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PDF of the slides

• http://www.irisa.fr/metiss/gribonval/Teaching/
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Overview of the course

• Introduction
✓ sparsity & data compression
✓ inverse problems in signal and image processing

✦ image deblurring, image inpainting, 
✦ channel equalization, signal separation, 
✦ tomography, MRI

✓ sparsity & under-determined inverse problems
✦ well-posedness

• Complexity & Feasibility
✓ NP-completeness of ideal sparse approximation
✓ Relaxations
✓ L1 is sparsity-inducing and convex
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Overview of the course

• Pursuit Algorithms
✓ L1 has performance guarantees
✓ L1 is computationally feasible: Basis Pursuit
✓ Greedy algorithms: Matching Pursuit & al
✓ Complexity of Pursuit Algorithms 

• Recovery guarantees
✓ Coherence vs Restricted Isometry Constant
✓ Worked examples
✓ Summary
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Further material on sparsity
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• Books
✓  Signal Processing perspective

✦ S. Mallat, «Wavelet Tour of Signal Processing», 3rd edition, 2008
✦ M. Elad, «Sparse and Redundant Representations: From Theory to 

Applications in Signal and Image Processing», 2009.
✓ Mathematical perspective

✦ S. Foucart, H. Rauhut, «A Mathematical Introduction to Compressed 
Sensing», Springer, in preparation.

• Review paper: 
✦ Bruckstein, Donoho, Elad, SIAM Reviews, 2009
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Sparse models & data compression
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Large-scale data

• Fact : digital data = large volumes

✓ 1 second stereo audio, CD quality    = 1,4 Mbit
✓ 1 uncompressed 10 Mpixels picture  = 240 Mbit

• Need :  «concise» data representations

✓ storage & transmission (volume / bandwidth) ... 
✓ manipulation & processing (algorithmic 

complexity)
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Notion of sparse representation

• Audio : time-frequency representations (MP3)

• Images : wavelet transform  (JPEG2000)

Black 
= zero

Gray 
= zero
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ANALYSIS

ANALYSIS

SYNTHESIS

SYNTHESIS
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Evidence of sparsity

• Histogram of MDCT coefficients of a musical sound

•
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Mathematical expression 
of the sparsity assumption

• Signal / image = high dimensional vector

• Definition: 
✓ Atoms: basis vectors 

✦ ex: time-frequency atoms, wavelets
✓ Dictionary: 

✦ collection of atoms

✦ matrix                                        which columns are the atoms

• Sparse signal model = combination of few atoms
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y 2 RN

y ⇡
X

k

xk'k = �x

'k 2 RN

{'k}1kK

� = ['k]1kK
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• Full vector • Sparse vector

Sparsity & compression
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y xN

          nonzero entries  
 = k floats

k ⌧ N
N entries

= N floats

+ k positions among N       

=                                 bitslog2

✓
N

k

◆
⇡ k log2

N

k

⇡ �·

Key practical issues: choose dictionary
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Sparsity: definition

• A vector is 
✓ sparse if it has (many) zero coefficients
✓ k-sparse if it has at most k nonzero coefficients

• Symbolic representation as column vector

• Support = indices of nonzero components

• Sparsity measured with L0 pseudo-norm

• In french: 
✦ sparse                           ->  «creux», «parcimonieux»
✦ sparsity, sparseness     ->  «parcimonie»,  «sparsité» 
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Not sparse

3-sparse
⇧x⇧0 := ⇥{n, xn �= 0} =

�

n

|xn|0

a0 = 1(a > 0); 00 = 0
Convention here
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Inverse problems in 
signal and image processing
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Deconvolution problem
2D Example : deblurring problem
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• Given data: 
✓ blurred image 

✓ information on blurring process

• Desired estimate:
✓ deblurred image

?

y[i, j]

x[i, j]
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Blurring process = 2D Convolution

• Definition

• Interpretation : local average

yx h i

j

Reproduced from http://www.robots.ox.ac.uk/~improofs/super-resolution/super-res1.html
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y[i, j] = (h � x)[i, j] :==
X

k,�

h[k, ⇥]x[i� k, j � ⇥]
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• Optical blur

• Motion blur 

Examples of 2D convolution

h =point spread function (PSF)

Reproduced from http://www.robots.ox.ac.uk/~improofs/super-resolution/super-res1.html
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Example of point spread function

Reproduced from http://hea-www.harvard.edu/HRC/calib/hrci_qe.html

17

h[i, j]

i
j
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1D deconvolution problems

• General form

• Telecom: channel equalization
✓ h = channel impulse response

• Audio: de-reverberation (reflections on walls)
✓ h = room impulse response

€ 

τ1,h(τ1)
€ 

τ 2,h(τ 2)

€ 

τ 3,h(τ 3)
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y(t) = (h ⇥ x)(t) :=
Z

h(�)x(t� �)d�
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Example of room impulse response

Reproduced from http://www.am3d.com/technology/acoustical
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Deconvolution Problem
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• Given
✓ measured data y
✓ known filter h

• Find unknown x such that

y = h � x
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Naive deconvolution in the Fourier domain

• Convolution and Fourier / inverse Fourier

• H(f) = transfer function of filter h 
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F{·}
Y (f) = H(f)X(f)y(t) = (h � x)(t)

F�1{·}
X̂(f) =

Y (f)
H(f)

= X(f)x̂(t) = x(t)
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• Presence of noise

• Smooth filter: 
✓ fast decay of H(f)
✓ small values in H(f)
✓ division by small values = strong amplification of noise

• Consequence = missing frequency information
✓ N frequency components to estimate

✓ m < N reliable frequency components

Issues with naive deconvolution
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Y (f) = H(f)X(f) + N(f)y(t) = (h � x)(t) + n(t)

X̂(f) :=
Y (f)
H(f)

= X(f) +
N(f)
H(f)

X 2 RN

Y 2 Rm Y
X
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Inverse problems 
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Linear inverse problems: definition

• Definition: a problem where a high-dimensional 
vector must be estimated from its low dimensional 
projection

• Generic form:

✓ m observations / measures
✓ N unknowns 
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b = Ay + e
observation/measure

projection matrix

unknown noise

b 2 Rm

y 2 RN
A 2 Rm⇥N
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• Unknown image with N pixels

• Partially observed image: 
✓ m < N observed pixels

• Measurement matrix

Example: Inpainting Problem
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b y

y
y 2 RN

b[�p] = y[�p], �p 2 Observed

b = My
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Classes of linear inverse problems

• Determined: the matrix A is square and invertible
✓ Unique solution to               
✓ Linear function of observations 

• Over-determined: more equations than unknowns
✓ Unique solution to               :
✓ Linear function of observations 
✓ with pseudo-inverse

• Under-determined: fewer equations than unknowns
✓ Infinitely many solutions to
✓ Need to choose one?
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b = Ay

b = Ay

b = Ay

y = A�1b
A

A

A

y = A†b
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Signal space ~ RN

Observation space ~ Rm 
m<<N

Linear 
projection

Nonlinear 
Approximation = 

Sparse recovery

Set of signals of 
interest

Inverse problems
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Courtesy: M. Davies, U. Edinburgh

b

x

A
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Example : audio source separation

•  « Softly as in a morning sunrise »
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• Mixing model : linear instantaneous mixture

• Source model : if disjoint time-supports …

Blind Source Separation

... then clustering to :
1- identify (columns of) the mixing matrix
2- recover sources

s1(t)

s3(t)
s2(t)
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yright(t)

yleft(t)

yleft(t)

yright(t)
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• Mixing model : linear instantaneous mixture

• In practice ... 

•

Blind Source Separation

s1(t)

s3(t)
s2(t)
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yright(t)

yleft(t)

yleft(t)

yright(t)
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• Mixing model in the time-frequency domain

• And “miraculously” ...

•

Time-Frequency Masking

... time-frequency representations of audio 
signals are (often) almost disjoint.

S(�, f)
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Yright(�, f)

Yleft(�, f)

Yleft(�, f)

Yright(�, f)
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Inverse problems

• Inverse problem : exploit indirect or 
incomplete obervation to recontruct 
some data

• Sparsity : represent / approximate  
high-dimensional & complex data using 
few parameters
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fewer equations than unknowns

y ⇡ �x

z = My
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Forward 
linear model

Signal Processing Vocabulary

Known linear system:
dictionary, mixing matrix, sensing system...

Observed data:
signal, image, mixture of sources,...

b � Ax

Unknown
representation, sources, ...
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A Decomposition
Reconstruction

Separation

x

b
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Unknown
representation, sources, ...
Regression coeffs

Forward 
linear model

Machine Learning Vocabulary

Known linear system:
dictionary, mixing matrix, sensing system...

Observed data:
signal, image, mixture of sources,...

b � Ax
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A Decomposition
Reconstruction

Separation
Design matrix

Observation

X

y

X

b

x

y = Xw

w
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Unknown
representation, sources, ...
Regression coeffs

Forward 
linear model

Statistics Vocabulary

Known linear system:
dictionary, mixing matrix, sensing system...

Observed data:
signal, image, mixture of sources,...

b � Ax

35

A Decomposition
Reconstruction

Separation

y = X�

Design matrix

Observation

X

y

X

�

b

x
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Inverse problems & Sparsity
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Inverse Problems & Sparsity:
Mathematical foundations

• Bottleneck 1990-2000 : 
✓ Ill-posedness when fewer equations than unknowns

• Novelty 2001-2006 : 
✓ Well-posedness = uniqueness of sparse solution:

✦ if             are “sufficiently sparse”, 

✦ then

✓ Recovery of        with practical pursuit algorithms 
✦ Thresholding, Matching Pursuits, Minimisation of Lp norms p<=1,...
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x0, x1

Ax0 = Ax1 ⇥� x0 = x1

Ax0 = Ax1 � x0 = x1

x0
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x

Sparsity and subset selection

x• Under-determined system
✓ Infinitely many solutions

• If vector is sparse: 
✓ If support is known (and columns independent)

✦ nonzero values characterized by (over)determined linear problem
✓ If support is unknown

✦ Main issue = finding the support! 
✦ This is the subset selection problem

• Objectives of the course
✦ Well-posedness of subset selection
✦ Efficient subset selection algorithms = pursuit algorithms
✦ Stability guarantees of pursuits

b ~ A

b ~
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