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Guarantees

Back to last session: well-posedness

A shorter, easy to memorize formulation of the previous theorem is:

VX, X1 € Xf, M(Xo) = M(Xl) = Xp = X4
-
Ker(M) N Xq, = {0}

Problem (Homework): consequence for Matrix Completion

@ what is the measurement operator M 7
@ give an upper bound on the rank of an s-sparse matrix X

o for what rank 7 is the problem well-posed ?
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Guarantees

Targeted guarantees

e Convergence of algorithms (convergence of cost function
and/or of the iterates, to a local or global minimum...),

@ Equivalence between solutions provided by different
algorithms / principles

@ Successful recovery for a given algorithm, i.e. equivalence
with the solution of the ideal low-rank approximation problem
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Guarantees
°

Convergence guarantees

Singular Value Thresholding (SVT) addresses the problem
min 3| M(X) = y 5 + AIX]«

with proximal gradient iterations, using the proximal operator

proxy, (Y) £ arg mzin%|]Z—YH%+/\HZH* = Uproxy |, (diag(2)) V"

with Y = UXVT the SVD of Y; proxyj.|, (+) is soft-thresholding.

Homework 2 (using course on proximal gradient iterations)

Prove the convergence SVT in the sense of the objective function

c .
2 M) = yllz + Al < — + inf 5[ MX) = 3 + A XL

44 5GM - INSA Parcimonie 21-28/11/2016



Guarantees
.

Equivalence guarantees: a Null Space Property

Equivalence (definition): the two problems
m)én IX|x s.t. y = M(X) trace — norm minimization
m}én rank(X) s.t. y = M(X) rank — minimization
are equivalent iff: whenever y £ M(Xj) with rank(Xg) < r, their

solutions are unique and identical (equal to Xy).
This holds iff the following Null Space Property holds:

Null Space Property (NSP) - low rank matrix recovery

For all p x ¢ matrix W € Ker(M)\{0} with singular values
51 (W) > ... > 5,(W) > 0 where n £ min(p, q), we have

n

Zsj(V) < > s(V).

J=r-+1

v
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Guarantees

Demonstration

Step 1 (see course on NSP for sparse recovery)

Prove that equivalence = NSP.

Prove that NSP = equivalence.
Hint (see [Foucart & Rauhut 2014, Le A.20]): for any X, Y, ¢

S s (X =Y) >3 [s5(X) — 55(Y)]
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Guarantees
L]

Stability guarantees: the Restricted Isometry Property

Restricted Isometry Property (RIP)- for low rank matrices

M satisfies the restricted isometry property (RIP) of order s
(low-rank version) with constant ¢ € (0, 1) iff:

VZ e, (1-0)|Z|E < M]3 < (1+0)|Z]F.

@ The smallest possible § is denoted 55 (M).
@ Fully parallel to definition of RIP for s-sparse vectors
@ Alternate formulations exist in the litterature: asymetric and/or non-squares. E.g.

S%<B

@ Informally: preserves the “size’” of rank-s matrices

Intuition/link with well-posedness, for s = 2r

RIP = preservation of distance between matrices in 3,

consider Z = Xy — X, Xo, X1 € X
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Guarantees
L]

Stability guarantees: the Restricted Isometry Property

Theorem - Stable Low-rank Recovery assuming the RIP

Assume that § £ 6,(M) < 1/y/2. Then, for any p x ¢ matrix Xy,
considering y £ M(Xg) + e, € > |le||2, and

X £ argmin | X[, st. [ly = M(X)[2 < ¢

we have

(XO)*

IXe — Xoll2 < C(6) UT\/; +C'(0) (e + [lell2)

Even when X is not low-rank
Reminder: o, (Xg)x 2 inf{||Xo — Z||+, rank(Z) < r};

Explicit expressions for constants C(§), C’(5)

Fully parallel to result for £1 and sparse recovery; same dependency of the constants with §;

Many successive improvements to bound §. Bound § < 1/+/2 is “sharp” [Cai and Zhang 2013]

48 5GM - INSA Parcimonie 21-28/11/2016



Guarantees

Discussion: when does the RIP hold 7

The RIP implies

1K, — Xo|» < c<a>"’”(\’}?)* L CG) e+ )

e Implies exact-recovery: when Xy € ¥, and ¢ = |le[|2 =0

The Restricted Isometry Property implies the Null Space Property
RIP = NSP < exact recovery with trace-norm minimization

= RIP does not hold in the Matrix Completion setting

@ Given an operator M, its RIP constant is hard to compute

= design operator M with small RIP constant (& small m)
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Dimension reduction

Contents

@ Dimension reduction
@ From inverse problems to dimension reduction
@ Example: from PCA to compressive PCA
@ Randomly measuring matrices
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Dimension reduction
.

Lessons learned from inverse problems

@ Goal: given M, to address inverse problem y ~ M (X)
@ Model: X is sparse/low-rank, often reasonable assumption
© Approach: greedy / iterative / convex algorithms

© Guarantees: well-posedness, recovery, stability (NSP, RIP)

Necessary dimension

m > dim(Xy,)
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Dimension reduction
]

Going further: voluntarily reduce dimension

© Model: X is sparse/low-rank, often reasonable assumption
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Dimension reduction
]

Going further: voluntarily reduce dimension

© Model: X is sparse/low-rank, often reasonable assumption
@ Goal: to design M : X =y = M(X) € R™ so that

(i) X can be stably reconstructed from y (with above tools)
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Dimension reduction
]

Going further: voluntarily reduce dimension

© Model: X is sparse/low-rank, often reasonable assumption
@ Goal: to design M : X =y = M(X) € R™ so that

(i) X can be stably reconstructed from y (with above tools)
(i) m is small, to ensure dimension reduction
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Dimension reduction
]

Going further: voluntarily reduce dimension

© Model: X is sparse/low-rank, often reasonable assumption
@ Goal: to design M : X =y = M(X) € R™ so that

(i) X can be stably reconstructed from y (with above tools)
(i) m is small, to ensure dimension reduction

© Approach: design M that satisfies the RIP
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Dimension reduction

Example: Principal Component Analysis (PCA)

e Input data: collection of vectors z; € R¢,
1< <n

Z=z1,...,x,] € R>"

o Goal: find an r-dimensional subspace
V C R¢ minimizing the average squared
approximation error

n
in Cost(V) 21 . — Pyzi||3
dmrl?‘l/r)lgr ost(V) n;HZz vzil|3

with Py orthoprojection onto V.
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Dimension reduction

Example: Principal Component Analysis (PCA)

e Traditional approach
@ compute (uncentered) covariance matrix

T n

n
X & LN g2 = 177"
i=1
@ compute eigen value decomp. of X, (or SVD Z = UXVT)

X = UDU”

with D diagonal, decreasing entries

© define matrix of r leading eigenvectors

U, 2U(;1:7)
and set
V £ colspan(U,.)

54 5GM - INSA Parcimonie 21-28/11/2016



Dimension reduction

Example: Principal Component Analysis (PCA)

e Traditional approach
@ compute (uncentered) covariance matrix dxd

n
X & LN g2 = 177"

T n
i=1

@ compute eigen value decomp. of X, (or SVD Z = UXVT)

X = UDU”

with D diagonal, decreasing entries

© define matrix of r leading eigenvectors rxd << dxd

U, 2U(;1:7)
and set
V £ colspan(U,.)

54 5GM - INSA Parcimonie 21-28/11/2016



Dimension reduction

Example: Principal Component Analysis (PCA)

e Traditional approach
@ compute (uncentered) covariance matrix dxd
Memory inefficient! Is this really needed ?

n
X & LN g2 = 177"

T n
i=1

@ compute eigen value decomp. of X, (or SVD Z = UXVT)

X = UDU”

with D diagonal, decreasing entries

© define matrix of r leading eigenvectors rxd << dxd

U, 2U(;1:7)
and set
V £ colspan(U,.)
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Dimension reduction

Example: Principal Component Analysis (PCA)

e Traditional approach
@ compute (uncentered) covariance matrix dxd
Memory inefficient! Is this really needed ?

X & LN g2 = 177"

T n
i=1

@ compute eigen value decomp. of X, (or SVD Z = UXVT)
Just need X, = U, D, UL = best rank-r approx. to X

X = UDU”

with D diagonal, decreasing entries

© define matrix of r leading eigenvectors rxd << dxd

U, 2U(;1:7)
and set
V £ colspan(U,.)
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Dimension reduction
L]

Example: Compressive PCA

® Main idea: no need to compute X £ 1 3™ 7,27 = 1777
= just need its best rank r approxrmat:on X,

@ Approach:
© Design M satisfying the RIP-6 on low-rank matrices

@ Compute the m entries of y = M(X) as

n n
1 1 T
<Aea = E Ae,Zz =n E z; Az,
i=1

=1

© Use a low-rank recovery algorithm to find X ~ X,.
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Dimension reduction
L]

Example: Compressive PCA

® Main idea: no need to compute X £ 1 3™ 7,27 = 1777
= just need its best rank r approxrmat:on X,

@ Approach:
© Design M satisfying the RIP-6 on low-rank matrices

@ Compute the m entries of y = M(X) as

n n
T
L (AL X)p =1 (A2l )p =1 2l Az
i=1 i=1
© Use a low-rank recovery algorithm to find X ~ X,.

X=X |«

—_— =0

or(X

2 = Y RTRTRY
X =X|r < C()——7=—+C"()(e+]el2)

X
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Dimension reduction
L]

Example: Compressive PCA

® Main idea: no need to compute X £ 1 3™ 7,27 = 1777
= just need its best rank r approxrmat:on X,

e Approach:
© Design M satisfying the RIP-6 on low-rank matrices

@ Compute the m entries of y = M(X) as

n n

L (AL X)p =1 (A2l )p =1 2l Az
i=1 i=1

© Use a low-rank recovery algorithm to find X ~ X,.

X=X ||«

—

(X))«
T

X=X lp < [X=X[r+ X=X r S IX-X|

IX —X||r C(9)

IN
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Dimension reduction
L]

Example: Compressive PCA

® Main idea: no need to compute X £ 1 3™ 7,27 = 1777
= just need its best rank r approxrmat:on X,

e Approach:
© Design M satisfying the RIP-6 on low-rank matrices

@ Compute the m entries of y = M(X) as

L (AL X)p =1 (A2l )p =1 2l Az
i=1 i=1
© Use a low-rank recovery algorithm to find X ~ X,. v

X=X |«
(X)

S Or *

X-X < C0)———
| lr < C(0) W

X=X lp < [X=X[r+ X=X r S IX-X|
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Dimension reduction
L]

Example: Compressive PCA

® Main idea: no need to compute X £ 1 3™ 7,27 = 1777
= just need its best rank r approxrmat:on X,
@ Approach:
© Design M satisfying the RIP-6 on low-rank matrices
= how to design M to ensure small § & small m?

@ Compute the m entries of y = M(X) as

L (AL X)p =1 (A2l )p =1 2l Az
i=1 i=1
© Use a low-rank recovery algorithm to find X ~ X,. v

X=X |«
(X)

S Or *

X-X < C0)———
| lr < C(0) W

X=X lp < [X=X[r+ X=X r S IX-X|
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Dimension reduction
L]

Example: Compressive PCA

® Main idea: no need to compute X £ 1 3™ 7,27 = 1777
= just need its best rank r approxrmat:on X,
@ Approach:
© Design M satisfying the RIP-6 on low-rank matrices
= how to design M to ensure small § & small m?
= how to design {A/}/2, 7
@ Compute the m entries of y = M(X) as

L (AL X)p =1 (A2l )p =1 2l Az
i=1 i=1
© Use a low-rank recovery algorithm to find X ~ X,. v

X=X |«
(X)

S Or *

X-X < C0)———
| lr < C(0) W

X=X lp < [X=X[r+ X=X r S IX-X|
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Dimension reduction
L]

Randomly measuring matrices

@ Goal: to desigh M : X =y = M(X) € R™ so that
(i) M satisfies the RIP

(i) m = dim(Xq,) = 2r(p+ ¢ — 2r)
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Dimension reduction
L]

Randomly measuring matrices

@ Goal: to desigh M : X =y = M(X) € R™ so that
(i) M satisfies the RIP
(i) m = dim(Xq,) = 2r(p+ ¢ — 2r)

@ Approach: design M at random
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Dimension reduction
L]

Randomly measuring matrices

@ Goal: to desigh M : X =y = M(X) € R™ so that
(i) M satisfies the RIP = with high probability
(i) m = dim(Xq,) = 2r(p+ ¢ — 2r)

@ Approach: design M at random
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