

Inverse problems and sparse models (3/6)

Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr

Reminder of last sessions

Introduction

- ✓ sparsity & data compression
- ✓ inverse problems in signal and image processing
 - image deblurring, image inpainting,
 - channel equalization, signal separation,
 - tomography, MRI
- ✓ sparsity & under-determined inverse problems
 - relation to subset selection problem

Pursuit Algorithms

- ✓ Greedy algorithms: Matching Pursuit & al
- ✓ L1 minimization principles
- ✓ L1 minimization algorithms
- Complexity of Pursuit Algorithms

Sparsity: definition

A vector is ✓ **sparse** if it has (many) zero coefficients ✓ **k-sparse** if it has at most k nonzero coefficients Symbolic representation as column vector • **Support** = indices of nonzero components Sparsity measured with L0 pseudo-norm

 $\|x\|_0 := \#\{n, \ x_n \neq 0\} = \sum |x_n|^0$ (Convention here

- In french:
 - sparse

n

71

 $a^0 = 1(a > 0); 0^0 = 0$

Not sparse

- -> «creux», «parcimonieux»
- sparsity, sparseness -> «parcimonie», «sparsité

3-sparse

Linear inverse problems: definition

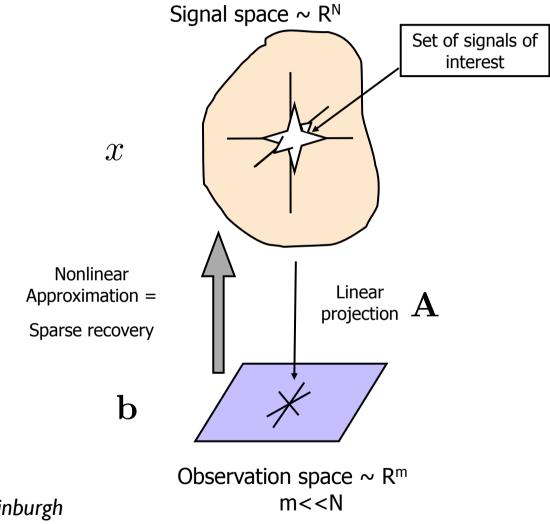
 Definition: a problem where a high-dimensional vector must be estimated from its low dimensional projection

 Generic form: b = Ay + e observation/measure ∫ unknown noise projection matrix

 ✓ m observations / measures b ∈ ℝ^m
 ✓ N unknowns y ∈ ℝ^N

72

Inverse problems

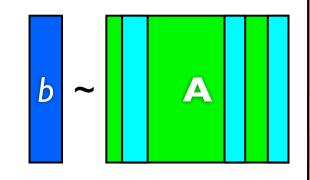


Courtesy: M. Davies, U. Edinburgh

R. GRIBONVAL - SPARSE METHODS

Sparsity and subset selection

- Under-determined system
 ✓ Infinitely many solutions
- If vector is sparse:



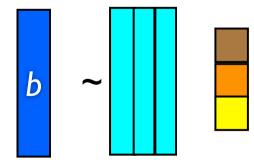
- ✓ If support is known (and columns independent)
 - nonzero values characterized by (over)determined linear problem

✓ If support is unknown

- Main issue = finding the support!
- This is the subset selection problem

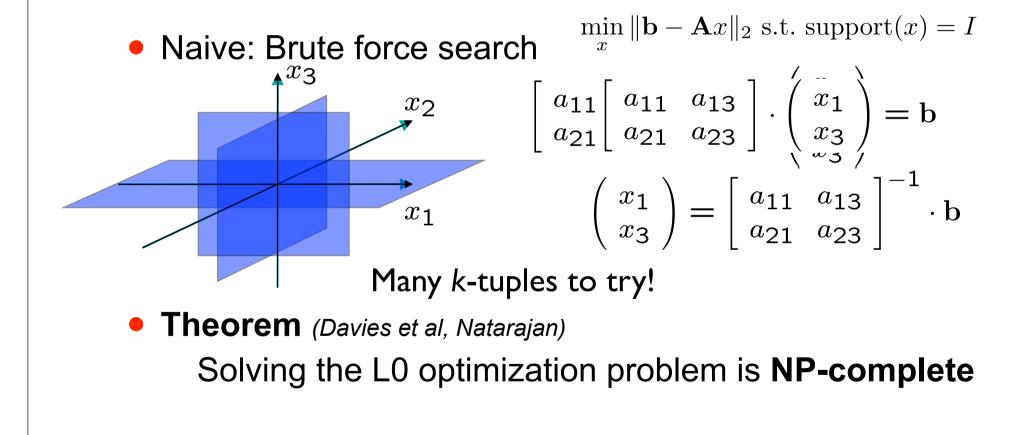
Objectives of the course

- Well-posedness of subset selection
- Efficient subset selection algorithms = pursuit algorithms
- Stability guarantees of pursuits



X

Complexity of Ideal Sparse Approximation



Overview of greedy algorithms

$$\mathbf{b} = \mathbf{A}x_i + \mathbf{r}_i \qquad \qquad \mathbf{A} = [\mathbf{A}_1, \dots, \mathbf{A}_N]$$

	Matching Pursuit	OMP	Stagewise OMP
Selection	$\Gamma_i := \arg\max_n \mathbf{A}_n^T \mathbf{r}_{i-1} $		$\Gamma_i := \{ n \mid \mathbf{A}_n^T \mathbf{r}_{i-1} > \theta_i \}$
Update	$\Lambda_i = \Lambda_{i-1} \cup \Gamma_i$	$\Lambda_i = \Lambda_{i-1} \cup \Gamma_i$	
	$x_i = x_{i-1} + \mathbf{A}_{\Gamma_i}^+ \mathbf{r}_{i-1}$	$x_i = \mathbf{A}_{\Lambda_i}^+ \mathbf{b}$	
	$\mathbf{r}_i = \mathbf{r}_{i-1} - \mathbf{A}_{\Gamma_i} \mathbf{A}_{\Gamma_i}^+ \mathbf{r}_{i-1}$	$\mathbf{r}_i =$	$\mathbf{b} - \mathbf{A}_{\Lambda_i} x_i$

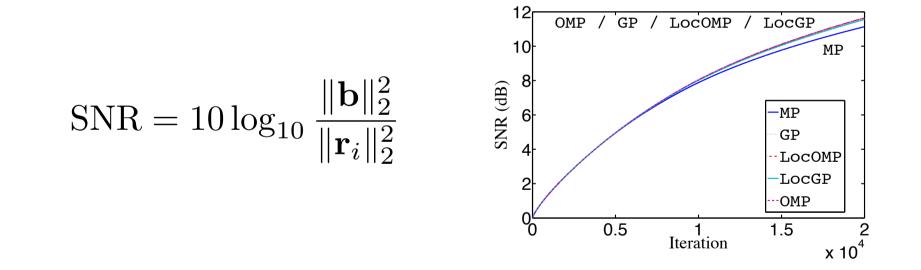
MP & OMP: Mallat & Zhang 1993 StOMP: Donoho & al 2006 (similar to MCA, Bobin & al 2006)

76

Ínría

OMP versus MP

SNR as a function of iteration number



77

Ínría

Overview of the course

Session 1: Introduction

Session 2: Complexity & Feasibility

- ✓ Difficulty of ideal sparse approximation
- ✓ Greedy algorithms

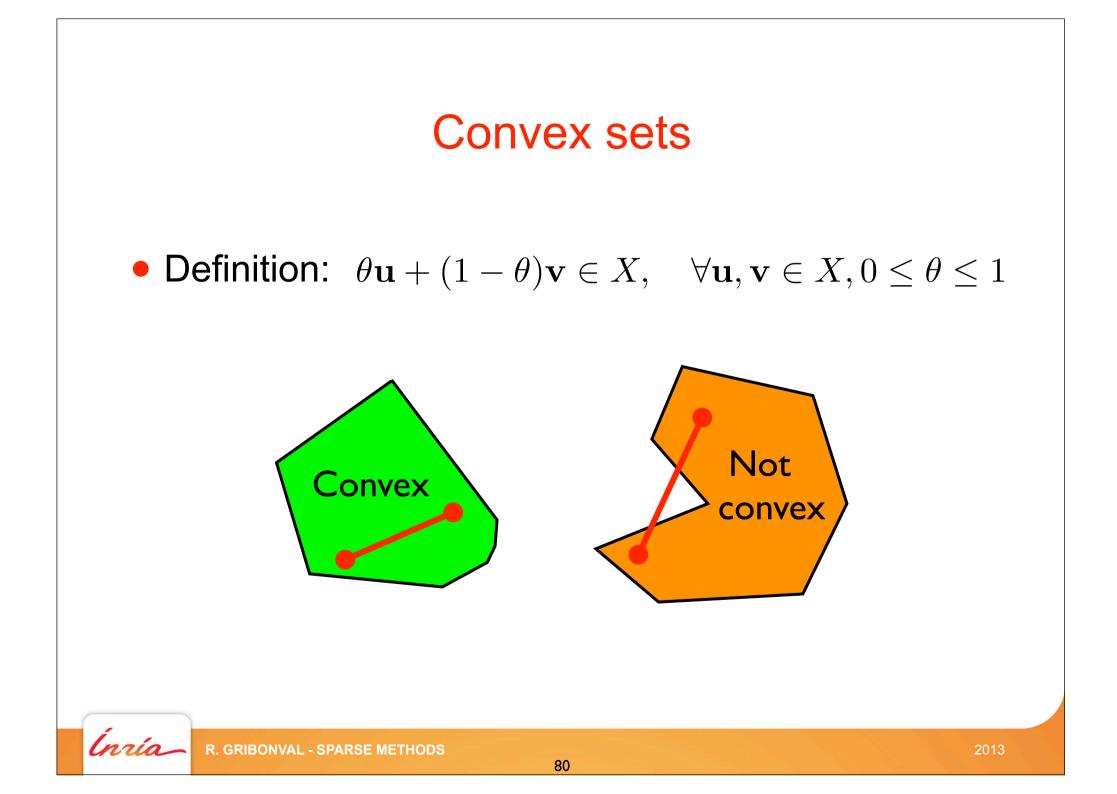
Session 3: Convex Pursuit Algorithms,

 Session 4-6: Recovery Guarantees, Dictionaries & Compressive Sensing, Beyond sparsity

Convex Pursuit Algorithms

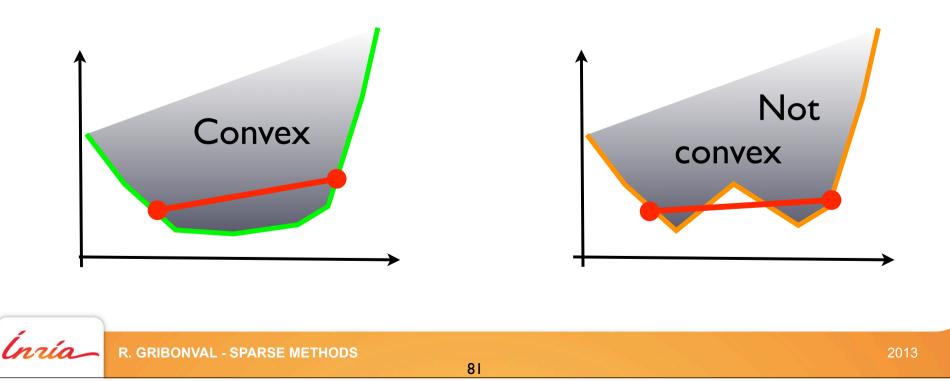
Sparse optimization *principles* L1 minimization *induces* sparsity Algorithms for L1 minimization

Ínría



Convex functions

• Definition: f is convex if $\forall \mathbf{u}, \mathbf{v}, 0 \leq \theta \leq 1$ $f(\theta \mathbf{u} + (1 - \theta)\mathbf{v}) \leq \theta f(\mathbf{u}) + (1 - \theta)f(\mathbf{v})$



Overall compromise

Approximation quality

$$\|\mathbf{A}x - \mathbf{b}\|_2$$

• Ideal sparsity measure : ℓ^0 "norm"

$$||x||_0 := \sharp\{n, \ x_n \neq 0\} = \sum |x_n|^0$$

• "Relaxed" sparsity measures n0

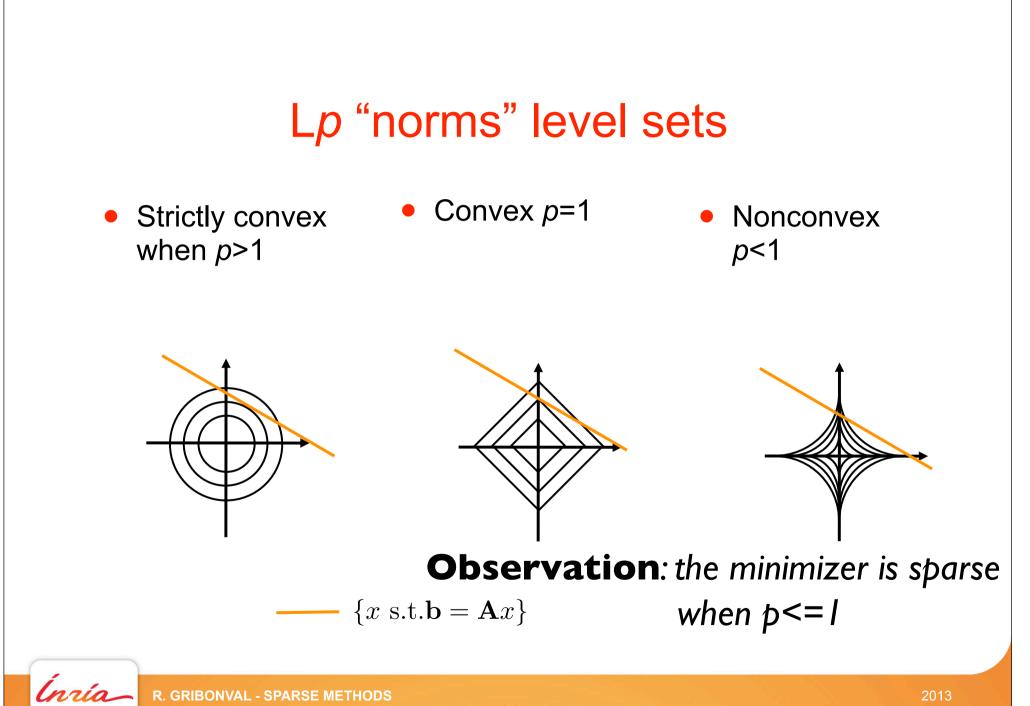
n

Lp norms / quasi-norms

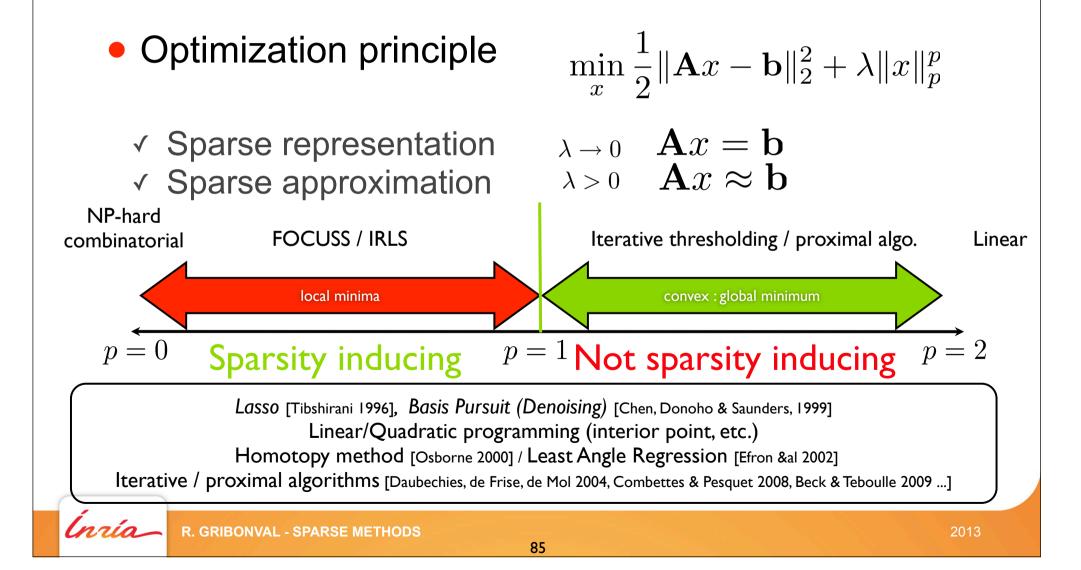
• Norms when $1 \le p < \infty$ = convex $\|x\|_p = 0 \Leftrightarrow x = 0$ $\|\lambda x\|_p = |\lambda| \|x\|_p, \forall \lambda, x$

Triangle inequality $\|x+y\|_p \le \|x\|_p + \|y\|_p, \forall x, y$

• Quasi-norms when 0 = nonconvexQuasi-triangle inequality $<math>\|x + y\|_p \le 2^{1/p} (\|x\|_p + \|y\|_p), \forall x, y$ $\|x + y\|_p^p \le \|x\|_p^p + \|y\|_p^p, \forall x, y$ • "Pseudo"-norm for p=0 $\|x + y\|_0 \le \|x\|_0 + \|y\|_0, \forall x, y$



Global Optimization : from Principles to Algorithms



Summary				
	Global optimization	Iterative greedy algorithms		
Principle	$\min_{x} \frac{1}{2} \ \mathbf{A}x - \mathbf{b}\ _{2}^{2} + \lambda \ x\ _{p}^{p}$	iterative decomposition $\mathbf{r}_i = \mathbf{b} - \mathbf{A} x_i$ • select new components • update residual		
Tuning quality/sparsity	regularization parameter $~\lambda$	stopping criterion (nb of iterations, error level,) $\ x_i\ _0 \ge k \ \mathbf{r}_i\ \le \epsilon$		
Variants	 choice of sparsity measure p optimization algorithm initialization 	 selection criterion (weak, stagewise) update strategy (orthogonal) 		

Convex Pursuit Algorithms Sparse optimization *principles* L1 minimization *induces* sparsity Algorithms for L1 minimization

Ínría

L1 *induces* sparsity (1)

Real-valued case

- \checkmark **A** = an *m* x *N* real-valued matrix, where m < N
- ✓ b = an *m*-dimensional real-valued vector
- \checkmark X = set of all minimum L1 norm solutions to Ax = b

$$\tilde{x} \in X \Leftrightarrow \|\tilde{x}\|_1 = \min_x \|x\|_1 \text{ s.t. } \mathbf{A}x = \mathbf{b}$$

 Fact 1: X is convex and contains a "sparse" solution

$$\exists x_0 \in X \subset \mathbb{R}^N, \|x_0\|_0 \le m < N$$

Proof ? Exercice!

Ínría

Proof ? Exercice!

• Convexity of the set of solutions X:

✓ let $x, x' \in X, \ 0 \le \theta \le 1$ ✓ convexity of constraint

$$\mathbf{A}x = \mathbf{A}x' = \mathbf{A}(\theta x + (1 - \theta)x') = \mathbf{b}$$

✓ by definition $||x||_1 = ||x'||_1 = \min ||\tilde{x}||_1$ s.t. $A\tilde{x} = b$

✓ convexity of objective function $\|(\theta x + (1 - \theta)x')\|_1 \le \theta \|x\|_1 + (1 - \theta)\|x'\|_1 = \|x\|_1$ ✓ hence $\theta x + (1 - \theta)x' \in X$

Exercice: Matlab code for (O)MP

Full clean code would include some checking (column normalization, dimension checking, etc.)

```
function [x res] = mp(b,A,k)
% explain here what the function should do
....
end
```

```
function [x res] = omp(b,A,k)
% explain here what the function should do
....
end
```

