Parcimonie en traitement du signal et des images Partie 4: au delà de la parcimonie

Génie Mathématique - INSA 21/23/28 novembre 2016

N. Bertin, C. Herzet, A. Roumy, *<u>Rémi Gribonval</u>, A. Deleforge remi.gribonval@inria.fr

Intro	First definitions	Well-posedness	Algorithms ○Ѻ	Guarantees	Dimension reduction	Summary
Ove	rall course	content				

- Part 1 (N. Bertin): Fundamentals
 - Definitions, first theoretical results, basic algorithmic principles
- Part 2 (C. Herzet): Theoretical guarantees
 - Finer conditions for feasibility and convergence
- Part 3 (A. Roumy): Compressed sensing, probability results
 - More conditions, information theory, number of measurements
- Part 4 (R. Gribonval) & A. Deleforge): Beyond sparsity
 - Today: From sparse vectors to low-rank matrices
 - Next: Compressed matrix sensing; Well-posedness and algorithms for generic low-dimensional models; Dictionary learning

Intro	First definitions	Well-posedness	Algorithms ○◊	Guarantees	Dimension reduction	Summary
Deta	ailed conte	nt of this	part			

- 1 Introduction: inverse problems with matrices
- 2 Low-rank matrices: definitions and reminders
- 3 Well-posedness of the low-rank recovery problem: a key result
- 4 Low-rank recovery algorithms: principles and first algorithms
- 5 Theoretical guarantees
- **6** Dimension reduction

Intro	First definitions ⊙	Well-posedness	Algorithms ○◊	Guarantees	Dimension reduction	Summary
Exai	mples of m	atrix inver	se proble	ems: Ma	trix completion	on

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	
Love at last	5	5	0	6	A.A.A.A.
Romance forever	5	?	?	0	
Cute puppies of love	?	4	0	?	╈╈╈
Nonstop car chases	0	0	5	4	*****
Swords vs. karate	0	0	5	2	*****

Goal = complete a large matrix

- Rows = movies (potentially tens of thousands)
- Columns = users (potentially several millions)
- Many missing entries (99.9% if each user rates ten items)

- Magnitude only Fourier measurements: $y_i = |\langle \mathbf{a}_i, \mathbf{x} \rangle|$
 - phase ambiguity: no uniqueness $y_i = |\langle \mathbf{a}_i, \mathbf{x} \rangle| = |\langle \mathbf{a}_i, e^{j\phi} \mathbf{x} \rangle|$
 - **non-linear** inverse problem in vector \mathbf{x} ...
 - ... yet convertible to *linear problem* in the matrix $\mathbf{X} \triangleq \mathbf{x}\mathbf{x}^H$:

$$z_i \triangleq y_i^2 = |\langle \mathbf{a}_i, \mathbf{x} \rangle|^2 = \mathbf{a}_i^H \mathbf{x} \mathbf{x}^H \mathbf{a}_i$$

$Matrix \leftrightarrow vector conversions$	
• matrix to vector:	$\mathbf{u} = \operatorname{vec}(\mathbf{U})$
• vector to matrix (of given size):	$\mathbf{U} = \mathrm{mat}(\mathbf{u})$

- Linear observation operator
- Linear inverse problem: find $p \times q$ matrix \mathbf{X} given
- Under-determined if m < pq

 $\mathcal{M}(\mathbf{X}) \triangleq (\langle \mathbf{a}_i, \operatorname{vec}(\mathbf{X}) \rangle)_{i=1}^m$

 $\mathbf{y} = \mathcal{M}(\mathbf{X})$, of dimension m \Rightarrow need a model

Here: signals \rightarrow matrices; what set of "matrices of interest" ?

8

	Image courtesy of Mike Davies, U	Jniv. Edinburgh.
5GM - INSA	Parcimonie	21-28/11/2016

Introduction: inverse problems with matrices

- 2 Low-rank matrices: definitions and reminders
 - Definitions
 - Problem formulation

3 Well-posedness of the low-rank recovery problem: a key result

4 Low-rank recovery algorithms: principles and first algorithms

- 5 Theoretical guarantees
- **6** Dimension reduction

Rank of a matrix (real or complex)

- The rank of a $p \times q$ matrix **X**, rank(**X**) is the dimension of the span of its columns (or equivalently of its rows).
- Given the SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, with $\mathbf{\Sigma}$ "diagonal", we have $\operatorname{rank}(\mathbf{X}) = \|\operatorname{diag}(\mathbf{\Sigma})\|_0$. As a result $\operatorname{rank}(\mathbf{X}) \leq \min(p, q)$.

Informally, "low-rank" means $\operatorname{rank}(\mathbf{X}) \ll \min(p,q)$.

Low-rank matrices (real or complex)

• A $p \times q$ matrix \mathbf{X} is of rank at most r iff it can be written as

•
$$\mathbf{X} = \mathbf{U}\mathbf{V}^T$$
 where \mathbf{U} is $p \times r$, \mathbf{V} is $q \times r$; or equivalently

•
$$\mathbf{X} = \sum_{i=1}^{r} \mathbf{u}_i \mathbf{v}_i^T$$
, where \mathbf{u}_i is $p \times 1$, \mathbf{v}_i is $q \times 1$.

• The set of all matrices of rank *at most* r is denoted:

$$\Sigma_r := \{ \mathbf{X} \in \mathbb{R}^{p \times q}, \operatorname{rank}(\mathbf{X}) \leqslant r \}$$

Low-rank matrices (real or complex)

• A $p \times q$ matrix \mathbf{X} is of rank at most r iff it can be written as

• $\mathbf{X} = \mathbf{U}\mathbf{V}^T$ where \mathbf{U} is $p \times r$, \mathbf{V} is $q \times r$; or equivalently

•
$$\mathbf{X} = \sum_{i=1}^{r} \mathbf{u}_i \mathbf{v}_i^T$$
, where \mathbf{u}_i is $p imes 1$, \mathbf{v}_i is $q imes 1$.

• The set of all matrices of rank *at most* r is denoted:

 $\Sigma_r := \{ \mathbf{X} \in \mathbb{R}^{p \times q}, \operatorname{rank}(\mathbf{X}) \leq r \}$

• Σ_r is not a linear subspace of the space of $p \times q$ matrices: If $\mathbf{X}, \mathbf{Y} \in \Sigma_r$, then $\mathbf{X} + \mathbf{Y} \in \Sigma_{2r}$ but in general $\mathbf{X} + \mathbf{Y} \notin \Sigma_r$

Low-rank matrices (real or complex)

• A $p \times q$ matrix \mathbf{X} is of rank at most r iff it can be written as

• $\mathbf{X} = \mathbf{U}\mathbf{V}^T$ where U is $p \times r$, V is $q \times r$; or equivalently

•
$$\mathbf{X} = \sum_{i=1}^r \mathbf{u}_i \mathbf{v}_i^T$$
, where \mathbf{u}_i is $p imes 1$, \mathbf{v}_i is $q imes 1$.

• The set of all matrices of rank *at most* r is denoted:

 $\Sigma_r := \{ \mathbf{X} \in \mathbb{R}^{p \times q}, \operatorname{rank}(\mathbf{X}) \leq r \}$

Σ_r is not a linear subspace of the space of p × q matrices: If X, Y ∈ Σ_r, then X + Y ∈ Σ_{2r} but in general X + Y ∉ Σ_r
In the sense of manifolds

$$\dim(\Sigma_r) = r(p+q-r).$$

For small r, this is approximately r(p+q).

Intuition: p degrees of freedom for each \mathbf{u}_i ; q for each \mathbf{v}_i ; $\Rightarrow p + q$ for each $\mathbf{u}_i \mathbf{v}_i^T$

Magnitude only measurements: y_i = |⟨a_i, x⟩|
phase ambiguity: no uniqueness y_i = |⟨a_i, x⟩| = |⟨a_i, e^{jφ}x⟩|
non-linear inverse problem in vector x ...
... yet convertible to *linear problem* in the matrix X ≜ xx^H:

$$z_i \triangleq y_i^2 = |\langle \mathbf{a}_i, \mathbf{x} \rangle|^2 = \mathbf{a}_i^H \mathbf{x} \mathbf{x}^H \mathbf{a}_i$$

Intro	First definitions ●○	Well-posedness	Algorithms ○◊	Guarantees	Dimension reduction	Summary
Exai	mples of lo	w-rank ma	atrices: N	Matrix co	mpletion	

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	
Love at last	5	5	0	6	A.A.A.A.
Romance forever	5	2	?	0	
Cute puppies of love	?	4	0	?	★★★☆☆
Nonstop car chases	0	0	5	4	*****
Swords vs. karate	0	0	5	2	*****

Simplistic user similarity model:

- r user categories;
- shared user preference profile in category *i*: \mathbf{u}_i ;
- users in category *i* indicated by nonzero entry in \mathbf{v}_i^T ;
- full matrix written $\mathbf{X} = \sum_{i=1}^{r} \mathbf{u}_i \mathbf{v}_i^T$.

Real-world situations can deviate from the exact low-rank model.

Noise:

$$\mathbf{y} = \mathcal{M}(\mathbf{X}) + \varepsilon$$

• Approximate low-rank:

 $\mathbf{X}\approx\mathbf{Z}$

where \mathbf{Z} is a rank-r matrix. The matrix \mathbf{X} is then often said to be **compressible** (rather than low-rank, which it is not).

Intro	First definitions ●○	Well-posedness	Algorithms ○◊	Guarantees	Dimension reduction	Summary
Ren	ninders on	norms				

$\|.\|:\mathbf{X}\rightarrow \mathbb{R}^+$ is:

- A norm iff for all $\mathbf{X}, \mathbf{Y}, \lambda$:
 - (i) $\|\mathbf{X}\| = 0$ iff $\mathbf{X} = \mathbf{0}$ (definiteness)
 - (ii) $\|\lambda \mathbf{X}\| = |\lambda\| . \|\mathbf{X}\|$ (homogeneity)
 - (iii) $\|\mathbf{X} + \mathbf{Y}\| \leqslant \|\mathbf{X}\| + \|\mathbf{Y}\|$ (triangle inequality)
- A quasi-norm: (i), (ii) and for some constant C(iii) $\|\mathbf{X} + \mathbf{Y}\| \leq C(\|\mathbf{X}\| + \|\mathbf{Y}\|).$

Intro	First definitions ●○	Well-posedness	Algorithms ○◊	Guarantees	Dimension reduction	Summary
Sha	tten norms	S_p				

Shatten norm of a matrix

For $0 \le p \le \infty$: using the SVD, $\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, define

$$\|\mathbf{M}\|_{S_p} \triangleq \|\mathrm{diag}(\mathbf{\Sigma})\|_p$$

This is a quasinorm for $0 ; a norm for <math>1 \le p \le \infty$.

Special cases:

• p = 0: rank $\operatorname{rank}(\mathbf{M}) = \|\mathbf{M}\|_{S_0}$ • p = 1: trace/nuclear norm $\|\mathbf{M}\|_{\star} \triangleq \operatorname{trace}(\mathbf{\Sigma}) = \|\mathbf{M}\|_{S_1}$ • p = 2: Frobenius norm $\|\mathbf{M}\|_F \triangleq \sqrt{\sum_{ij} \mathbf{M}_{ij}^2} = \|\mathbf{M}\|_{S_2}$ • $p = \infty$: Spectral norm $\|\mathbf{M}\|_{op} \triangleq \sup_{\|\mathbf{x}\|_2 = 1} \|\mathbf{M}\mathbf{x}\|_2 = \|\mathbf{M}\|_{S_\infty}$

• The error of best rank-r approximation of X is:

$$\sigma_r(\mathbf{X}) \triangleq \inf\{\|\mathbf{X} - \mathbf{Z}\|, \operatorname{rank}(\mathbf{Z}) \le r\}$$

• Consider $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ the SVD of \mathbf{X} . The matrix $\mathbf{Z} \triangleq \mathbf{U} \hat{\mathbf{\Sigma}} \mathbf{V}^T$, where $\hat{\mathbf{\Sigma}}$ matches $\mathbf{\Sigma}$ on the *r* largest diagonal entries and is zero everywhere else, realizes this infimum for Shatten norms $\|\mathbf{X} - \mathbf{Z}\|_{S_p}$, no matter the value of p (>0).

Given the observation $\mathbf{y},$ with known measurement operator $\mathcal{M},$ we wish to solve:

$$\min_{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \quad \text{s.t.} \quad \mathbf{y} = \mathcal{M}(\mathbf{X})$$

Intro	First definitions	Well-posedness ୦୦	Algorithms ○◊	Guarantees	Dimension reduction	Summary
Con	tents					

Introduction: inverse problems with matrices

2 Low-rank matrices: definitions and reminders

Well-posedness of the low-rank recovery problem: a key result
 Result

Demonstration (exercice)

4 Low-rank recovery algorithms: principles and first algorithms

- 5 Theoretical guarantees
- **6** Dimension reduction

Given a low-rank matrix \mathbf{X}_0 and $\mathbf{y} \triangleq \mathcal{M}(\mathbf{X}_0)$, consider the low-rank matrix recovery problem:

$$\min_{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \quad \text{s.t.} \quad \mathbf{y} = \mathcal{M}(\mathbf{X})$$

Theorem. Well-posedness of the low-rank recovery problem

The following properties are equivalent.

- (i) Uniqueness of solutions of rank at most r: for any pair of matrices $(\mathbf{X}_0, \mathbf{X}_1)$ of rank at most r, if $\mathcal{M}(\mathbf{X}_0) = \mathcal{M}(\mathbf{X}_1)$ then $\mathbf{X}_0 = \mathbf{X}_1$.
- (ii) The null space $Ker(\mathcal{M})$ does not contain any matrix of rank at most 2r other than the zero matrix.

A shorter, easy to memorize formulation of the previous theorem is:

$$\forall \mathbf{X}_0, \mathbf{X}_1 \in \Sigma_r, \ \mathcal{M}(\mathbf{X}_0) = \mathcal{M}(\mathbf{X}_1) \Rightarrow \mathbf{X}_0 = \mathbf{X}_1$$
$$\Leftrightarrow$$
$$\operatorname{Ker}(\mathcal{M}) \cap \Sigma_{2r} = \{\mathbf{0}\}$$

Problem (Homework): consequence for Matrix Completion

- what is the measurement operator \mathcal{M} ?
- what is the rank of an s-sparse matrix X ?
- for what rank r does the above property hold ?

Intro	First definitions	Well-posedness ○●	Algorithms ○◊	Guarantees	Dimension reduction	Summary
Den	nonstration					

Homework

Prove the theorem.

Comments on the previous theorem:

- This is a worst case analysis
 - does not provide guarantees for matrix completion.
 - more advanced analysis with *random sampling* (random missing entries) and *incoherence* of X are available.
- Necessary number of measurements: .

$$m \ge \dim(\Sigma_{2r}) = 2r(p+q-2r)$$

Comments on the previous theorem:

- This is a worst case analysis
 - does not provide guarantees for matrix completion.
 - more advanced analysis with *random sampling* (random missing entries) and *incoherence* of **X** are available.
- Necessary number of measurements: .

$$m \ge \dim(\Sigma_{2r}) = 2r(p+q-2r) \ll pq$$
 for small r

Intro	First definitions	Well-posedness	Algorithms ○≎	Guarantees 000	Dimension reduction	Summary
Con	tents					

Introduction: inverse problems with matrices

- 2 Low-rank matrices: definitions and reminders
- 3 Well-posedness of the low-rank recovery problem: a key result

4 Low-rank recovery algorithms: principles and first algorithms

- Rank minimization is NP hard
- Three practical philosophies
- 5 Theoretical guarantees
- **6** Dimension reduction

Intro First definitions Well-posedness Algorithms Guarantees Ooo OoO Summary

We want to solve the problem:

$$\min_{\mathbf{X}} \mathrm{rank}(\mathbf{X}) \quad \text{s.t.} \quad \mathbf{y} = \mathcal{M}(\mathbf{X})$$

Bad luck : this is NP-hard, just as the ℓ^0 minimization problem! (not really a surprise perhaps?)

Focus on $rank(\mathbf{X})$

Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$

Solve a nicer problem

- 1. Add rank-one component
- 2. Check if $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$
- 3. Do it again until happy
- 1. Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$
- 2. Force it to be low-rank
- 3. Do it again until happy
- 1. Replace $\mathrm{rank}(\cdot)$ by nicer norm
- 2. Write a convex optim. problem
- 3. Use your favorite solver

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary		
Greedy algorithms								

Kiryung Lee and Yoram Bresler. Admira: Atomic decomposition for minimum rank approximation, 2009. arXiv:0905.0044

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary		
Hard thresholding algorithms								

Hard thresholding algorithms

- \bullet Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
 - Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

Hard thresholding algorithms

- \bullet Focus on $\mathbf{y}\approx \mathcal{M}(\mathbf{X})$
- Idea:
 - Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

 $\Rightarrow \mathsf{underdetermined}$

Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary <u>Hard thresholding</u> algorithms

Hard thresholding algorithms

- $\bullet~\mbox{Focus on}~\mathbf{y}\approx \mathcal{M}(\mathbf{X})$
- Idea:

1 Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

\Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

Hard thresholding algorithms

- $\bullet~\mbox{Focus on}~\mathbf{y}\approx \mathcal{M}(\mathbf{X})$
- Idea:

1 Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

$\Rightarrow \mathsf{underdetermined}$

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

Hard thresholding algorithms

- $\bullet~\mbox{Focus on}~\mathbf{y}\approx \mathcal{M}(\mathbf{X})$
- Idea:

1 Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

\Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

 \Rightarrow best rank-r approximation

Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary <u>OO</u> OO OO OO OOO OOO OOO

Hard thresholding algorithms

- $\bullet~\mbox{Focus on}~\mathbf{y}\approx \mathcal{M}(\mathbf{X})$
- Idea:
 - **1** Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

$\Rightarrow \mathsf{underdetermined}$

- ullet replace by: decrease the error $\mathbf{y}-\mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

 \Rightarrow best rank-r approximation

- keep r largest singular values of $\mathbf{X}_{n+1/2}$, set the other to zero.
- that is to say hard thresholding of singular values with $H_r(\cdot)$.

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
 - **1** Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

\Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

- Porce it to be low-rank \Rightarrow best rank-r approximation
 - keep r largest singular values of $\mathbf{X}_{n+1/2}$, set the other to zero.
 - that is to say hard thresholding of singular values with $H_r(\cdot)$.
- O it again until happy

Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary OO OO OO OOO OOO OOO

Hard thresholding algorithms

- $\bullet~\mbox{Focus on}~\mathbf{y}\approx \mathcal{M}(\mathbf{X})$
- Idea:
 - **1** Find some $\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$

$\Rightarrow \mathsf{underdetermined}$

- ullet replace by: decrease the error $\mathbf{y}-\mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

② Force it to be low-rank ⇒ best rank-r approximation

 keep r largest singular values of X_{n+1/2}, set the other to zero.
 that is to say hard thresholding of singular values with H_r(·).

 ③ Do it again until happy ⇒ stopping criterion

Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary Summary: Singular Value Projection

Singular Value Projection (SVP)

Require: y, \mathcal{M} , r 1: Initialize estimate: $\mathbf{X}_0 = \mathbf{0}$ 2: while (some stopping criterion is met) do 3: $\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$ 4: $[\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}] = SVD(\mathbf{X}_{n+1/2})$ 5: $\mathbf{X}_{n+1} = \mathrm{Udiag}(H_r(\mathrm{diag}(\mathbf{\Sigma})))\mathbf{V}^T$ 6: end while 7: return \mathbf{X}_n

- Inspired by Iterative Hard Thresholding (IHT) for sparse recovery, see e.g. [Blumensath & Davies, 2008] (first paper with theoretical results: convergence to a stationary point)
- Described with recovery guarantees (see later) in: R. Meka, P. Jain and I. S. Dhillon, Guaranteed rank minimization via singular value projection, Advances in Neural Information Processing Systems, (2010), pp. 937–945

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary
Comments on SVP						

- $\bullet\,$ Requires to know the expected rank r
- Requires that $||\mathcal{M}||_{op} < 1$ for convergence
- Recent works refines this to avoid cost of full SVD (with "lazy" SVD to get part associated to 2r largest singular values only)

Intro	First definitions OO	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary
Το ε	go further					

- Many other algorithms exist of this type exist, for instance the introduction of a step size in the gradient descent step: $\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mu_n \mathcal{M}^* (\mathbf{y} - \mathcal{M}(\mathbf{X}_n)))$
- Some variants focus on dealing with the case where *r* is unknown:
 - Iterative *soft* thresholding or *shrinkage* (see next: convex relaxations)
 - Varying r along the algorithm

We can get a visual intuition of the interest of ℓ_p norms for that:

$$--- \{x \text{ s.t.} \mathbf{b} = \mathbf{A}x\}$$

Both convex and promoting sparsity

• For sparse recovery: ℓ_1 norm

We can get a visual intuition of the interest of ℓ_p norms for that:

 $--- \{x \text{ s.t.} \mathbf{b} = \mathbf{A}x\}$

Both convex and promoting sparsity / promoting low-rank

- For sparse recovery: ℓ_1 norm
- For low-rank recovery: trace/nuclear/Shatten-1 norm

$$\|\mathbf{X}\|_{\star} = \|\mathbf{X}\|_{S_1} = \operatorname{Trace}(\mathbf{\Sigma}(\mathbf{X})) = \|\operatorname{diag}(\mathbf{\Sigma}(\mathbf{X}))\|_1$$

Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary oo oo oo oo oo Summary

Approximation

$$\min_{\mathbf{X}} \|\mathcal{M}(\mathbf{X}) - \mathbf{y}\|_2^2$$
 such that $\|\mathbf{X}\|_\star \leqslant \eta$

Rank reduction

$$\min_{\mathbf{x}} \|\mathbf{X}\|_{\star}$$
 such that $\|\mathcal{M}(\mathbf{X}) - \mathbf{y}\|_2^2 \leqslant arepsilon$

Regularization

$$\frac{1}{2}\min_{\mathbf{x}} \|\mathcal{M}(\mathbf{X}) - \mathbf{y}\|_2^2 + \lambda \|\mathbf{X}\|_{\star}$$

All can be cast as Second Order Cone Programs (SOCP) and addressed with standard tools. This however does not take into account their specific structure.

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary
Blac	k boxes					

```
Cvx in Matlab:
           p=10;q=11;
           m=10;
           M = randn(m, p*q);
           y = randn(m, 1);
            cvx_begin
              variable X(p,q)
              minimize ( norm_nuc(X) )
                subject to
                M * X(:) = y
            cvx_end
```

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary
Το ε	go further					

- Usage of generic optimization algorithms to solve those problems may not take benefit of their particularities.
- \bullet Advanced specific algorithms ? No surprise: yes, just as for ℓ_1 !

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary
Soft	thresholdi	ng algorith	าms			

Soft thresholding algorithms

• Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary

Soft thresholding algorithms

• Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

 \Rightarrow underdetermined

Soft thresholding algorithms

• Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

\Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

Soft thresholding algorithms

• Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{x}_n)$ at each iteration n• in practice: use of a gradient descent (Landweber iterations):
- in practice: use of a **gradient descent** (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

2 Force small nuclear norm

Soft thresholding algorithms

• Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

Soft thresholding algorithms

Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

Find some
$$\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$$
 \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

1

2 Force small nuclear norm \Rightarrow singular value thresholding

• soft thresholding of singular values $\Sigma(\mathbf{X}_{n+1/2})$ with $S_{\lambda}(\cdot)$.

Soft thresholding algorithms

• Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

Find some
$$\mathbf{y} pprox \mathcal{M}(\mathbf{X}_n)$$
 \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y} \mathcal{M}(\mathbf{X}_n)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

Force small nuclear norm \Rightarrow singular value thresholding

- soft thresholding of singular values $\Sigma(\mathbf{X}_{n+1/2})$ with $S_{\lambda}(\cdot)$.
- O it again until happy

Soft thresholding algorithms

1

2

Idea to adress regularized problem

$$\min_{\mathbf{X}} \frac{1}{2} \| \mathcal{M}(\mathbf{X}) - \mathbf{y} \|_2^2 + \lambda \| \mathbf{X} \|_{\star}$$

Find some
$$\mathbf{y} \approx \mathcal{M}(\mathbf{X}_n)$$
 \Rightarrow underdetermined
• replace by: decrease the error $\mathbf{y} - \mathcal{M}(\mathbf{X}_n)$ at each iteration r
• in practice: use of a gradient descent (Landweber iterations):
 $\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$
Force small nuclear norm \Rightarrow singular value thresholding

- soft thresholding of singular values $\Sigma(\mathbf{X}_{n+1/2})$ with $S_{\lambda}(\cdot)$.
- Do it again until happy 3

n

Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary OoO Summary: Singular Value Thresholding

Singular Value Thresholding (SVT)

Require: y, \mathcal{M} , r

- 1: Initialize estimate: $\mathbf{X}_0 = \mathbf{0}$
- 2: while (some stopping criterion is met) do

3:
$$\mathbf{X}_{n+1/2} = \mathbf{X}_n + \mathcal{M}^*(\mathbf{y} - \mathcal{M}(\mathbf{X}_n))$$

4:
$$[\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}] = SVD(\mathbf{X}_{n+1/2})$$

5:
$$\mathbf{X}_{n+1} = \mathbf{U} \operatorname{diag}(S_{\lambda}(\operatorname{diag}(\boldsymbol{\Sigma}))) \mathbf{V}^{T}$$

- 6: end while
- 7: return \mathbf{X}_n

- Described e.g. in [Cai, Candès, Chen 2010]
- Inspired by Iterative Shrinkage Thresholding Algorithm (ISTA) for sparse recovery, see e.g. [Daubechies, De Frise, De Mol, 2004] for global convergence guarantees

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary
Con	nments on	SVT				

- Does not require to know the expected rank r
- ... but requires to choose the regularization parameter λ (serves as a threshold)
- Requires that $||\mathcal{M}||_{op} < 1$ for convergence
- Recent works refines this to avoid cost of full SVD

Intro	First definitions	Well-posedness	Algorithms ○●	Guarantees	Dimension reduction	Summary
A te	ntative big	picture				

	Iterative/	Greedy Optimization
Principle	$\mathbf{r}_n = \mathbf{y} - \mathcal{M}(\mathbf{X}_n)$	$\min_{\mathbf{X}} \frac{1}{2} \ \mathcal{M}(\mathbf{X}) - \mathbf{y} \ _2^2 + \lambda \ \mathbf{X} \ _{S_p}^p$
Tuning	Stopping criterion	Regularization parameter λ
	Target rank r	
Variants	Selection criterion	Choice of sparsity measure p
	Update strategy	Optimization algorithm

Homework 1

Repeat the steps of tutorial session 1 with a cvx implementation of nuclear norm minimization; with SVP instead of IHT; with SVT instead of ISTA.