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Overall course content

Part 1 (N. Bertin): Fundamentals

o Definitions, first theoretical results, basic algorithmic principles
Part 2 (C. Herzet): Theoretical guarantees

o Finer conditions for feasibility and convergence
Part 3 (A. Roumy): Compressed sensing, probability results

e More conditions, information theory, number of measurements
Part 4 (R. Gribonval) & A. Deleforge ): Beyond sparsity

o Today: From sparse vectors to low-rank matrices

o Next: Compressed matrix sensing; Well-posedness and
algorithms for generic low-dimensional models; Dictionary
learning
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Detailed content of this part

@ Introduction: inverse problems with matrices

© Low-rank matrices: definitions and reminders

e Well-posedness of the low-rank recovery problem: a key result
0 Low-rank recovery algorithms: principles and first algorithms
© Theoretical guarantees

@ Dimension reduction

0 Summary
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Intro

Examples of matrix inverse problems: Matrix completion

Movie Alice (1) Bob (2) Carol (3) Dave (4)
Love at last
Romance forever é _5 ‘c'):) . *{r * * fr
, - N L 2, 2
Cute puppies of love '? & o ? ***jﬁr*
Nonstop car chases [®) o Z G ****Sﬁ'
Swords vs. karate ®) o ,S ~> *****
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Intro

Examples of matrix inverse problems: Matrix completion

Goal = complete a large matrix
@ Rows = movies (potentially tens of thousands)
@ Columns = users (potentially several millions)

e Many missing entries (99.9% if each user rates ten items)
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Intro

Examples of matrix inverse problems: Phase retrieval

diffraction patterns

source
/sample phase plate

e Magnitude only Fourier measurements: yi = [(as, x)]|

o phase ambiguity: no uniqueness y; = |(a;,x)| = |(a;, e/?x)|
e non-linear inverse problem in vector x ...

e ...yet convertible to linear problem in the matrix X = xx*:
52 y? = (a0 = alfxxa,
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Intro

Inverse problems with matrices: mathematical expression

Matrix <+ vector conversions

@ matrix to vector: u = vec(U)
@ vector to matrix (of given size): U = mat(u)
@ Linear observation operator M(X) £ ({a;, vec(X)))™,

@ Linear inverse problem:
find p x ¢ matrix X given y = M(X), of dimension m
@ Under-determined if m < pgq = need a model
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Intro

Reminder: iconic inverse problem with sparse regularization

Signal space ~ RN

Set of signals of
interest

Nonlinear

Approximation = Linear
projection A
Sparse recovery

b

Observation space ~ R™
m<<N

Here: signals — matrices; what set of “matrices of interest” ?

Image courtesy of Mike Davies, Univ. Edinburgh.
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First definitions

Low-rank matrices: definitions and reminders

e Low-rank matrices: definitions and reminders
@ Definitions
@ Problem formulation
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First definitions
(]

Definition: low-rank matrix

Rank of a matrix (real or complex)

@ The rank of a p x ¢ matrix X, rank(X) is the dimension of
the span of its columns (or equivalently of its rows).

@ Given the SVD X = UXVT with ¥ “diagonal”, we have
rank(X) = ||diag(X)]|o. As a result rank(X) < min(p, q).

Informally, “low-rank” means rank(X) < min(p, q).
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First definitions
(]

Definition: set of low-rank matrices

Low-rank matrices (real or complex)

@ A p x g matrix X is of rank at most r iff it can be written as
o X =UVT where Uis p x r, Vis ¢ x r; or equivalently
o X =37 wv!, whereu;ispx1, v;isqx 1.
@ The set of all matrices of rank at most r is denoted:
Y, :={X € RP*9 rank(X) < r}
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First definitions
(]

Definition: set of low-rank matrices

Low-rank matrices (real or complex)

@ A p x g matrix X is of rank at most r iff it can be written as
o X =UVT where Uis p x r, Vis ¢ x r; or equivalently
o X =37 wv!, whereu;ispx1, v;isqx 1.
@ The set of all matrices of rank at most r is denoted:
Y, :={X € RP*9 rank(X) < r}

@ X, is not a linear subspace of the space of p x ¢ matrices:
If X,Y € 3,, then X+Y € Xy, butin general X +Y ¢ X,
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First definitions
(]

Definition: set of low-rank matrices

Low-rank matrices (real or complex)

@ A p x g matrix X is of rank at most r iff it can be written as
o X =UVT where Uis p x r, Vis ¢ x r; or equivalently
o X =37 wv!, whereu;ispx1, v;isqx 1.
@ The set of all matrices of rank at most r is denoted:
Y, :={X € RP*9 rank(X) < r}

@ X, is not a linear subspace of the space of p x ¢ matrices:
If X,Y € 3,, then X+Y € Xy, butin general X +Y ¢ X,

@ In the sense of manifolds,

dim(X,)=r(p+q—r).

For small 7, this is approximately (p + q).

Intuition: p degrees of freedom for each u;; g for each v;; = p + q for each uivz"
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First definitions
(]

Examples of low-rank matrices: Phase retrieval

diffraction patterns

source
sample phase plate

e Magnitude only measurements: v = |{a;, x)]
o phase ambiguity: no uniqueness y; = |(a;,x)| = |(a;, e/?x)|
o non-linear inverse problem in vector x ...
o ...yet convertible to linear problem in the matrix X £ xx:
A L2 2 H H
zi £ y; = [{a;,x)|” = a; xx" a;
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First definitions
(]

Examples of low-rank matrices: Matrix completion

Movie Alice (1) Bob (2) Carol (3) Dave (4)
Love at last S S
) f " = ? S [k
omance forever S d v} *****
Cute puppies of love 7 s o ? ***jﬁ{}f{
Nonstop car chases (@) o z (_'_ *****
Swords vs. karate ', e S ~ *****

Simplistic user similarity model:
@ 7 user categories;
@ shared user preference profile in category i: u;;
o users in category 4 indicated by nonzero entry in v

o full matrix written X = 3" u;v!.
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First definitions
(]

Low-rank approximation

Real-world situations can deviate from the exact low-rank model.

o Noise:
y=M(X)+e

@ Approximate low-rank:
X~Z

where Z is a rank-r matrix. The matrix X is then often said
to be compressible (rather than low-rank, which it is not).
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First definitions
(]

Reminders on norms

.l : X = RT is:
@ A norm iff for all X, Y, A:
i) [|IX]|| = 0 iff X = 0 (definiteness)
(i) IAX]] = [A[[-[X]| (homogeneity)
i) | X4+ Y| <[ X||+ |IY] (triangle inequality)
e A quasi-norm: (i), (ii) and for some constant C'
i) IX+ Y| < COX]+ Y1)
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First definitions
(]

Shatten norms S,

Shatten norm of a matrix
For 0 < p < oo: using the SVD, M = UXVT define

IMl|s, = l|diag(2)ll,

This is a quasinorm for 0 < p < 1 ; a norm for 1 < p < 0.

Special cases:
e p=0: rank rank(M) = |[M||g,
@ p = 1: trace/nuclear norm |M||x £ trace(X) = ||[M]|s,

e p = 2: Frobenius norm M| 2 />, M3, = [[M]s,

e p=oc: Spectral norm  |M||,, £ sup | Mx|2 = |[|[M]s..

[x[l2=1
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First definitions
(]

Best low-rank approximation

@ The error of best rank-r approximation of X is:
0r-(X) £ inf{||X — Z||,rank(Z) < r}

o Consider X = UXV7 the SVD of X. The matrix
Z 2 UXVT, where 3 matches X on the 7 largest diagonal
entries and is zero everywhere else, realizes this infimum for
Shatten norms || X — Z||5,, no matter the value of p (>0).

17 5GM - INSA Parcimonie 21-28/11/2016



First definitions
°

Problem formulation: ldeal low-rank regularization

Given the observation y, with known measurement operator M, we
wish to solve:

n%énrank(X) st. y=M(X)
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Well-posedness

Contents

9 Well-posedness of the low-rank recovery problem: a key result
@ Result
@ Demonstration (exercice)
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Well-posedness
°

Well-posedness of the low-rank recovery problem

Given a low-rank matrix Xg and y = M(Xy), consider the
low-rank matrix recovery problem:

r%énrank(X) sty = M(X)

Theorem. Well-posedness of the low-rank recovery problem

The following properties are equivalent.
(i) Uniqueness of solutions of rank at most 7: for any pair of
matrices (X¢,X7) of rank at most r, if M(Xgp) = M(X7)
then X = X.
(i) The null space Ker(M) does not contain any matrix of rank
at most 2r other than the zero matrix. )
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Well-posedness
°

Well-posedness of the low-rank recovery problem

A shorter, easy to memorize formulation of the previous theorem is:

VX, X1 € Xp, M(Xo) = M(Xl) = Xp = X4
-
Ker(M) N Xq, = {0}

Problem (Homework): consequence for Matrix Completion

@ what is the measurement operator M 7
@ what is the rank of an s-sparse matrix X ?

o for what rank r does the above property hold ?
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Well-posedness
.

Demonstration

S ( A{B)‘(OS Acos Bsin [\
( At ',5): Sink <OSE)+ cos A

Prove the theorem.
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Well-posedness
.

Number of measurements and sparsity

Comments on the previous theorem:
@ This is a worst case analysis

e does not provide guarantees for matrix completion.
e more advanced analysis with random sampling (random
missing entries) and incoherence of X are available.

@ Necessary number of measurements: .

m > dim(Xy,) = 2r(p +q — 2r)
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Well-posedness
.

Number of measurements and sparsity

Comments on the previous theorem:
@ This is a worst case analysis

e does not provide guarantees for matrix completion.
e more advanced analysis with random sampling (random
missing entries) and incoherence of X are available.

@ Necessary number of measurements: .

m > dim(Xy,) = 2r(p + q — 2r)< pq for small r
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Algorithms

Contents

e Low-rank recovery algorithms: principles and first algorithms
@ Rank minimization is NP hard
@ Three practical philosophies
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Algorithms
.

Rank minimization is NP hard

We want to solve the problem:

m)énrank(X) st. y=M(X)

Bad luck : this is NP-hard, just as the ¢£° minimization problem!
(not really a surprise perhaps?)

25 5GM - INSA Parcimonie 21-28/11/2016



Algorithms
L]

Three practical philosophies

rr%énrank(X) st. y=M(X)

|

Idea 1 Idea 2 Idea 3

Focus on rank(X) Focus on y =~ M(X)  Solve a nicer problem

1. Add rank-one component 1. Find some y =~ M(X,) 1. Replace rank(-) by nicer norm
2. Check if y =~ M(Xy,) 2. Force it to be low-rank 2. Write a convex optim. problem
3. Do it again until happy 3. Do it again until happy 3. Use your favorite solver
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Algorithms
L]

Three practical philosophies

rr%énrank(X) st. y=M(X)

|

Idea 1 Idea 2 Idea 3

Focus on y =~ M(X)  Solve a nicer problem

. Add rank-one component
. Check if y & M(Xy,)
\ Do it again until happy,

1. Find some y =~ M(X,) 1. Replace rank(-) by nicer norm
2. Force it to be low-rank 2. Write a convex optim. problem
3. Do it again until happy 3. Use your favorite solver

Greedy
algorithms
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Algorithms

Three practical philosophies

\ Do it again until happy,

. Add rank-one component

Check if y =~ M(Xy,)

Greedy
algorithms

min rank(X)
X

s.t.

|

Idea 2

. Find some y =~ M(X,)
. Force it to be low-rank
3\ Do it again until happy,

Hard thresholding
algorithms

5GM - INSA
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y = M(X)

Idea 3

Solve a nicer problem

1. Replace rank(-) by nicer norm
2. Write a convex optim. problem
3. Use your favorite solver
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Algorithms
L]

Three practical philosophies

rr%énrank(X) st. y=M(X)

|

Idea 1 Idea 2 Idea 3

So

€ a nicer problem

. Add rank-one component
. Check if y & M(Xy,)
\ Do it again until happy,

. Find some y =~ M(X,)
. Force it to be low-rank
3\ Do it again until happy,

1. Replace rank(-) by nicer| norm
2. Write a convex optim. problem
3. Use your favorite solve

Greedy Hard thresholding Convex relaxation
algorithms algorithms algorithms
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Algorithms
L]

Greedy algorithms

Kiryung Lee and Yoram Bresler. Admira: Atomic decomposition for
minimum rank approximation, 2009. arXiv:0905.0044
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Algorithms
L]

Hard thresholding algorithms

Hard thresholding algorithms

e Focus ony ~ M(X)
o Idea:
@ Find some y ~ M(X,,)
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Algorithms
L]

Hard thresholding algorithms

Hard thresholding algorithms

e Focus ony ~ M(X)
o Idea:
@ Find some y ~ M(X,,)
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Algorithms
L]

Hard thresholding algorithms

Hard thresholding algorithms
e Focus ony ~ M(X)
@ Idea:

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xng1/2 = Xp + M (y = M(X5))
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L]

Hard thresholding algorithms

Hard thresholding algorithms

e Focus ony ~ M(X)
o Idea:

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xng1/2 = Xp + M (y = M(X5))

@ Force it to be low-rank

28 5GM - INSA Parcimonie 21-28/11/2016



Algorithms
L]

Hard thresholding algorithms

Hard thresholding algorithms

e Focus ony ~ M(X)
o Idea:

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xng1/2 = Xp + M (y = M(X5))

@ Force it to be low-rank = best rank-r approximation
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Algorithms
L]

Hard thresholding algorithms

Hard thresholding algorithms

e Focus ony ~ M(X)
o Idea:

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xng1/2 = Xp + M (y = M(X5))

@ Force it to be low-rank = best rank-r approximation

o keep r largest singular values of X,, ;1 /2, set the other to zero.
@ that is to say hard thresholding of singular values with H,(-).

28 5GM - INSA Parcimonie 21-28/11/2016



Algorithms
L]

Hard thresholding algorithms

Hard thresholding algorithms

e Focus ony ~ M(X)
o Idea:

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xng1/2 = Xp + M (y = M(X5))

@ Force it to be low-rank = best rank-r approximation

o keep r largest singular values of X,, ;1 /2, set the other to zero.
@ that is to say hard thresholding of singular values with H,(-).

© Do it again until happy
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Algorithms
L]

Hard thresholding algorithms

Hard thresholding algorithms
e Focus ony ~ M(X)

@ Idea:
@ Find some y ~ M(X,,) = underdetermined
o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):
Xny1/2 = Xy + M (y = M(X»))
@ Force it to be low-rank = best rank-r approximation
o keep r largest singular values of X,, ;1 /2, set the other to zero.
@ that is to say hard thresholding of singular values with H,(-).
© Do it again until happy = stopping criterion
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Algorithms
L]

Summary: Singular Value Projection

Singular Value Projection (SVP)

Require: y, M, r

1: Initialize estimate: Xo =0

2: while (some stopping criterion is met) do
3 Xppie = Xn + M (y — M(Xn))

4: [U,%, V] =SVD(X,41/2)

5:  X,11 = Udiag(H,(diag(X))) V"

6: end while
7: return X,

@ Inspired by lterative Hard Thresholding (IHT) for sparse recovery, see e.g. [Blumensath &
Davies, 2008] (first paper with theoretical results: convergence to a stationary point)

@ Described with recovery guarantees (see later) in: R. Meka, P. Jain and I. S. Dhillon, Guaranteed
rank minimization via singular value projection, Advances in Neural Information Processing
Systems, (2010), pp. 937-945
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Algorithms
L]

Comments on SVP

@ Requires to know the expected rank r
@ Requires that ||M||,, < 1 for convergence

@ Recent works refines this to avoid cost of full SVD (with “lazy”
SVD to get part associated to 2r largest singular values only)
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Algorithms
L]

To go further

@ Many other algorithms exist of this type exist, for instance the
introduction of a step size in the gradient descent step:
Xn+1/2 =X, + NnM*(y - M(Xn)))

@ Some variants focus on dealing with the case where 7 is
unknown:

o lterative soft thresholding or shrinkage (see next: convex
relaxations)
e Varying r along the algorithm
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Algorithms
L]

Convex relaxation: reminder on £, norms for sparse recovery

We can get a visual intuition of the interest of £, norms for that:

N A |

{z s.t.b = Az}

Both convex and promoting sparsity
o For sparse recovery: {1 norm
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Algorithms
L]

Convex relaxation: reminder on £, norms for sparse recovery

We can get a visual intuition of the interest of £, norms for that:

N A |

{z s.t.b = Az}

Both convex and promoting sparsity / promoting low-rank
o For sparse recovery: {1 norm
e For low-rank recovery: trace/nuclear/Shatten-1 norm

X[l = X5, = Trace(3(X)) = |[diag(3(X))[x
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Algorithms
L]

Low-rank recovery as optimization problems

e Approximation
m}én IM(X) —y|5 suchthat |X|,<n
e Rank reduction
m}in |X|lx suchthat |M(X)-y|3<e
e Regularization
L min [M(X) - y[3+ M.

All can be cast as Second Order Cone Programs (SOCP) and
addressed with standard tools. This however does not take into
account their specific structure.
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Algorithms
L]

Black boxes

Cvx in Matlab:
p=10;g=11;
m=10;
M = randn(m,p*q);
y = randn(m,1);
cvx_begin
variable X(p,q)
minimize ( norm_nuc(X) )
subject to
M¥X(:) =y
cvx_end
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Algorithms
L]

To go further

@ Usage of generic optimization algorithms to solve those
problems may not take benefit of their particularities.

@ Advanced specific algorithms 7 No surprise: yes, just as for /1 |
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Algorithms
L]

Soft thresholding algorithms

Soft thresholding algorithms

@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,)
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@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,) = underdetermined
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Soft thresholding algorithms

Soft thresholding algorithms

@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

X172 = Xn + M (y = M(X2))
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Soft thresholding algorithms

Soft thresholding algorithms

@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xnt12 = Xp + M*(y - M(X5))

@ Force small nuclear norm
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Soft thresholding algorithms

Soft thresholding algorithms

@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xnt12 = Xp + M*(y - M(X5))

@ Force small nuclear norm = singular value thresholding
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Soft thresholding algorithms

Soft thresholding algorithms

@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xnt12 = Xp + M*(y - M(X5))

@ Force small nuclear norm = singular value thresholding
o soft thresholding of singular values X(X,,11/2) with Sx(-).
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Soft thresholding algorithms

Soft thresholding algorithms

@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xnt12 = Xp + M*(y - M(X5))

@ Force small nuclear norm = singular value thresholding
o soft thresholding of singular values X(X,,11/2) with Sx(-).
© Do it again until happy
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Soft thresholding algorithms

Soft thresholding algorithms

@ Idea to adress regularized problem

min 3 M(X) — y 8 + XXl

@ Find some y ~ M(X,,) = underdetermined

o replace by: decrease the error y — M(X,,) at each iteration n
@ in practice: use of a gradient descent (Landweber iterations):

Xnt12 = Xp + M*(y - M(X5))

@ Force small nuclear norm = singular value thresholding
o soft thresholding of singular values X(X,,11/2) with Sx(-).
© Do it again until happy = stopping criterion
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Algorithms

Summary: Singular Value Thresholding

Singular Value Thresholding (SVT)

Require: y, M, r
1: Initialize estimate: Xg =0

2: while (some stopping criterion is met) do
3 X = Xo b My — M(X,)

4 [U,%,V]=5SVD(X,411/2)

5. X,41 = Udiag(S,(diag(X))) VT

6: end while

7: return X,

@ Described e.g. in [Cai, Candés, Chen 2010]

@ Inspired by lterative Shrinkage Thresholding Algorithm (ISTA) for sparse recovery, see e.g.
[Daubechies, De Frise, De Mol, 2004] for global convergence guarantees
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Algorithms
L]

Comments on SVT

Does not require to know the expected rank r . ..

... but requires to choose the regularization parameter \
(serves as a threshold)

Requires that ||M||,, < 1 for convergence

Recent works refines this to avoid cost of full SVD
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Algorithms
L]

A tentative big picture

lterative/Greedy Optimization
Principle | T, — y — M(X,,) | minx JM(X) — y[3 + \IXI%,
Tuning Stopping criterion | Regularization parameter A
Target rank r
Variants | Selection criterion | Choice of sparsity measure p
Update strategy Optimization algorithm

Homework 1

Repeat the steps of tutorial session 1 with a cvx implementation of
nuclear norm minimization; with SVP instead of IHT; with SVT
instead of ISTA.
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