
Pursuit Algorithms for Sparse Representations

RŽmi Gribonval, DR INRIA
EPI METISS (Speech and Audio Processing)

INRIA Rennes - Bretagne Atlantique

remi.gribonval@inria.fr
http://www.irisa.fr/metiss/members/remi

mardi 4 mai 2010

mailto:remi.gribonval@inria.fr
mailto:remi.gribonval@inria.fr
http://www.irisa.fr/metiss/members/remi
http://www.irisa.fr/metiss/members/remi

Structure of the course

¥Session 1:
! role of sparsity for compression and inverse problems
! introduction to compressed (random) sensing

¥Session 2:
! Review of main algorithms & complexities
! Success guarantees for L1 minimization to solve under-

determined inverse linear problems

¥Session 3:
! Comparison of guarantees for different algorithms
! Robust guarantees & Restricted Isometry Property
! Explicit guarantees for various inverse problems

2

mardi 4 mai 2010

Summary

Compression
Representation

Description
ClassiÞcation

Denoising
Blind source
separation

Compressed
sensing

...

Notion of sparsity
(Fourier, wavelets, ...)

Natural / traditional role

Sparsity = low cost (bits, computations, ...)
Direct objective

Novel indirect role

Sparisty = prior knowledge, regularization
Tool for inverse problems

3

Sparsity

I

mardi 4 mai 2010

Overview of Session 2

¥Convex & nonconvex optimization
principles

¥Convex & nonconvex optimization algorithms

¥Greedy algorithms

¥Comparison of complexities

¥Exact recovery conditions for Lp minimization

4

mardi 4 mai 2010

Overall compromise

¥Approximation quality

¥Ideal sparsity measure : ÒnormÓ

¥ÒRelaxedÓ sparsity measures

! A x " b! 2

! 0

5

0 < p < ! , " x" p :=
! "

n

|xn |p
#1/p

! x! 0 := ! { n, xn "= 0 } =
!

n

|xn |0

mardi 4 mai 2010

Two geometric viewpoints
¥ Signal domain ¥ CoefÞcient domain

6

{ x s.t.b = A x}

Find closest subspace
through correlationsA T b

Find sparsest representation
through convex optimization

b

mardi 4 mai 2010

Algorithms for L1:
Linear Programming

¥L1 minimization problem of size m x N

¥Equivalent linear program of size m x 2N

7

min
x

! x! 1, s.t. A x = b

min
z! 0

cT z, s.t. [A , ! A]z = b

c = (ci), ci = 1 , ! i

Basis Pursuit (BP)
LASSO

mardi 4 mai 2010

L1 regularization:
Quadratic Programming
¥L1 minimization problem of size m x N

¥Equivalent quadratic program of size m x 2N

8

min
x

1
2

! b " A x! 2
2 + ! ! x! 1

min
z! 0

1
2

! b " [A , " A]z! 2
2 + cT z

c = (ci), ci = 1 , ! i

Basis Pursuit Denoising
(BPDN)

mardi 4 mai 2010

Generic approaches vs
speciÞc algorithms

¥Many algorithms for linear / quadratic programming

¥Matlab Optimization Toolbox: linprog /qp

¥But ...
! The problem size is ÒdoubledÓ
! SpeciÞc structures of the matrix A can help solve BP and

BPDN more efÞciently
! More efÞcient toolboxes have been developed

¥CVX package (Michael Grant & Stephen Boyd):
! http://www.stanford.edu/~boyd/cvx/

9

mardi 4 mai 2010

http://www.stanford.edu/~boyd/cvx/
http://www.stanford.edu/~boyd/cvx/

Overview

¥Convex & nonconvex optimization principles

¥Convex & nonconvex optimization
algorithms

¥Greedy algorithms

¥Comparison of complexities

¥Exact recovery conditions for Lp minimization

10

mardi 4 mai 2010

Example: orthonormal A

¥Assumption : m=N and A is orthonormal

¥Expression of BPDN criterion to be minimized

¥Minimization can be done coordinate-wise

11

A T A = AA T = Id N

! b " A x! 2
2 = ! A T b " x! 2

2

�

n

1
2

�
(A T b)n ! xn

�2
+ ! |xn |p

min
x n

1
2

!
cn ! xn

"2
+ ! |xn |p

mardi 4 mai 2010

Hard-thresholding (p=0)

¥Solution of

12

H ! (c)

c

min
x

1
2

(c ! x)2 + ! á |x|0

!
2!

!
"

2!

mardi 4 mai 2010

Soft-thresholding (p=1)

¥Solution of

!

! !

13

Sλ(c)

c

min
x

1
2

(c ! x)2 + ! á |x|

mardi 4 mai 2010

Iterative thresholding
¥Proximity operator

¥Goal = compute

¥Approach = iterative alternation between
! gradient descent on Þdelity term

! thresholding

14

arg min
x

1
2

! A x " b! 2
2 + ! ! x! p

p

x(i +1/ 2) := x(i) + ! (i)A T (b ! A x(i))

! p
! (c) = arg min

x

1
2

(x ! c)2 + ! |x|p

x(i +1) := ! p
! (i)(x

(i +1 / 2))

mardi 4 mai 2010

Iterative Thresholding
¥Theorem : [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008]

! consider the iterates deÞned by
the thresholding function, with

! assume that and
! then, the iterates converge strongly to a limit

! the limit is a global minimum of

! if p>1, or if A is invertible, is the unique minimum

15

x(i +1) = f (x(i))

x!
! x, " A x" 2

2 # c" x" 2
2 ! < 2/c

x!

! x(i) " x! ! 2 # i !" 0
1
2

! A x " b! 2
2 + ! ! x! p

p

x!

p ! 1

f (x) = ! p
!" (x + ! A T (b ! A x))

mardi 4 mai 2010

Pareto curve

16

!

!

1
2

! b " A x! 2
2

Slope=

Sparse
representation

! x! p
p

! !

mardi 4 mai 2010

Path of the solution

¥Lemma : let be a local minimum of BPDN

¥let I be its support

¥Then

¥In particular

17

arg min
x

1
2

! A x " b! 2
2 + ! ! x! 1

x!

A T
I (A x! ! b) + ! ásign(x!

I) = 0

! A T
I c (A x! " b)! ! < !

xI = (A T
I A I)! 1 !

A T
I b − ! ásign(xI)

"

mardi 4 mai 2010

Homotopy method

¥Principle: track the solution of BPDN
along the Pareto curve

¥Property:
! solution is characterized by its sign pattern through

! for given sign pattern, dependence on is afÞne
! sign patterns are piecewise constant functions of
! overall, the solution is piecewise afÞne

¥Method = iteratively Þnd breakpoints

18

x! (!)

xI = (A T
I A I)! 1 !

A T
I b − ! ásign(xI)

"

!
!

mardi 4 mai 2010

Overview

¥Convex & nonconvex optimization principles

¥Convex & nonconvex optimization algorithms

¥Greedy algorithms

¥Comparison of complexities

¥Exact recovery conditions for Lp minimization

19

mardi 4 mai 2010

¥Audio = superimposition of structures

¥Example : glockenspiel

! transients = short, small scale
! harmonic part = long, large scale

¥Gabor atoms

¥

Matching Pursuit with Time-
Frequency Atoms

!
gs,! ,f (t) =

1
!

s
w

"
t " !

s

#
e2i " f t

$

s,! ,f

20

mardi 4 mai 2010

Matching Pursuit (MP)

¥Matching Pursuit (aka Projection Pursuit, CLEAN)
! Initialization
! Atom selection: (assuming normed atoms:)

! Residual update

¥Energy preservation (Pythagoras theorem)

21

ni = arg max
n

|A T
n r i ! 1|

r i = r i ! 1 ! (A T
n i

r i ! 1)A n i

! r i ! 1! 2
2 = |A T

n i
r i ! 1|2 + ! r i ! 2

2

r 0 = b i = 1
! A n ! 2 = 1

mardi 4 mai 2010

Main properties

¥Global energy preservation

¥Global reconstruction

¥Strong convergence (assuming full-rank dictionary)

22

! b! 2
2 = ! r 0! 2

2 =
k!

i =1

|A T
n i

r i ! 1|2 + ! r k ! 2
2

b = r 0 =
k!

i =1

A T
n i

r i ! 1A n i + r k

lim
i !"

! r i ! 2 = 0

()

mardi 4 mai 2010

23

b

Vk = span(A n , n ! ! k)

mardi 4 mai 2010

Orthonormal MP (OMP)

¥Observation: after k iterations

¥Approximant belongs to

¥Best approximation from = orthoprojection

¥OMP residual update rule

24

r k = b !
k!

i =1

! k A n i

! k = { ni , 1 ! i ! k}
Vk = span(A n , n ! ! k)

Vk

r k = b ! PVk b

PVk b = A ! k A +
! k

b

mardi 4 mai 2010

OMP

¥Same as MP, except residual update rule
! Atom selection:

! Index update
! Residual update

¥Property : strong convergence

25

ni = arg max
n

|A T
n r i ! 1|

! i = ! i ! 1 ! { ni }

Vi = span(A n , n ! ! i)

r i = b ! PVi b
lim

i !"
! r i ! 2 = 0

mardi 4 mai 2010

Caveats (1)

¥MP can pick up the same atom more than once

¥OMP will never select twice the same atom

26

b
A 1

A 2

mardi 4 mai 2010

Caveats (1)

¥MP can pick up the same atom more than once

¥OMP will never select twice the same atom

26

b
A 1

A 2

mardi 4 mai 2010

Caveats (1)

¥MP can pick up the same atom more than once

¥OMP will never select twice the same atom

26

b
A 1

A 2

r 1

mardi 4 mai 2010

Caveats (1)

¥MP can pick up the same atom more than once

¥OMP will never select twice the same atom

26

b
A 1

A 2

r 1

mardi 4 mai 2010

Caveats (1)

¥MP can pick up the same atom more than once

¥OMP will never select twice the same atom

26

b
A 1

A 2

r 1

r 2

mardi 4 mai 2010

Caveats (1)

¥MP can pick up the same atom more than once

¥OMP will never select twice the same atom

26

b
A 1

A 2

r 1

r 2

mardi 4 mai 2010

Caveats (1)

¥MP can pick up the same atom more than once

¥OMP will never select twice the same atom

26

b
A 1

A 2

r 1

r 2

mardi 4 mai 2010

Caveats (2)
¥ÒImprovedÓ atom selection does not necessarily

improve convergence

¥There exists two dictionaries A and B
! Best atom from B at step i:

! Better atom from A

! Residual update

¥Divergence!

27

! c > 0, " i, #r i #2 $ c

ni = arg max
n

|B T
n r i ! 1|

|A T
! i

r i−1| ! | B T
n r i−1|

r i = r i ! 1 ! (A T
! i

r i ! 1)A ! i

mardi 4 mai 2010

Stagewise greedy algorithms

¥Principle = select multiple atoms at a time to
accelerate the process

¥Example of such algorithms
! Morphological Component Analysis [MCA, Bobin et al]
! Stagewise OMP [Donoho & al]
! CoSAMP [Needell & Tropp]
! ROMP [Needell & Vershynin]
! Iterative Hard Thresholding [Blumensath & Davies 2008]

28

mardi 4 mai 2010

Main greedy algorithms

29

Matching Pursuit OMP Stagewise
Selection

Update

MP & OMP: Mallat & Zhang 1993
StOMP: Donoho & al 2006 (similar to MCA, Bobin & al 2006)

A = [A 1, . . . A N]

! i := arg max
n

|A T
n r i ! 1| ! i := { n | |A T

n r i ! 1| > ! i }

! i = ! i ! 1 ! " i

xi = xi ! 1 + A +
! i

r i ! 1

! i = ! i ! 1 ! " i

xi = A +
! i

b

r i = b ! A ! i xi

b = A xi + r i

r i = r i! 1 ! A ! iA
+
! i

r i! 1

mardi 4 mai 2010

Principle
iterative decomposition
¥ select new components
¥ update residual

Tuning
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants
¥ choice of sparsity measure p
¥ optimization algorithm
¥ initialization

¥selection criterion (weak, stagewise ...)
¥update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Summary

30

!

r i = b ! A xi

! r i ! " !

min
x

1
2

! A x " b! 2
2 + ! ! x! p

p

! xi ! 0 " k

mardi 4 mai 2010

Overview

¥Convex & nonconvex optimization principles

¥Convex & nonconvex optimization algorithms

¥Greedy algorithms

¥Comparison of complexities

¥Exact recovery conditions for Lp minimization

31

mardi 4 mai 2010

Complexity of IST
¥Notation: cost of applying or

¥Iterative Thresholding
! cost per iteration =
! when A invertible, linear convergence at rate

! number of iterations guaranteed to approach limit
within relative precision

¥Limit depends on choice of penalty factor ,
added complexity to adjust it

32

f (x) = ! p
!" (x + ! A T (b ! A x))

O(A)

O(A) A A T

! x(i) " x! ! 2 ! C! i ! x! ! 2 ! ! 1 "
" 2

min

" 2
max

!

O(log 1/ !)
!

mardi 4 mai 2010

Complexity of MP
¥Number of iterations depends on stopping criterion

¥Cost of Þrst iteration = atom selection (computation
of all inner products)

¥Naive cost of subsequent iterations =

¥If ÒlocalÓ structure of dictionary [Krstulovic & al, MPTK]

! subsequent iterations only cost

33

O(A)

! r i ! 2 " ! , ! xi ! 0 # k

O(A)

Generic A Local A

k iterations O(kA) ! O(km)

O(log N)

O(A + k logN)

k ! m O(m2) O(m logN)

mardi 4 mai 2010

Complexity of OMP
¥Number of iterations depends on stopping criterion

¥Naive cost of iteration i
! atom selection + orthoprojection

¥With iterative matrix inversion lemma
! atom selection + coefÞcient update

¥If ÒlocalÓ structure of dictionary [MailhŽ & al, LocOMP]

! subsequent approximate iterations only cost

34

O(A)

! r i ! 2 " ! , ! xi ! 0 # k

Generic A Local A

k iterations

O(log N)

O(A + k logN)

k ! m O(m logN)

O(i 3)

O(A)

O(m3)

O(i 2)

O(kA + k3)

mardi 4 mai 2010

LoCOMP

¥A variant of OMP for shift invariant dictionaries
(Ph.D. thesis of Boris MailhŽ, ICASSP09)

¥Implementation in MPTK in progress for larger scale
experiments

35

Table 3. CPU time per iteration (s)
Iteration MP LocOMP GP OMP

First (i = 0) 3.4 3.4 3.4 3.5
Begin (i ! 1) 0.028 0.033 3.4 3.4
End (i ! I) 0.028 0.050 40.5 41
Total time 571 854 4.50 á105 4.52 á105

Fig. 2. SNR depending on the decoding bitrate

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

Bitrate (kbps)

S
N

R
 (

dB
)

MP
LocOMP

The CPU times per iteration evolved linearly for each algo-

rithm. Table 3 shows their value for the first iteration (which

is relatively costly for every algorithm because it involves

computing inner products with all atoms of the dictionary),

the next beginning iterations, the last iterations and finally the

total duration of the complete execution.

The algorithms clearly split into two groups. The cost drop

after the first iteration for MP shows that most of the first it-

eration was spent computing the correlations, and both MP

and LocOMP iterations remain much cheaper after the first

iteration. To the opposite, the cost of GP and OMP iterations

grows substantially with the iteration index and reaches up to

1500 (resp. 800) times than that of MP (resp. LocOMP) it-

erations. On this example, LocOMP almost reached the same

level of approximation error as OMP/GP, with a total compu-

tation cost only 1.5 times that of MP and 500 times smaller

than that of OMP/GP .

5.2. Preliminary application to audio coding

In a second experiment, we investigated the potential use of

LocOMP in the scalable coding framework proposed by Rav-

elli and Daudet [6]. The 8 kHz signal was decomposed on a

two-scale fully shift-invariant MDCT dictionary with scales

L 1 = 32 and L 2 = 256, roughly corresponding at 8kHz to
the scales used in AAC encoding at 44.1kHz.

Figure 2 shows the rate/distortion curve of this coding

scheme using MP and LocOMP as a transform. At high rates,

LocOMP coding leads to less distortion thanMP coding, with

a final gain of 1.4dB. However, LocOMP seems to also bring

a degradation at lower rates. Since the considered dictionary

is much smaller than the eight-scale dictionary used in [6],

further work will investigate the influence of the dictionary

choice on the coding performance.

6. CONCLUSION

We proposed a greedy algorithm called LocOMP for compu-

tationally tractable sparse approximation of long signals with

large shift-invariant dictionaries. We have shown on an ex-

ample that its approximation performance is similar to that of

OMP/GP, with a gain of 0.6 dB over MP, while the computa-

tional cost remains 500 times lower than that of OMP. We ex-

pect the approximation gain of LocOMP over MP to be more

significant for dictionaries more adapted to the decomposed

signal (e.g., L rather of the order of 256, the largest scale used
in AAC codecs), however for such scales it no longer seems

possible to compare the proposed algorithm with OMP/GP,

because of the computational complexity of the latter.

Current work consists in implementing LocOMP as well

as a localized version of Gradient Pursuit in MPTK [5] to

benefit from all other speedup tricks briefly described in this

paper, and we believe this will open the door to large scale

experiments and applications of sparse approximation that so

far seemed unachievable.

7. ACKNOWLEDGEMENTS

The authors would like to thank Emmanuel Ravelli and Lau-

rent Daudet from the LAM team at University Paris 6 for their

help with the audio coding experiments.

8. REFERENCES

[1] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency

dictionaries,” IEEE Transactions on Signal Processing, vol. 41,
no. 12, pp. 3397–3415, Dec 1993.

[2] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Orthonormal

matching pursuit : recursive function approximation with appli-

cations to wavelet decomposition,” in Proc.27th Annual Asilo-
mar Conf. on Signals, Systems and Computers, Nov. 1993.

[3] T. Blumensath and M.E. Davies, “In greedy pursuit of new di-

rections: (nearly) orthogonal matching pursuit by directional

optimisation,” in Proc. EUropean SIgnal Processing COnfer-
ence (EUSIPCOÕ08), Lausanne, August 2008.

[4] Andrew R. Barron, Albert Cohen, Wolfgang Dahmen, and

Ronald A. DeVore, “Approximation and learning by greedy al-

gorithms,” Annals of statistics, vol. 36, no. 1, pp. 64–94, 2008.

[5] Sacha Krstulovic and Rémi Gribonval, “MPTK: Matching Pur-

suit made tractable,” in Proc. Int. Conf. Acoust. Speech Signal
Process. (ICASSPÕ06), Toulouse, France, May 2006, vol. 3, pp.

III–496 – III–499.

[6] E. Ravelli, G. Richard, and L. Daudet, “Extending fine-grain

scalable audio coding to very low bitrates using overcomplete

dictionaries,” in Proc. IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (WASPAAÕ07), 2007, pp.

195–198.

4. LocOMP ALGORITHM

As described above, in shift-invariant dictionarie, simple
tricks allow to signiÞcantly reduce the computational com-
plexity of MP compared to a naive implementations. How-
ever, the cost of OMP and GP remains quite high, calling for
modiÞed algorithms to handle real-world large-scale signals,
where the aimed number of atomsI is somewhat lower than
the signal sizeN , but the latter is large enough to discourage
naive computation (e.g.for one minute of music sampled at 8
kHz, we already haveN ! 5 á105).

The prohibitive costs for OMP and GP are the ones with
strongest dependency inN : as shown in Table 2 the most
costly steps are the correlation computation and maximum
search, which have linear dependency inN . This linear de-
pendency has disappeared in MP by exploiting the locality of
the changes in the residual. This is why we propose an algo-
rithm that only slightly loosens this locality property. Toour
knowledge, all approaches to decrease OMP complexity em-
phasize the reduction in the cost of the update step (e.g., by
replacing full matrix inversion by conjugate gradient descent
as in [3]), not the selection step.

The main idea of the proposed LocOMP algorithm is to se-
lect a sub-dictionary! i " " i containing the last selected
atom! i and to orthogonalize the decomposition only on this
sub-dictionary. The algorithm is described in Algorithm 1,
and the key element that determines the behaviour of the al-
gorithm is theneighbour () function that performs the sub-
dictionary selection:

¥ MP corresponds toneighbour (" i , ! i) := ! i ;

¥ OMP corresponds toneighbour (" i , ! i) := " i ;

To decrease the computational cost with respect to OMP, it
is crucial to ensure that the support of! " i is small so that
the update of the residual remains localized. In LocOMP,
neighbour (" i , ! i) contains exactly all the atoms! # " i

which support intersects with the support of! i . This choice
was mainly led by the observation that, as explained in Sec-
tion 3, this set is already the one that has to be searched for
when updating the Gram matrix. Selecting it as the atomÕs
neighbourhood spares another search. Investigating other
possible sub-dictionary selection strategies will be the object
of further work.

5. EXPERIMENTAL RESULTS

LocOMP has been tested and compared to MP, OMP and
GP on an excerpt from the RWC base2. It is a one-minute
mono-channel jazz guitar audio signal downsampled to 8kHz
(N ! 5 á105). Given the high cost of running OMP and
GP for comparison (the total running time for each of these
algorithms in the Þrst experiment below was roughly5 á105

2http://staff.aist.go.jp/m.goto/RWC-MDB/

Algorithm 1 x = LocOMP(s, !)
r 0 = s
! 0 = !
x0 = 0
for i = 1 to I do

! i = argmax ! ! ! |"r i " 1, ! #| {selection}
! i = ! i " 1 $! i

" i = neighbour (! i , ! i) {sub-dictionary selection}
" i = (" #

i " i)
" 1 " #

i r i " 1 {coefÞcients of projection on sub-
dictionary}
xi = xi " 1 + " i {update coefÞcients}
r i = r i " 1 % " i " i {update residual}

end for
return xI

Fig. 1. SNR depending on the number of iterations

0 0.5 1 1.5 2
x 10

4

0

2

4

6

8

10

12

Number of iterations

S
N

R
 (

dB
)

MP
LocOMP
GP
OMP

seconds, or5.7 days), it was not possible to run experiments
on more than one signal, and this was also the largest sig-
nal dimension we could test. In comparison, the computation
time of LocOMP was854seconds or15minutes.

5.1. SNR and computation time

In a Þrst experiment, OMP, GP, LocOMP and MP were run
for I = 20000 iterations3 to decompose the signal on a fully
shift-invariant MDCT dictionary of scaleL = 32 (therefore
with redundancy factor# = 32) containing#N ! 1.5 á107

atoms. The scale was chosen for it roughly corresponds to
the smallest scale of the windows used in AAC encoding on
44.1 kHz signals, while remaining small enough to make it
possible to actually run OMP and GP.

Figure 1 shows the SNR reached by each algorithm at each
iteration. OMP, GP and LocOMP cannot be distinguished on
this plot. The Þnal SNR for LocOMP after20000iterations is
actually only 0.01dB lower than for OMP and GP, while the
Þnal SNR for MP is 0.6dB lower.

3The iterations of the different algorithms were interleaved on the same
process to guarantee that the execution environment remains the same for
each algorithm, and the CPU time used by each iteration was recorded.

N = 5.105 samples, k= 20 000 iterations

mardi 4 mai 2010

Software ?
¥Matlab (simple to adapt, medium scale problems):

" Thousands of unknowns, few seconds of computations
" L1 minimization with an available toolbox
http://www.l1-magic.org/ (Cand•s et al.) , CVX, ...

" Iterative thresholding
http://www.morphologicaldiversity.org/ (Starck et al.), FISTA, NESTA, ...

" Matching Pursuits
sparsify (Blumensath), GPSR, ...

¥SMALLbox (to be released soon): uniÞed API for
several Matlab toolboxes

¥MPTK : C++, large scale problems
" Millions of unknowns, few minutes of computation
" specialized for local + shift-invariant dictionaries
" built-in multichannel
http://mptk.irisa.fr

36

mardi 4 mai 2010

http://www.l1-magic.org
http://www.l1-magic.org
http://www.morphologicaldiversity.org
http://www.morphologicaldiversity.org
http://mptk.irisa.fr
http://mptk.irisa.fr

Overview

¥Convex & nonconvex optimization principles

¥Convex & nonconvex optimization algorithms

¥Greedy algorithms

¥Comparison of complexities

¥Exact recovery conditions for Lp
minimization

37

mardi 4 mai 2010

Usual sparsity measures

38

¥L0-norm

¥Lp-norms

¥Constrained minimization

! x! 0 :=
!

k

|xk |0 = ! { k, xk "= 0}

b = A xx!
p ! arg min

x
" x" p subject to

support(x)

=

! x! p
p :=

!

k

|xk |p, 0 " p " 1

mardi 4 mai 2010

General sparsity measures

39

¥Lp-norms

¥f-norms!

¥Constrained minimization

b = A xsubject to

! x! f :=
!

k

f (|xk |)

x!
f = x!

f (b, A) ! arg min
x

" x" f

xk

p=0

p=1f (xk)

When do we have ?x!
f (A x0, A) = x0

! x! p
p :=

!

k

|xk |p, 0 " p " 1

mardi 4 mai 2010

Empirical observation :
Lp versus L1

40

! x0! 0

P(x! = x0)

x!
p = arg min

A x = A x 0

! x! p

p=1
p=1/2

x0 b := A x0
reference direct model inverse problem

Typical observation (e.g. Chartrand 2007) +extrapolation

k1(A) k1/ 2(A) k0(A)

mardi 4 mai 2010

Proved Equivalence
between L0 and L1

¥ÒEmptyÓ theorem : assume that

! if

! if

¥Content = estimation of and
! Donoho & Huo 2001 : pair of bases, coherence
! Donoho & Elad 2003, Gribonval & Nielsen 2003 : dictionary, coherence
! Candes, Romberg, Tao 2004 : random dictionaries, restricted isometry constants
! Tropp 2004 : idem for Orthonormal Matching Pursuit, cumulative coherence

¥What about ?

41

b = A x0

then x0 = x!
0

x0 = x!
1

x!
p, 0 ! p ! 1

! x0! 0 " k0(A)

! x0! 0 " k1(A)

k0(A) k1(A)

mardi 4 mai 2010

Null space

¥Null space = kernel

¥Particular solution vs general solution
! particular solution

! general solution

42

z ! N (A) " A z = 0

A x = b

A x! = b ! x! " x # N (A)

mardi 4 mai 2010

Exact recovery: necessary
condition

¥Notations
! index set I
! vector z
! restriction

¥Assume there exists with

¥DeÞne

¥The vector is supported in I but is not the
minimum norm representation of

44

z ! N (A)
zI = (zi)i ! I

! zI ! f > ! zI c ! f

b := AzI = A(! zI c)
zI

b

mardi 4 mai 2010

Exact recovery:
sufÞcient condition

¥Assume quasi-triangle inequality

¥Consider x with support set I and xÕ with

¥Denote and observe

¥Conclude:

45

! x! ! f = ! x + z! f = ! (x + z)I ! f + ! (x + z)I c ! f

= ! x + zI ! f + ! zI c ! f

! " x" f # " zI " f + " zI c " f

! x, y" x + y" f # " x" f + " y" f

A x! = A x

z := x! ! x " N (A)

If when then is recoverable ! zI c ! f > ! zI ! f Iz ! N (A)

mardi 4 mai 2010

Recoverable supports :
the ÒNull Space PropertyÓ (1)

¥Theorem 1 [Donoho & Huo 2001 for L1, G. & Nielsen 2003 for Lp & more]
! Assumption 1: sub-additivity (for quasi-triangle inequality)

! Assumption 2:

! Conclusion: recovers every supported in
! The result is sharp: if NSP fails on support I there is at

least one failing vector x supported in I

46

f (a + b) ! f (a) + f (b), " a, b

x Ix!
f

z ! N (A), z "= 0! zI ! f < ! zI c ! f
NSP

when

mardi 4 mai 2010

From ÒrecoverableÓ supports to
ÒsparseÓ vectors

47

! !1, N "

{ 1}

{ 2}

{ N }
. . .

{ 1, 2}

{ 1, 3}

. . .
. . .

. . .

. . .

!

. . .

Trellis of supports

mardi 4 mai 2010

ÒBad
supportsÓ

From ÒrecoverableÓ supports to
ÒsparseÓ vectors

47

! !1, N "

{ 1}

{ 2}

{ N }
. . .

{ 1, 2}

{ 1, 3}

. . .
. . .

. . .

. . .

!

Recoverable supports
are nested NSP(I)
. . .

Trellis of supports

mardi 4 mai 2010

ÒBad
supportsÓ

From ÒrecoverableÓ supports to
ÒsparseÓ vectors

47

! !1, N "

{ 1}

{ 2}

{ N }
. . .

{ 1, 2}

{ 1, 3}

. . .
. . .

. . .

. . .

!

Recoverable supports
are nested NSP(I)

! I = ! x! 0

. . .

Trellis of supports

mardi 4 mai 2010

ÒBad
supportsÓ

From ÒrecoverableÓ supports to
ÒsparseÓ vectors

47

! !1, N "

{ 1}

{ 2}

{ N }
. . .

{ 1, 2}

{ 1, 3}

. . .
. . .

. . .

. . .

!

Recoverable supports
are nested NSP(I)

SufÞciently sparse,
guaranteed recovery At least one failing support

! I = ! x! 0

. . .

Trellis of supports

kf (A)

mardi 4 mai 2010

Recoverable sparsity levels:
the ÒNull Space PropertyÓ (2)

¥Corollary 1 [Donoho & Huo 2001 for L1, G. Nielsen 2003 for Lp]
! DeÞnition :

! Assumption :

! Conclusion: recovers every with

! The result is sharp: if NSP fails there is at least
one failing vector x with

48

xx!
f

z ! N (A), z "= 0
NSP

when

index of k largest components of zI k =

! zI k ! f < ! zI c
k
! f

! x! 0 " k

! x! 0 = k

mardi 4 mai 2010

Interpretation of NSP

¥Geometry in coefÞcient space:
! consider an element z of the Null Space of A
! order its entries in decreasing order

! the mass of the largest k-terms should not exceed
that of the tail

49

! zI k ! f < ! zI c
k
! f

k

All elements of the null space must be rather ÒßatÓ

mardi 4 mai 2010

Summary

¥Review of main algorithms & complexities

¥Success guarantees for L1 minimization to solve
under-determined inverse linear problems

¥Next time:
! success guarantees for greedy algorithms
! robust guarantees
! practical conditions to check guarantees

51

mardi 4 mai 2010

