Parcimonie en traitement du signal et des images Partie 4: au delà de la parcimonie

Génie Mathématique - INSA

21/23/28 novembre 2016
N. Bertin, C. Herzet, A. Roumy, *Rémi Gribonval , A. Deleforge remi.gribonval@inria.fr

Contents

Introduction: inverse problems with matrices

Low-rank matrices: definitions and remindersWell-posedness of the low-rank recovery problem: a key result
(4) Low-rank recovery algorithms: principles and first algorithms
(5) Theoretical guarantees

- Convergence guarantees
- Equivalence guarantees: a Null Space Property
- Stability guarantees: the restricted isometry property
(6) Dimension reduction

Back to last session: well-posedness

A shorter, easy to memorize formulation of the previous theorem is:

$$
\begin{gathered}
\forall \mathbf{X}_{0}, \mathbf{X}_{1} \in \Sigma_{r}, \mathcal{M}\left(\mathbf{X}_{0}\right)=\mathcal{M}\left(\mathbf{X}_{1}\right) \Rightarrow \mathbf{X}_{0}=\mathbf{X}_{1} \\
\Leftrightarrow \\
\operatorname{Ker}(\mathcal{M}) \cap \Sigma_{2 r}=\{\mathbf{0}\}
\end{gathered}
$$

Problem (Homework): consequence for Matrix Completion

- what is the measurement operator \mathcal{M} ?
- give an upper bound on the rank of an s-sparse matrix \mathbf{X}
- for what rank r is the problem well-posed ?

Targeted guarantees

- Convergence of algorithms (convergence of cost function and/or of the iterates, to a local or global minimum...),
- Equivalence between solutions provided by different algorithms / principles
- Successful recovery for a given algorithm, i.e. equivalence with the solution of the ideal low-rank approximation problem

Convergence guarantees

Singular Value Thresholding (SVT) addresses the problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

with proximal gradient iterations, using the proximal operator
$\operatorname{prox}_{\lambda\|\cdot\|_{\star}}(\mathbf{Y}) \triangleq \arg \min _{\mathbf{Z}} \frac{1}{2}\|\mathbf{Z}-\mathbf{Y}\|_{F}^{2}+\lambda\|\mathbf{Z}\|_{\star}=\mathbf{U} \operatorname{prox}_{\lambda\|\cdot\|_{1}}(\operatorname{diag}(\boldsymbol{\Sigma})) \mathbf{V}^{T}$
with $\mathbf{Y}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ the SVD of $\mathbf{Y} ; \operatorname{prox}_{\lambda\|\cdot\|_{1}}(\cdot)$ is soft-thresholding.
Homework 2 (using course on proximal gradient iterations)
Prove the convergence SVT in the sense of the objective function

$$
\frac{1}{2}\left\|\mathcal{M}\left(\mathbf{X}_{n}\right)-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{X}_{n}\right\|_{\star} \leq \frac{C}{n}+\inf _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star} .
$$

Equivalence guarantees: a Null Space Property

Equivalence (definition): the two problems

$$
\begin{array}{rlr}
\min _{\mathbf{X}}\|\mathbf{X}\|_{\star} \text { s.t. } \mathbf{y} & =\mathcal{M}(\mathbf{X}) & \text { trace }- \text { norm minimization } \\
\min _{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \text { s.t. } \mathbf{y} & =\mathcal{M}(\mathbf{X}) & \text { rank }- \text { minimization }
\end{array}
$$

are equivalent iff: whenever $\mathbf{y} \triangleq \mathcal{M}\left(\mathbf{X}_{0}\right)$ with $\operatorname{rank}\left(\mathbf{X}_{0}\right) \leq r$, their solutions are unique and identical (equal to \mathbf{X}_{0}).
This holds iff the following Null Space Property holds:
Null Space Property (NSP) - low rank matrix recovery
For all $p \times q$ matrix $\mathbf{W} \in \operatorname{Ker}(\mathcal{M}) \backslash\{0\}$ with singular values $s_{1}(\mathbf{W}) \geq \ldots \geq s_{n}(\mathbf{W}) \geq 0$ where $n \triangleq \min (p, q)$, we have

$$
\sum_{j=1}^{r} s_{j}(\mathbf{V})<\sum_{j=r+1}^{n} s_{j}(\mathbf{V})
$$

Demonstration

Step 1 (see course on NSP for sparse recovery)
Prove that equivalence \Rightarrow NSP.

Step 2

Prove that NSP \Rightarrow equivalence.
Hint (see [Foucart \& Rauhut 2014, Le A.20]): for any X, Y, ℓ :
$\sum_{j=1}^{\ell} s_{j}(\mathbf{X}-\mathbf{Y}) \geq \sum_{j=1}^{\ell}\left|s_{j}(\mathbf{X})-s_{j}(\mathbf{Y})\right|$

Stability guarantees: the Restricted Isometry Property

Restricted Isometry Property (RIP)- for low rank matrices

\mathcal{M} satisfies the restricted isometry property (RIP) of order s (low-rank version) with constant $\delta \in(0,1)$ iff:

$$
\forall \mathbf{Z} \in \Sigma_{s}, \quad(1-\delta)\|\mathbf{Z}\|_{F}^{2} \leq\|\mathcal{M}(\mathbf{Z})\|_{2}^{2} \leq(1+\delta)\|\mathbf{Z}\|_{F}^{2} .
$$

- The smallest possible δ is denoted $\delta_{s}(\mathcal{M})$.
- Fully parallel to definition of RIP for s-sparse vectors
- Alternate formulations exist in the litterature: asymetric and/or non-squares. E.g.

$$
\alpha \leq \frac{\|\mathcal{M}(\mathbf{Z})\|_{2}}{\|\mathbf{Z}\|_{F}} \leq \beta
$$

- Informally: preserves the "size" of rank-s matrices

Intuition/link with well-posedness, for $s=2 r$
RIP $=$ preservation of distance between matrices in Σ_{r}

$$
\text { consider } \quad \mathbf{Z}=\mathbf{X}_{0}-\mathbf{X}_{1}, \quad \mathbf{X}_{0}, \mathbf{X}_{1} \in \Sigma_{r}
$$

Stability guarantees: the Restricted Isometry Property

Theorem - Stable Low-rank Recovery assuming the RIP

Assume that $\delta \triangleq \delta_{2 r}(\mathcal{M})<1 / \sqrt{2}$. Then, for any $p \times q$ matrix \mathbf{X}_{0}, considering $\mathbf{y} \triangleq \mathcal{M}\left(\mathbf{X}_{0}\right)+\mathbf{e}, \epsilon \geq\|\mathbf{e}\|_{2}$, and

$$
\hat{\mathbf{X}}_{\epsilon} \triangleq \arg \min _{\mathbf{X}}\|\mathbf{X}\|_{\star} \text { s.t. }\|\mathbf{y}-\mathcal{M}(\mathbf{X})\|_{2} \leq \epsilon
$$

we have

$$
\left\|\hat{\mathbf{X}}_{\epsilon}-\mathbf{X}_{0}\right\|_{2} \leq C(\delta) \frac{\sigma_{r}\left(\mathbf{X}_{0}\right)_{\star}}{\sqrt{r}}+C^{\prime}(\delta)\left(\epsilon+\|\mathbf{e}\|_{2}\right)
$$

- Even when \mathbf{X}_{0} is not low-rank
- Reminder: $\sigma_{r}\left(\mathbf{X}_{0}\right)_{\star} \triangleq \inf \left\{\left\|\mathbf{X}_{0}-\mathbf{Z}\right\|_{\star}, \operatorname{rank}(\mathbf{Z}) \leq r\right\}$;
- Explicit expressions for constants $C(\delta), C^{\prime}(\delta)$
- Fully parallel to result for ℓ_{1} and sparse recovery; same dependency of the constants with δ;
- Many successive improvements to bound δ. Bound $\delta<1 / \sqrt{2}$ is "sharp" [Cai and Zhang 2013]

The RIP implies

$$
\left\|\hat{\mathbf{X}}_{\epsilon}-\mathbf{X}_{0}\right\|_{2} \leq C(\delta) \frac{\sigma_{r}\left(\mathbf{X}_{0}\right)_{\star}}{\sqrt{r}}+C^{\prime}(\delta)\left(\epsilon+\|\mathbf{e}\|_{2}\right)
$$

- Implies exact-recovery: when $\mathbf{X}_{0} \in \Sigma_{r}$ and $\epsilon=\|\mathbf{e}\|_{2}=0$

The Restricted Isometry Property implies the Null Space Property

RIP \Rightarrow NSP \Leftrightarrow exact recovery with trace-norm minimization
\Rightarrow RIP does not hold in the Matrix Completion setting

- Given an operator \mathcal{M}, its RIP constant is hard to compute
\Rightarrow design operator \mathcal{M} with small RIP constant (\& small m)

Contents

Introduction: inverse problems with matricesLow-rank matrices: definitions and remindersWell-posedness of the low-rank recovery problem: a key result
4) Low-rank recovery algorithms: principles and first algorithmsTheoretical guarantees
6) Dimension reduction

- From inverse problems to dimension reduction
- Example: from PCA to compressive PCA
- Randomly measuring matrices

Lessons learned from inverse problems

(1) Goal: given \mathcal{M}, to address inverse problem $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
(2) Model: \mathbf{X} is sparse/low-rank, often reasonable assumption
(3) Approach: greedy / iterative / convex algorithms
(9) Guarantees: well-posedness, recovery, stability (NSP, RIP)

Necessary dimension

$$
m \geq \operatorname{dim}\left(\Sigma_{2 r}\right)
$$

Going further: voluntarily reduce dimension

(1) Model: \mathbf{X} is sparse/low-rank, often reasonable assumption

Going further: voluntarily reduce dimension

(1) Model: \mathbf{X} is sparse/low-rank, often reasonable assumption
(2) Goal: to design $\mathcal{M}: \mathbf{X} \rightarrow \mathbf{y} \triangleq \mathcal{M}(\mathbf{X}) \in \mathbb{R}^{m}$ so that
(i) \mathbf{X} can be stably reconstructed from \mathbf{y} (with above tools)

Going further: voluntarily reduce dimension

(1) Model: \mathbf{X} is sparse/low-rank, often reasonable assumption
(2) Goal: to design $\mathcal{M}: \mathbf{X} \rightarrow \mathbf{y} \triangleq \mathcal{M}(\mathbf{X}) \in \mathbb{R}^{m}$ so that
(i) \mathbf{X} can be stably reconstructed from \mathbf{y} (with above tools)
(ii) m is small, to ensure dimension reduction

Going further: voluntarily reduce dimension

(1) Model: \mathbf{X} is sparse/low-rank, often reasonable assumption
(2) Goal: to design $\mathcal{M}: \mathbf{X} \rightarrow \mathbf{y} \triangleq \mathcal{M}(\mathbf{X}) \in \mathbb{R}^{m}$ so that
(i) \mathbf{X} can be stably reconstructed from \mathbf{y} (with above tools)
(ii) m is small, to ensure dimension reduction
(3) Approach: design \mathcal{M} that satisfies the RIP

Example: Principal Component Analysis (PCA)

- Input data: collection of vectors $\mathbf{z}_{i} \in \mathbb{R}^{d}$,
$1 \leq i \leq n$

$$
\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{d \times n}
$$

- Goal: find an r-dimensional subspace $V \subset \mathbb{R}^{d}$ minimizing the average squared approximation error

$$
\min _{\operatorname{dim}(V) \leq r} \operatorname{Cost}(V) \triangleq \frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}-P_{V} \mathbf{z}_{i}\right\|_{2}^{2}
$$

with P_{V} orthoprojection onto V.

Example: Principal Component Analysis (PCA)

- Traditional approach
(1) compute (uncentered) covariance matrix

$$
\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}
$$

(2) compute eigen value decomp. of \mathbf{X}, (or SVD $\left.\mathbf{Z}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)$

$$
\mathbf{X}=\mathbf{U D U}^{T}
$$

with \mathbf{D} diagonal, decreasing entries
(3) define matrix of r leading eigenvectors

$$
\mathbf{U}_{r} \triangleq \mathbf{U}(:, 1: r)
$$

and set

$$
V \triangleq \operatorname{colspan}\left(\mathbf{U}_{r}\right)
$$

Example: Principal Component Analysis (PCA)

- Traditional approach
(1) compute (uncentered) covariance matrix

$$
\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}
$$

(2) compute eigen value decomp. of $\mathbf{X},\left(\right.$ or SVD $\left.\mathbf{Z}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)$

$$
\mathbf{X}=\mathbf{U D U}^{T}
$$

with \mathbf{D} diagonal, decreasing entries
(3) define matrix of r leading eigenvectors

$$
\mathbf{U}_{r} \triangleq \mathbf{U}(:, 1: r)
$$

and set

$$
V \triangleq \operatorname{colspan}\left(\mathbf{U}_{r}\right)
$$

Example: Principal Component Analysis (PCA)

- Traditional approach
(1) compute (uncentered) covariance matrix Memory inefficient! Is this really needed ?

$$
\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}
$$

(2) compute eigen value decomp. of $\mathbf{X},\left(\right.$ or SVD $\left.\mathbf{Z}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)$

$$
\mathbf{X}=\mathbf{U D U}^{T}
$$

with \mathbf{D} diagonal, decreasing entries
(3) define matrix of r leading eigenvectors

$$
\mathbf{U}_{r} \triangleq \mathbf{U}(:, 1: r)
$$

and set

$$
V \triangleq \operatorname{colspan}\left(\mathbf{U}_{r}\right)
$$

Example: Principal Component Analysis (PCA)

- Traditional approach
(1) compute (uncentered) covariance matrix Memory inefficient! Is this really needed ?

$$
\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}
$$

(2) compute eigen value decomp. of \mathbf{X}, (or SVD $\left.\mathbf{Z}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)$ Just need $\mathbf{X}_{r}=\mathbf{U}_{r} \mathbf{D}_{r} \mathbf{U}_{r}^{T}=$ best rank-r approx. to \mathbf{X}

$$
\mathbf{X}=\mathbf{U D U}^{T}
$$

with \mathbf{D} diagonal, decreasing entries
(3) define matrix of r leading eigenvectors $\quad r \times d \ll d \times d$

$$
\mathbf{U}_{r} \triangleq \mathbf{U}(:, 1: r)
$$

and set

$$
V \triangleq \operatorname{colspan}\left(\mathbf{U}_{r}\right)
$$

Example: Compressive PCA

- Main idea: no need to compute $\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}$ \Rightarrow just need its best rank-r approximation \mathbf{X}_{r}
- Approach:
(1) Design \mathcal{M} satisfying the RIP- δ on low-rank matrices
(2. Compute the m entries of $\mathbf{y}=\mathcal{M}(\mathbf{X})$ as

$$
y_{\ell} \triangleq\left\langle\mathbf{A}_{\ell}, \mathbf{X}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n}\left\langle\mathbf{A}_{\ell}, \mathbf{z}_{i} \mathbf{z}_{i}^{T}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}^{T} \mathbf{A}_{\ell} \mathbf{z}_{i}
$$

(3) Use a low-rank recovery algorithm to find $\hat{\mathbf{X}} \approx \mathbf{X}_{r}$.

Example: Compressive PCA

- Main idea: no need to compute $\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}$ \Rightarrow just need its best rank-r approximation \mathbf{X}_{r}
- Approach:
(1) Design \mathcal{M} satisfying the RIP- δ on low-rank matrices
(2) Compute the m entries of $\mathbf{y}=\mathcal{M}(\mathbf{X})$ as

$$
y_{\ell} \triangleq\left\langle\mathbf{A}_{\ell}, \mathbf{X}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n}\left\langle\mathbf{A}_{\ell}, \mathbf{z}_{i} \mathbf{z}_{i}^{T}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}^{T} \mathbf{A}_{\ell} \mathbf{z}_{i}
$$

(3) Use a low-rank recovery algorithm to find $\hat{\mathbf{X}} \approx \mathbf{X}_{r}$.

$$
\|\hat{\mathbf{X}}-\mathbf{X}\|_{F} \leq C(\delta) \frac{\overbrace{\sigma_{r}(\mathbf{X})_{\star}}^{\sqrt{r}-\mathbf{X}_{r} \|_{\star}}}{\sqrt{r}}+\overbrace{C^{\prime}(\delta)\left(\epsilon+\|\mathbf{e}\|_{2}\right)}^{=0}
$$

Example: Compressive PCA

- Main idea: no need to compute $\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}$ \Rightarrow just need its best rank-r approximation \mathbf{X}_{r}
- Approach:
(1) Design \mathcal{M} satisfying the RIP- δ on low-rank matrices
(2) Compute the m entries of $\mathbf{y}=\mathcal{M}(\mathbf{X})$ as

$$
y_{\ell} \triangleq\left\langle\mathbf{A}_{\ell}, \mathbf{X}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n}\left\langle\mathbf{A}_{\ell}, \mathbf{z}_{i} \mathbf{z}_{i}^{T}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}^{T} \mathbf{A}_{\ell} \mathbf{z}_{i}
$$

(3) Use a low-rank recovery algorithm to find $\hat{\mathbf{X}} \approx \mathbf{X}_{r}$.

$$
\begin{aligned}
\|\hat{\mathbf{X}}-\mathbf{X}\|_{F} & \leq C(\delta) \overbrace{\frac{\sigma_{r}(\mathbf{X})_{\star}}{\sqrt{r}}}^{\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{\star}} \\
\left\|\hat{\mathbf{X}}-\mathbf{X}_{r}\right\|_{F} & \leq\|\hat{\mathbf{X}}-\mathbf{X}\|_{F}+\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{F} \lesssim\left\|\mathbf{X}-\mathbf{X}_{r}\right\|
\end{aligned}
$$

Example: Compressive PCA

- Main idea: no need to compute $\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}$ \Rightarrow just need its best rank-r approximation \mathbf{X}_{r}
- Approach:
(1) Design \mathcal{M} satisfying the RIP- δ on low-rank matrices
(2) Compute the m entries of $\mathbf{y}=\mathcal{M}(\mathbf{X})$ as

$$
y_{\ell} \triangleq\left\langle\mathbf{A}_{\ell}, \mathbf{X}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n}\left\langle\mathbf{A}_{\ell}, \mathbf{z}_{i} \mathbf{z}_{i}^{T}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}^{T} \mathbf{A}_{\ell} \mathbf{z}_{i}
$$

(3) Use a low-rank recovery algorithm to find $\hat{\mathbf{X}} \approx \mathbf{X}_{r}$.

$$
\begin{aligned}
\|\hat{\mathbf{X}}-\mathbf{X}\|_{F} & \leq C(\delta) \overbrace{\frac{\sigma_{r}(\mathbf{X})_{\star}}{\sqrt{r}}}^{\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{\star}} \\
\left\|\hat{\mathbf{X}}-\mathbf{X}_{r}\right\|_{F} & \leq\|\hat{\mathbf{X}}-\mathbf{X}\|_{F}+\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{F} \lesssim\left\|\mathbf{X}-\mathbf{X}_{r}\right\|
\end{aligned}
$$

Example: Compressive PCA

- Main idea: no need to compute $\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}$ \Rightarrow just need its best rank-r approximation \mathbf{X}_{r}
- Approach:
(1) Design \mathcal{M} satisfying the RIP- δ on low-rank matrices \Rightarrow how to design \mathcal{M} to ensure small δ \& small m ?
(2) Compute the m entries of $\mathbf{y}=\mathcal{M}(\mathbf{X})$ as

$$
y_{\ell} \triangleq\left\langle\mathbf{A}_{\ell}, \mathbf{X}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n}\left\langle\mathbf{A}_{\ell}, \mathbf{z}_{i} \mathbf{z}_{i}^{T}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}^{T} \mathbf{A}_{\ell} \mathbf{z}_{i}
$$

(3) Use a low-rank recovery algorithm to find $\hat{\mathbf{X}} \approx \mathbf{X}_{r}$.

$$
\begin{aligned}
\|\hat{\mathbf{X}}-\mathbf{X}\|_{F} & \leq C(\delta) \overbrace{\frac{\sigma_{r}(\mathbf{X})_{\star}}{\sqrt{r}}}^{\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{\star}} \\
\left\|\hat{\mathbf{X}}-\mathbf{X}_{r}\right\|_{F} & \leq\|\hat{\mathbf{X}}-\mathbf{X}\|_{F}+\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{F} \lesssim\left\|\mathbf{X}-\mathbf{X}_{r}\right\|
\end{aligned}
$$

Example: Compressive PCA

- Main idea: no need to compute $\mathbf{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{T}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{T}$ \Rightarrow just need its best rank-r approximation \mathbf{X}_{r}
- Approach:
(1) Design \mathcal{M} satisfying the RIP- δ on low-rank matrices \Rightarrow how to design \mathcal{M} to ensure small δ \& small m ? \Rightarrow how to design $\left\{\mathbf{A}_{\ell}\right\}_{\ell=1}^{m}$?
(2) Compute the m entries of $\mathbf{y}=\mathcal{M}(\mathbf{X})$ as

$$
y_{\ell} \triangleq\left\langle\mathbf{A}_{\ell}, \mathbf{X}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n}\left\langle\mathbf{A}_{\ell}, \mathbf{z}_{i} \mathbf{z}_{i}^{T}\right\rangle_{F}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}^{T} \mathbf{A}_{\ell} \mathbf{z}_{i}
$$

(3) Use a low-rank recovery algorithm to find $\hat{\mathbf{X}} \approx \mathbf{X}_{r}$.

$$
\begin{aligned}
\|\hat{\mathbf{X}}-\mathbf{X}\|_{F} & \leq C(\delta) \overbrace{\frac{\sigma_{r}(\mathbf{X})_{\star}}{\sqrt{r}}}^{\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{\star}} \\
\left\|\hat{\mathbf{X}}-\mathbf{X}_{r}\right\|_{F} & \leq\|\hat{\mathbf{X}}-\mathbf{X}\|_{F}+\left\|\mathbf{X}-\mathbf{X}_{r}\right\|_{F} \lesssim\left\|\mathbf{X}-\mathbf{X}_{r}\right\|
\end{aligned}
$$

Randomly measuring matrices

(1) Goal: to design $\mathcal{M}: \mathbf{X} \rightarrow \mathbf{y} \triangleq \mathcal{M}(\mathbf{X}) \in \mathbb{R}^{m}$ so that
(i) \mathcal{M} satisfies the RIP
(ii) $m \gtrsim \operatorname{dim}\left(\Sigma_{2 r}\right)=2 r(p+q-2 r)$

Randomly measuring matrices

(1) Goal: to design $\mathcal{M}: \mathbf{X} \rightarrow \mathbf{y} \triangleq \mathcal{M}(\mathbf{X}) \in \mathbb{R}^{m}$ so that
(i) \mathcal{M} satisfies the RIP
(ii) $m \gtrsim \operatorname{dim}\left(\Sigma_{2 r}\right)=2 r(p+q-2 r)$
(2) Approach: design \mathcal{M} at random

Randomly measuring matrices

(1) Goal: to design $\mathcal{M}: \mathbf{X} \rightarrow \mathbf{y} \triangleq \mathcal{M}(\mathbf{X}) \in \mathbb{R}^{m}$ so that
(i) \mathcal{M} satisfies the RIP
\Rightarrow with high probability
(ii) $m \gtrsim \operatorname{dim}\left(\Sigma_{2 r}\right)=2 r(p+q-2 r)$
(2) Approach: design \mathcal{M} at random

