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Back to last session: well-posedness

A shorter, easy to memorize formulation of the previous theorem is:

8X0,X1 2 ⌃

r

, M(X0) = M(X1) ) X0 = X1

,
Ker(M) \ ⌃2r = {0}

Problem (Homework): consequence for Matrix Completion
what is the measurement operator M ?
give an upper bound on the rank of an s-sparse matrix X

for what rank r is the problem well-posed ?
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Targeted guarantees

Convergence of algorithms (convergence of cost function
and/or of the iterates, to a local or global minimum...),
Equivalence between solutions provided by different
algorithms / principles
Successful recovery for a given algorithm, i.e. equivalence
with the solution of the ideal low-rank approximation problem
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Convergence guarantees

Singular Value Thresholding (SVT) addresses the problem

min

X

1
2kM(X)� yk22 + �kXk

?

with proximal gradient iterations, using the proximal operator

prox

�k·k?(Y) , argmin

Z

1
2kZ�Yk2

F

+�kZk
?

= Uprox

�k·k1(diag(⌃))V

T

with Y = U⌃V

T the SVD of Y; prox

�k·k1(·) is soft-thresholding.

Homework 2 (using course on proximal gradient iterations)
Prove the convergence SVT in the sense of the objective function

1
2kM(X

n

)� yk22 + �kX
n

k
?

 C

n
+ inf

X

1
2kM(X)� yk22 + �kXk

?

.
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Equivalence guarantees: a Null Space Property

Equivalence (definition): the two problems

min

X

kXk
?

s.t. y = M(X) trace� norm minimization

min

X

rank(X) s.t. y = M(X) rank�minimization

are equivalent iff: whenever y , M(X0) with rank(X0)  r, their
solutions are unique and identical (equal to X0).
This holds iff the following Null Space Property holds:

Null Space Property (NSP) - low rank matrix recovery
For all p⇥ q matrix W 2 Ker(M)\{0} with singular values
s1(W) � . . . � s

n

(W) � 0 where n , min(p, q), we have

rX

j=1

s
j

(V) <
nX

j=r+1

s
j

(V).
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Demonstration

Step 1 (see course on NSP for sparse recovery)
Prove that equivalence ) NSP.

Step 2
Prove that NSP ) equivalence.
Hint (see [Foucart & Rauhut 2014, Le A.20]): for any X, Y, `:P

`

j=1 sj(X�Y) �
P

`

j=1 |sj(X)� s
j

(Y)|
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Stability guarantees: the Restricted Isometry Property

Restricted Isometry Property (RIP)- for low rank matrices
M satisfies the restricted isometry property (RIP) of order s
(low-rank version) with constant � 2 (0, 1) iff:

8Z 2 ⌃

s

, (1� �)kZk2
F

 kM(Z)k22  (1 + �)kZk2
F

.

The smallest possible � is denoted �s(M).
Fully parallel to definition of RIP for s-sparse vectors
Alternate formulations exist in the litterature: asymetric and/or non-squares. E.g.

↵  kM(Z)k2
kZkF

 �

Informally: preserves the “size” of rank-s matrices

Intuition/link with well-posedness, for s = 2r

RIP = preservation of distance between matrices in ⌃

r

consider Z = X0 �X1, X0,X1 2 ⌃

r
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Stability guarantees: the Restricted Isometry Property

Theorem - Stable Low-rank Recovery assuming the RIP

Assume that � , �2r(M) < 1/
p
2. Then, for any p⇥ q matrix X0,

considering y , M(X0) + e, ✏ � kek2, and

ˆ

X

✏

, argmin

X

kXk
?

s.t. ky �M(X)k2  ✏

we have

k ˆX
✏

�X0k2  C(�)
�
r

(X0)?p
r

+ C 0
(�)(✏+ kek2)

Even when X0 is not low-rank

Reminder: �r(X0)? , inf{kX0 � Zk?, rank(Z)  r};

Explicit expressions for constants C(�), C0(�)

Fully parallel to result for `1 and sparse recovery; same dependency of the constants with �;

Many successive improvements to bound �. Bound � < 1/
p
2 is “sharp” [Cai and Zhang 2013]

48 5GM - INSA Parcimonie 21-28/11/2016



Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary

Discussion: when does the RIP hold ?

The RIP implies

k ˆX
✏

�X0k2  C(�)
�
r

(X0)?p
r

+ C 0
(�)(✏+ kek2)

Implies exact-recovery: when X0 2 ⌃

r

and ✏ = kek2 = 0

The Restricted Isometry Property implies the Null Space Property
RIP ) NSP , exact recovery with trace-norm minimization

) RIP does not hold in the Matrix Completion setting
Given an operator M, its RIP constant is hard to compute

) design operator M with small RIP constant (& small m)
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Lessons learned from inverse problems

1

Goal: given M, to address inverse problem y ⇡ M(X)

2

Model: X is sparse/low-rank, often reasonable assumption
3

Approach: greedy / iterative / convex algorithms
4

Guarantees: well-posedness, recovery, stability (NSP, RIP)

Necessary dimension

m � dim(⌃2r)
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Going further: voluntarily reduce dimension

1

Model: X is sparse/low-rank, often reasonable assumption

2

Goal: to design M : X ! y , M(X) 2 Rm so that
(i) X can be stably reconstructed from y (with above tools)
(ii) m is small, to ensure dimension reduction

3

Approach: design M that satisfies the RIP
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Example: Principal Component Analysis (PCA)

Input data: collection of vectors z

i

2 Rd,
1  i  n

Z = [z1, . . . ,xn

] 2 Rd⇥n

Goal: find an r-dimensional subspace
V ⇢ Rd minimizing the average squared
approximation error

min

dim(V )r

Cost(V ) , 1
n

nX

i=1

kz
i

� P
V

z

i

k22

with P
V

orthoprojection onto V .
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Example: Principal Component Analysis (PCA)

Traditional approach

1 compute (uncentered) covariance matrix

d⇥ d
Memory inefficient! Is this really needed ?

X , 1
n

nX

i=1

ziz
T
i =

1
nZZ

T

2 compute eigen value decomp. of X, (or SVD Z = U⌃V

T )

Just need Xr = UrDrU
T
r = best rank-r approx. to X

X = UDU

T

with D diagonal, decreasing entries

3 define matrix of r leading eigenvectors

r⇥d ⌧ d⇥ d

Ur , U(:, 1 : r)

and set
V , colspan(Ur)
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Example: Compressive PCA

Main idea: no need to compute X , 1
n

P
n

i=1 ziz
T

i

=

1
n

ZZ

T

) just need its best rank-r approximation X

r

Approach:
1

Design M satisfying the RIP-� on low-rank matrices

) how to design M to ensure small � & small m?

) how to design {A`}m`=1 ?

2

Compute the m entries of y = M(X) as

y` , hA`,XiF =

1
n

nX

i=1

hA`, ziz
T
i iF =

1
n

nX

i=1

z

T
i A`zi

3

Use a low-rank recovery algorithm to find ˆ

X ⇡ Xr.

X

k ˆX�XkF  C(�)

kX�Xrk?z }| {
�r(X)?p

r
+

=0z }| {
C 0

(�)(✏+ kek2)

k ˆX�XrkF  k ˆX�XkF + kX�XrkF . kX�Xrk
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Randomly measuring matrices

1

Goal: to design M : X ! y , M(X) 2 Rm so that

(i) M satisfies the RIP

) with high probability

(ii) m & dim(⌃2r) = 2r(p+ q � 2r)

2

Approach: design M at random

For later convenience, y` , 1p
m
hA`,XiF , 1  `  m

Typically: A` independently drawn from same distribution.
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