuit algorithms
✦ Stability guarantees of pursuits

b ~ A

b ~

74
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Complexity of Ideal Sparse Approximation

• Naive: Brute force search

• Theorem (Davies et al, Natarajan)

  Solving the L0 optimization problem is NP-complete

Many k-tuples to try!
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min

x

kb�Axk2 s.t. support(x) = I
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Overview of greedy algorithms

76

Matching Pursuit OMP Stagewise OMP
Selection

Update

MP & OMP: Mallat & Zhang 1993
StOMP:  Donoho & al 2006 (similar to MCA, Bobin & al 2006)

A = [A1, . . .AN ]

�i := arg max
n

|AT
nri�1| �i := {n | |AT

nri�1| > �i}

⇥i = ⇥i�1 � �i

xi = xi�1 + A+
�i

ri�1

⇥i = ⇥i�1 � �i

xi = A+
�i

b
ri = b�A�ixi

b = Axi + ri

ri = ri�1 �A�iA
+
�i

ri�1
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OMP versus MP

• SNR as a function of iteration number
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Figure 4: Approximation SNR obtained by several algorithms depending on the iteration. All
the algorithms perform similarly apart from MP. The right plot shows the SNR loss compared
to OMP.

OMP, while remaining in the order of complexity of MP. The higher quality

loss of LocGP compared to LocOMP is still not explained. The algorithmic link

is the same between OMP and GP on one side and LocOMP and LocGP on

the other side. As OMP and GP share the same behaviour, one could expect

LocOMP and LocGP to do the same.

On these experiments, the overall approximation quality of all algorithms,

including OMP, is limited, with only 11dB reached after 20000 iterations. The

quality difference between MP and OMP is accordingly small. This is mainly

due to the choice of a small, short-scale dictionary. This choice was driven by

the will to provide a comparison with OMP, so the dictionary had to be small

enough so that we could actually afford to run OMP and GP.

More promising, although still preliminary, results are displayed in the next

section with larger dictionaries. They show that LocGP provides a substantial

quality gain over MP.

7. Theoretical study

LocOMP was designed to ensure that its complexity remains within that

of MP, and its quality should lie somewhere between MP and OMP. In this

section we discuss which known theoretical guarantees that apply to both MP

and OMP are also valid for LocOMP (resp. LocGP).

20

SNR = 10 log10
kbk22
krik22
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Overview of the course

• Session 1: Introduction

• Session 2: Complexity & Feasibility
✓ Difficulty of ideal sparse approximation
✓ Greedy algorithms

• Session 3: Convex Pursuit Algorithms,
• Session 4-6:  Recovery Guarantees, Dictionaries & 

Compressive Sensing, Beyond sparsity
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Sparse optimization principles
L1 minimization induces sparsity
Algorithms for L1 minimization

Convex Pursuit Algorithms
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Convex sets  

• Definition:
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�u + (1� �)v 2 X, 8u,v 2 X, 0  �  1

Convex Not 
convex
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Convex functions

• Definition: f is convex if 
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f(�u + (1� �)v)  �f(u) + (1� �)f(v)

8u,v, 0  �  1

Convex
Not 

convex
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Overall compromise 

• Approximation quality

• Ideal sparsity measure :           “norm”

• “Relaxed” sparsity measures

⇥Ax� b⇥2

�0
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0 < p < �, ⇤x⇤p :=
� ⇤

n

|xn|p
⇥1/p

⇧x⇧0 := ⇥{n, xn �= 0} =
�

n

|xn|0
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Lp norms / quasi-norms

• Norms when

• Quasi-norms when

• “Pseudo”-norm for p=0 
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1 � p <⇥

0 < p < 1

Triangle inequality

⇥x⇥p = 0 � x = 0
⇤�x⇤p = |�|⇤x⇤p,��, x

⇤x + y⇤p � ⇤x⇤p + ⇤y⇤p,⇥x, y

Quasi-triangle inequality
⇤x + y⇤p � 21/p

�
⇤x⇤p + ⇤y⇤p

⇥
,⇥x, y

⇤x + y⇤p
p � ⇤x⇤p

p + ⇤y⇤p
p,⇥x, y

⇤x + y⇤0 � ⇤x⇤0 + ⇤y⇤0,⇥x, y

= convex

= nonconvex
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Lp “norms” level sets

• Strictly convex 
when p>1

• Convex p=1 • Nonconvex 
p<1
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{x s.t.b = Ax}
Observation: the minimizer is sparse

when p<=1
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Global Optimization : from Principles to 
Algorithms

• Optimization principle

✓ Sparse representation
✓ Sparse approximation

local minima convex : global minimum

NP-hard 
combinatorial Iterative thresholding / proximal algo.FOCUSS / IRLS Linear
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�� 0
� > 0

min
x

1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

Ax = b
Ax � b

Sparsity inducing Not sparsity inducing
Lasso [Tibshirani 1996],  Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008, Beck & Teboulle 2009 ...]
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Principle
iterative decomposition
• select new components
• update residual

Tuning 
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants
• choice of sparsity measure p
• optimization algorithm 
• initialization

•selection criterion (weak, stagewise ...)
•update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Summary

86

�

ri = b�Axi

⇥ri⇥ � �

min
x

1
2
⇥Ax� b⇥2

2 + �⇥x⇥p
p

⇥xi⇥0 � k
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Sparse optimization principles
L1 minimization induces sparsity
Algorithms for L1 minimization

Convex Pursuit Algorithms
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L1 induces sparsity (1)

• Real-valued case
✓ A = an m x N real-valued matrix, where m < N
✓ b = an m-dimensional real-valued vector
✓ X = set of all minimum L1 norm solutions to

• Fact 1: X is convex and contains a “sparse” 
solution 
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Ax = b
x̃ 2 X , kx̃k1 = min

x

kxk1 s.t. Ax = b

9x0 2 X ⇢ RN
, kx0k0  m < N
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Proof ? Exercice!

89
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Proof ? Exercice!

• Convexity of the set of solutions X: 
✓ let
✓ convexity of constraint

✓ by definition

✓ convexity of objective function

✓ hence
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Ax = Ax0 = A(�x + (1� �)x0) = b

x, x0 2 X, 0  �  1

kxk1 = kx0k1 = min kx̃k1 s.t. Ax̃ = b

k(�x + (1� �)x0)k1  �kxk1 + (1� �)kx0k1 = kxk1

�x + (1� �)x0 2 X
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Exercice: Matlab code for (O)MP

• Full clean code would include some checking 
(column normalization, dimension checking, etc.)

function [x res] = mp(b,A,k)
% explain here what the function should do
....
end

function [x res] = omp(b,A,k)
% explain here what the function should do
....
end
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