

Inverse problems and sparse models (1/6)

Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr

http://people.irisa.fr/Remi.Gribonvall

PDF of the slides

http://www.irisa.fr/metiss/gribonval/Teaching/

Overview of the course

Introduction

- √ sparsity & data compression
- √ inverse problems in signal and image processing
 - image deblurring, image inpainting,
 - ◆ channel equalization, signal separation,
 - tomography, MRI
- √ sparsity & under-determined inverse problems
 - well-posedness

Complexity & Feasibility

- ✓ NP-completeness of ideal sparse approximation
- √ Relaxations
- √ L1 is sparsity-inducing and convex

Overview of the course

Pursuit Algorithms

- √ L1 has performance guarantees
- √ L1 is computationally feasible: Basis Pursuit
- ✓ Greedy algorithms: Matching Pursuit & al
- √ Complexity of Pursuit Algorithms

Recovery guarantees

- √ Coherence vs Restricted Isometry Constant
- √ Worked examples
- ✓ Summary

Further material on sparsity

Books

- √ Signal Processing perspective
 - ◆ S. Mallat, «Wavelet Tour of Signal Processing», 3rd edition, 2008
 - ◆ M. Elad, «Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing», 2009.
- √ Mathematical perspective
 - ◆ S. Foucart, H. Rauhut, «A Mathematical Introduction to Compressed Sensing», Springer, in preparation.
- Review paper:
 - ◆ Bruckstein, Donoho, Elad, SIAM Reviews, 2009

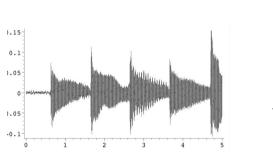
Sparse models & data compression

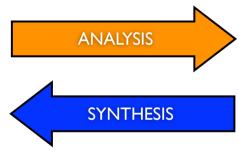
Large-scale data

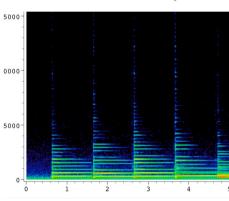
- Fact : digital data = large volumes
 - √ 1 second stereo audio, CD quality = 1,4 Mbit
 - √ 1 uncompressed 10 Mpixels picture = 240 Mbit
- Need : «concise» data representations
 - √ storage & transmission (volume / bandwidth) ...
 - manipulation & processing (algorithmic complexity)

Notion of sparse representation

Audio: time-frequency representations (MP3)

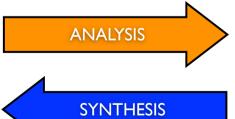


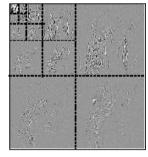




Black zero

Images: wavelet transform (JPEG2000)



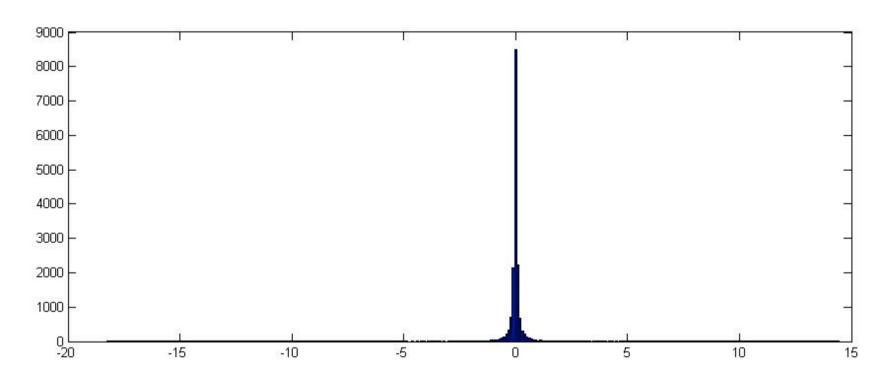


TRANSFORM COEFFICIENTS

Gray = zero

Evidence of sparsity

Histogram of MDCT coefficients of a musical sound



Mathematical expression of the sparsity assumption

Signal / image = high dimensional vector

$$y \in \mathbb{R}^N$$

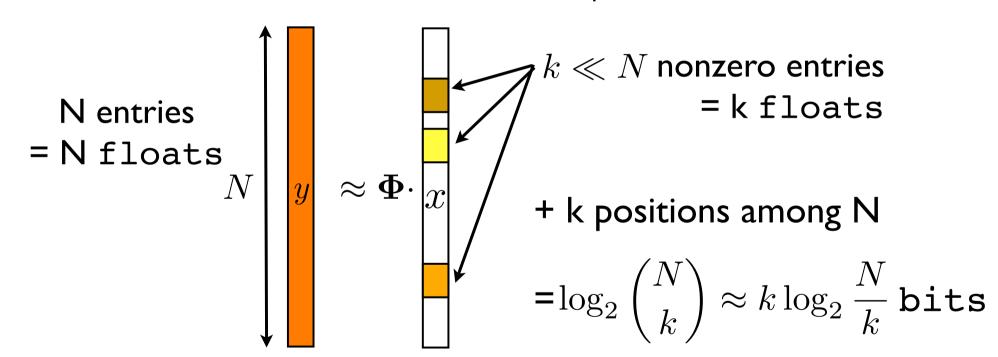
- Definition:
 - ✓ **Atoms**: basis vectors $\varphi_k \in \mathbb{R}^N$
 - ex: time-frequency atoms, wavelets
 - **✓ Dictionary:**
 - + collection of atoms $\{\varphi_k\}_{1 \le k \le K}$
 - ullet matrix $oldsymbol{\Phi} = [arphi_k]_{1 \leq k \leq K}$ which columns are the atoms
- Sparse signal model = combination of few atoms

$$y \approx \sum_{k} x_k \varphi_k = \mathbf{\Phi} x$$

Sparsity & compression

Full vector

Sparse vector



Key practical issues: choose dictionary

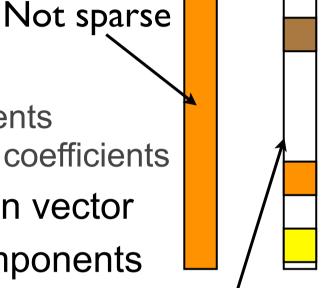
Sparsity: definition

- A vector is
 - √ sparse if it has (many) zero coefficients
 - √ k-sparse if it has at most k nonzero coefficients
- Symbolic representation as column vector
- Support = indices of nonzero components
- Sparsity measured with L0 pseudo-norm

$$||x||_0 := \sharp \{n, \ x_n \neq 0\} = \sum_n |x_n|^0$$
 Convention here

In french:

- -> «creux», «parcimonieux» sparse
- sparsity, sparseness -> «parcimonie», «sparsité»



 $a^0 = 1(a > 0); 0^0 = 0$

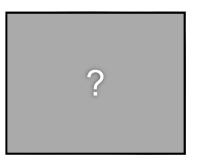
3-sparse

Inverse problems in signal and image processing

Deconvolution problem 2D Example : deblurring problem

- Given data:
 - ✓ blurred image y[i,j]
 - √ information on blurring process

- Desired estimate:
 - \checkmark deblurred image x[i,j]

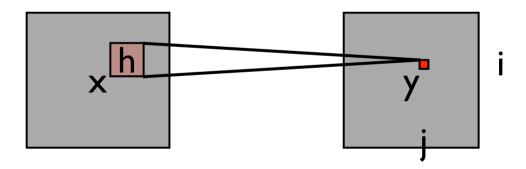


Blurring process = 2D Convolution

Definition

$$y[i,j] = (h \star x)[i,j] :== \sum_{k,\ell} h[k,\ell] x[i-k,j-\ell]$$

Interpretation : local average

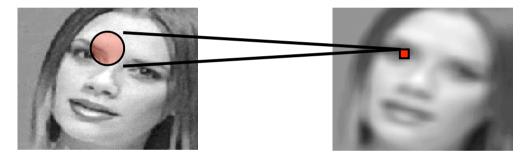


Reproduced from http://www.robots.ox.ac.uk/~improofs/super-resolution/super-res I.html

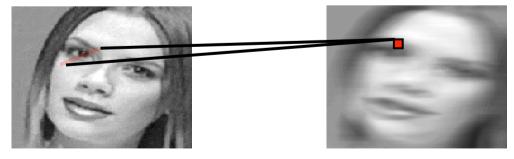
Examples of 2D convolution

Optical blur

h =point spread function (PSF)

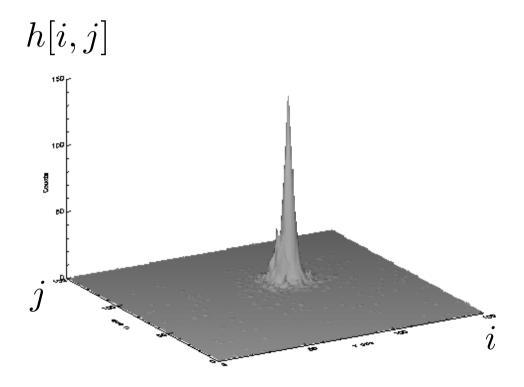


Motion blur



Reproduced from <a href="http://www.robots.ox.ac.uk/~improofs/super-resolution/super-resolu

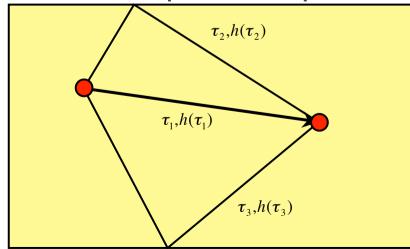
Example of point spread function



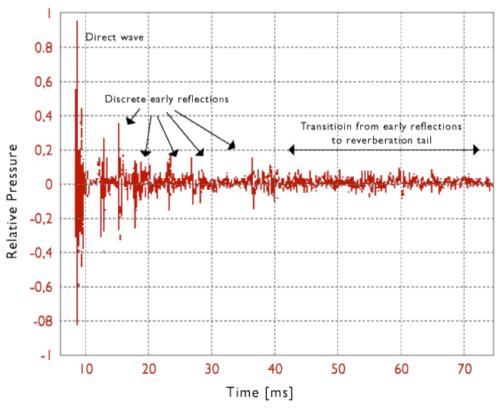
Reproduced from http://hea-www.harvard.edu/HRC/calib/hrci_qe.html

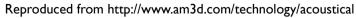
1D deconvolution problems

- General form $y(t) = (h \star x)(t) := \int h(\tau)x(t-\tau)d\tau$
- Telecom: channel equalization
 - √ h = channel impulse response
- Audio: de-reverberation (reflections on walls)
 - √ h = room impulse response



Example of room impulse response





Deconvolution Problem

- Given
 - √ measured data y
 - ✓ known filter h
- Find unknown x such that

$$y = h \star x$$

Naive deconvolution in the Fourier domain

Convolution and Fourier / inverse Fourier

$$y(t) = (h \star x)(t)$$

$$F\{\cdot\}$$

$$\hat{x}(t) = x(t)$$

$$Y(f) = H(f)X(f)$$

$$F^{-1}\{\cdot\}$$

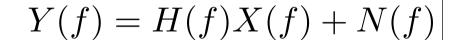
$$\hat{X}(f) \stackrel{?}{=} \frac{Y(f)}{H(f)} = X(f)$$

H(f) = transfer function of filter h

Issues with naive deconvolution

Presence of noise

$$y(t) = (h \star x)(t) + n(t) \qquad \qquad Y(f) = H(f)X(f) + N(f)$$



- Smooth filter:
 - √ fast decay of H(f)
 - √ small values in H(f)
- √ division by small values = strong amplification of noise
- Consequence = missing frequency information
 - √ N frequency components to estimate

$$X \in \mathbb{R}^N$$

√ m < N reliable frequency components
</p>

$$Y \in \mathbb{R}^m$$

Inverse problems

Linear inverse problems: definition

 Definition: a problem where a high-dimensional vector must be estimated from its low dimensional projection

• Generic form: b = Ay + e observation/measure \int unknown noise projection matrix

 \checkmark m observations / measures $\mathbf{b} \in \mathbb{R}^m$

 $\mathbf{A} \in \mathbb{R}^{m \times N}$

 \checkmark N unknowns $\mathbf{y} \in \mathbb{R}^N$

Example: Inpainting Problem

Unknown image with N pixels

$$\mathbf{y} \in \mathbb{R}^N$$

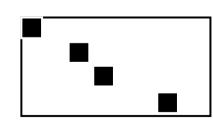
Partially observed image:

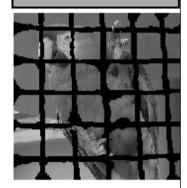
 \checkmark m < N observed pixels

$$b[\vec{p}] = y[\vec{p}], \ \vec{p} \in \text{Observed}$$

Measurement matrix

$$\mathbf{b} = \mathbf{M}\mathbf{y}$$





Classes of linear inverse problems

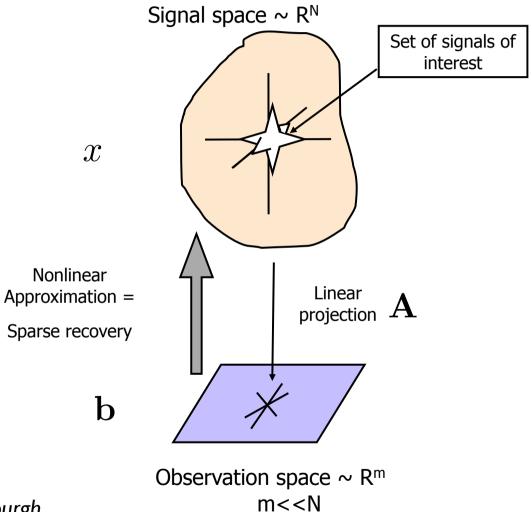
- Determined: the matrix A is square and invertible
 - \checkmark Unique solution to $\mathbf{b} = \mathbf{A}\mathbf{y}$
 - ✓ Linear function of observations

$$\mathbf{y} = \mathbf{A}^{-1}\mathbf{b}$$

- Over-determined: more equations than unknowns
 - \checkmark Unique solution to $\mathbf{b} = \mathbf{A}\mathbf{y}$:
 - ✓ Linear function of observations
 - \checkmark with pseudo-inverse $\mathbf{y} = \mathbf{A}^{\dagger}\mathbf{b}$

- Under-determined: fewer equations than unknowns
 - \checkmark Infinitely many solutions to $\mathbf{b} = \mathbf{A}\mathbf{y}$
 - ✓ Need to choose one?

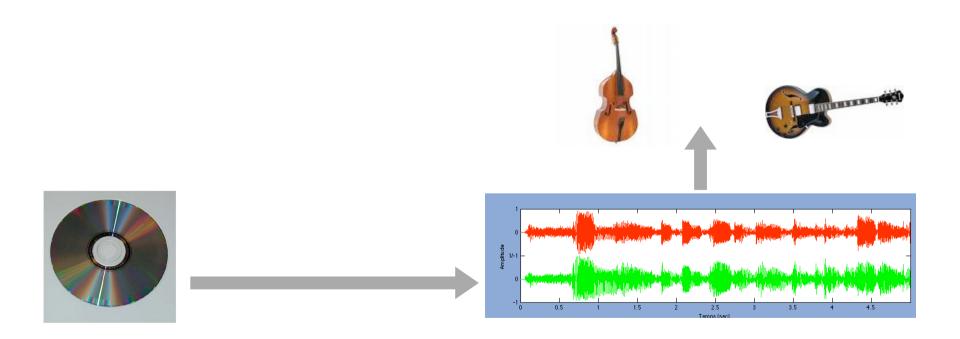
Inverse problems



Courtesy: M. Davies, U. Edinburgh

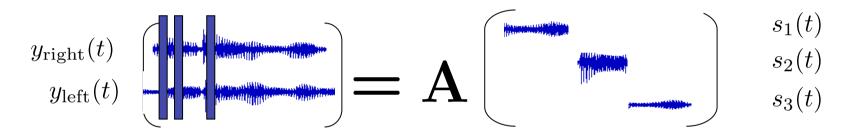
Example: audio source separation

« Softly as in a morning sunrise »

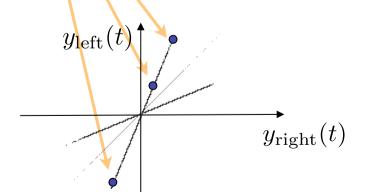


Blind Source Separation

Mixing model : linear instantaneous mixture



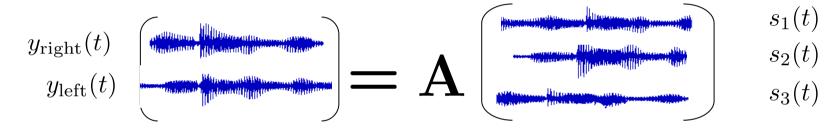
Source model : if disjoint time-supports ...



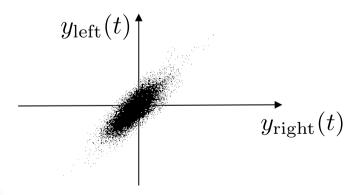
- ... then clustering to :
- 1- identify (columns of) the mixing matrix
- 2- recover sources

Blind Source Separation

Mixing model : linear instantaneous mixture



In practice ...

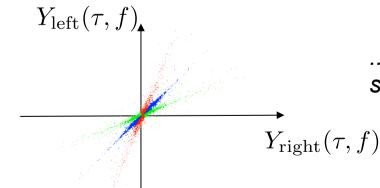


Time-Frequency Masking

Mixing model in the time-frequency domain

$$Y_{ ext{left}}(au,f) \ Y_{ ext{left}}(au,f) \ = \mathbf{A} \ \mathbf{S}(au,f)$$

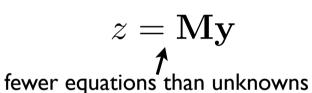
And "miraculously" ...



... time-frequency representations of audio signals are (often) almost disjoint.

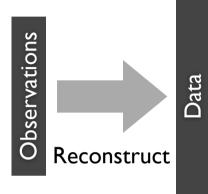
Inverse problems

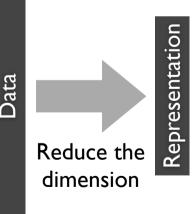
 Inverse problem : exploit indirect or incomplete obervation to recontruct some data



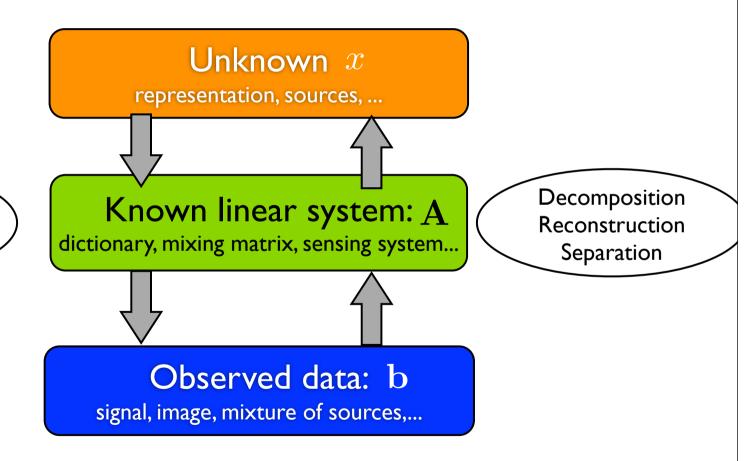
 Sparsity: represent / approximate high-dimensional & complex data using few parameters

$$\mathbf{y}pprox\mathbf{\Phi}x$$
 few nonzero components





Signal Processing Vocabulary



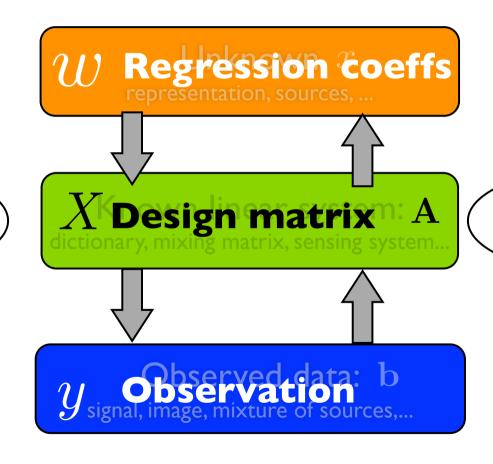
Forward linear model $\mathbf{b} \approx \mathbf{A} x$

Ínria_

Machine Learning Vocabulary

Forward linear model $\mathbf{b} pprox \mathbf{A} x$

$$y = Xw$$

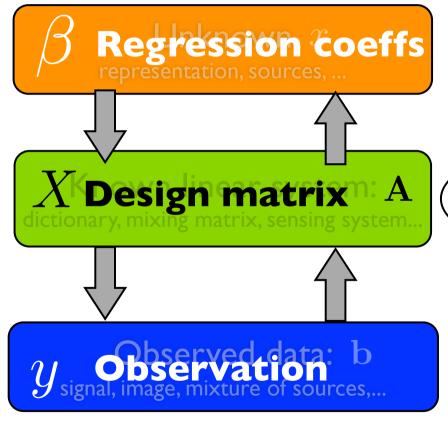


Decomposition Reconstruction Separation

Statistics Vocabulary

Forward linear model $\mathbf{b} pprox \mathbf{A} x$

$$y = X\beta$$



Decomposition Reconstruction Separation

Inverse problems & Sparsity

Inverse Problems & Sparsity: Mathematical foundations

Bottleneck 1990-2000 :

✓ Ill-posedness when fewer equations than unknowns

$$\mathbf{A}x_0 = \mathbf{A}x_1 \not\Rightarrow x_0 = x_1$$

- Novelty 2001-2006 :
 - √ Well-posedness = uniqueness of sparse solution:
 - ullet if x_0, x_1 are "sufficiently sparse",
 - + then $\mathbf{A}x_0 = \mathbf{A}x_1 \Rightarrow x_0 = x_1$
 - \checkmark Recovery of x_0 with practical pursuit algorithms
 - ◆ Thresholding, Matching Pursuits, Minimisation of Lp norms p<=1,...</p>

Sparsity and subset selection

- Under-determined system
 - ✓ Infinitely many solutions
- If vector is sparse:
 - √ If support is known (and columns independent)
 - → nonzero values characterized by (over)determined linear problem
 - ✓ If support is unknown
 - ◆ Main issue = finding the support!
 - → This is the subset selection problem
- Objectives of the course
 - ♦ Well-posedness of subset selection
 - ◆ Efficient subset selection algorithms = pursuit algorithms
 - Stability guarantees of pursuits

