Parcimonie en traitement du signal et des images Partie 4: au delà de la parcimonie

Génie Mathématique - INSA

21/23/28 novembre 2016
N. Bertin, C. Herzet, A. Roumy, *Rémi Gribonval , A. Deleforge remi.gribonval@inria.fr

Overall course content

Part 1 (N. Bertin): Fundamentals

- Definitions, first theoretical results, basic algorithmic principles

Part 2 (C. Herzet): Theoretical guarantees

- Finer conditions for feasibility and convergence

Part 3 (A. Roumy): Compressed sensing, probability results

- More conditions, information theory, number of measurements

Part 4 (R. Gribonval) \& A. Deleforge): Beyond sparsity

- Today: From sparse vectors to low-rank matrices
- Next: Compressed matrix sensing; Well-posedness and algorithms for generic low-dimensional models; Dictionary learning

Detailed content of this part

(1) Introduction: inverse problems with matrices
(2) Low-rank matrices: definitions and reminders
(3) Well-posedness of the low-rank recovery problem: a key result

4 Low-rank recovery algorithms: principles and first algorithms
(5) Theoretical guarantees
(6) Dimension reduction
(7) Summary

Examples of matrix inverse problems：Matrix completion

Movie	Alice（1）	Bob（2）	Carol（3）	Dave（4）	
Love at last	5	5	\bigcirc	6	
Romance forever	5	？	7	0	
Cute puppies of love	$?$	4	\bigcirc	$?$	
Nonstop car chases	O		5	4	人）人 ¢
Swords vs．karate			5		W以N以

Examples of matrix inverse problems: Matrix completion

Goal = complete a large matrix

- Rows $=$ movies (potentially tens of thousands)
- Columns $=$ users (potentially several millions)
- Many missing entries (99.9% if each user rates ten items)

Examples of matrix inverse problems: Phase retrieval

- Magnitude only Fourier measurements: $\quad y_{i}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right|$
- phase ambiguity: no uniqueness $y_{i}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right|=\left|\left\langle\mathbf{a}_{i}, e^{j \phi} \mathbf{x}\right\rangle\right|$
- non-linear inverse problem in vector \mathbf{x}...
- ... yet convertible to linear problem in the matrix $\mathbf{X} \triangleq \mathbf{x x}^{H}$:

$$
z_{i} \triangleq y_{i}^{2}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right|^{2}=\mathbf{a}_{i}^{H} \mathbf{x} \mathbf{x}^{H} \mathbf{a}_{i}
$$

Inverse problems with matrices: mathematical expression

Matrix \leftrightarrow vector conversions

- matrix to vector:

$$
\mathbf{u}=\operatorname{vec}(\mathbf{U})
$$

- vector to matrix (of given size):
$\mathbf{U}=\operatorname{mat}(\mathbf{u})$
- Linear observation operator
$\mathcal{M}(\mathbf{X}) \triangleq\left(\left\langle\mathbf{a}_{i}, \operatorname{vec}(\mathbf{X})\right\rangle\right)_{i=1}^{m}$
- Linear inverse problem: find $p \times q$ matrix $\mathbf{X} \quad$ given $\quad \mathbf{y}=\mathcal{M}(\mathbf{X})$, of dimension m
- Under-determined if $m<p q$ \Rightarrow need a model

Reminder: iconic inverse problem with sparse regularization

Here: signals \rightarrow matrices; what set of "matrices of interest" ?
Image courtesy of Mike Davies, Univ. Edinburgh.

Low-rank matrices: definitions and reminders

Introduction: inverse problems with matrices
(2) Low-rank matrices: definitions and reminders

- Definitions
- Problem formulation
(3) Well-posedness of the low-rank recovery problem: a key result

4 Low-rank recovery algorithms: principles and first algorithms
(5) Theoretical guarantees
(6) Dimension reductionSummary

Definition: low-rank matrix

Rank of a matrix (real or complex)

- The rank of a $p \times q$ matrix $\mathbf{X}, \operatorname{rank}(\mathbf{X})$ is the dimension of the span of its columns (or equivalently of its rows).
- Given the SVD $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$, with $\boldsymbol{\Sigma}$ "diagonal", we have $\operatorname{rank}(\mathbf{X})=\|\operatorname{diag}(\boldsymbol{\Sigma})\|_{0}$. As a result $\operatorname{rank}(\mathbf{X}) \leq \min (p, q)$.

Informally, "low-rank" means $\operatorname{rank}(\mathbf{X}) \ll \min (p, q)$.

Definition: set of low-rank matrices

Low-rank matrices (real or complex)

- A $p \times q$ matrix \mathbf{X} is of rank at most r iff it can be written as
- $\mathbf{X}=\mathbf{U V}^{T}$ where \mathbf{U} is $p \times r, \mathbf{V}$ is $q \times r$; or equivalently
- $\mathbf{X}=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$, where \mathbf{u}_{i} is $p \times 1, \mathbf{v}_{i}$ is $q \times 1$.
- The set of all matrices of rank at most r is denoted:

$$
\Sigma_{r}:=\left\{\mathbf{X} \in \mathbb{R}^{p \times q}, \operatorname{rank}(\mathbf{X}) \leqslant r\right\}
$$

Definition: set of low-rank matrices

Low-rank matrices (real or complex)

- A $p \times q$ matrix \mathbf{X} is of rank at most r iff it can be written as
- $\mathbf{X}=\mathbf{U V}^{T}$ where \mathbf{U} is $p \times r, \mathbf{V}$ is $q \times r$; or equivalently
- $\mathbf{X}=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$, where \mathbf{u}_{i} is $p \times 1, \mathbf{v}_{i}$ is $q \times 1$.
- The set of all matrices of rank at most r is denoted:

$$
\Sigma_{r}:=\left\{\mathbf{X} \in \mathbb{R}^{p \times q}, \operatorname{rank}(\mathbf{X}) \leqslant r\right\}
$$

- Σ_{r} is not a linear subspace of the space of $p \times q$ matrices: If $\mathbf{X}, \mathbf{Y} \in \Sigma_{r}$, then $\mathbf{X}+\mathbf{Y} \in \Sigma_{2 r}$ but in general $\mathbf{X}+\mathbf{Y} \notin \Sigma_{r}$

Definition: set of low-rank matrices

Low-rank matrices (real or complex)

- A $p \times q$ matrix \mathbf{X} is of rank at most r iff it can be written as
- $\mathbf{X}=\mathbf{U V}^{T}$ where \mathbf{U} is $p \times r, \mathbf{V}$ is $q \times r$; or equivalently
- $\mathbf{X}=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$, where \mathbf{u}_{i} is $p \times 1, \mathbf{v}_{i}$ is $q \times 1$.
- The set of all matrices of rank at most r is denoted:

$$
\Sigma_{r}:=\left\{\mathbf{X} \in \mathbb{R}^{p \times q}, \operatorname{rank}(\mathbf{X}) \leqslant r\right\}
$$

- Σ_{r} is not a linear subspace of the space of $p \times q$ matrices: If $\mathbf{X}, \mathbf{Y} \in \Sigma_{r}$, then $\mathbf{X}+\mathbf{Y} \in \Sigma_{2 r}$ but in general $\mathbf{X}+\mathbf{Y} \notin \Sigma_{r}$
- In the sense of manifolds,

$$
\operatorname{dim}\left(\Sigma_{r}\right)=r(p+q-r)
$$

For small r, this is approximately $r(p+q)$.
Intuition: p degrees of freedom for each $\mathbf{u}_{i} ; q$ for each \mathbf{v}_{i};
$\Rightarrow p+q$ for each $\mathbf{u}_{i} \mathbf{v}_{i}^{T}$

Examples of low-rank matrices: Phase retrieval

- Magnitude only measurements:

$$
y_{i}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right|
$$

- phase ambiguity: no uniqueness $y_{i}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right|=\left|\left\langle\mathbf{a}_{i}, e^{j \phi} \mathbf{x}\right\rangle\right|$
- non-linear inverse problem in vector \mathbf{x}...
- ... yet convertible to linear problem in the matrix $\mathbf{X} \triangleq \mathrm{xx}^{H}$:

$$
z_{i} \triangleq y_{i}^{2}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right|^{2}=\mathbf{a}_{i}^{H} \mathbf{x} \mathbf{x}^{H} \mathbf{a}_{i}
$$

Examples of low-rank matrices: Matrix completion

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	
Love at last	5	5	0	0	
Romance forever	5	$?$	$?$	0	
Cute puppies of love	$?$	4	0	$?$	
Nonstop car chases	0	0	5	4	

Simplistic user similarity model:

- r user categories;
- shared user preference profile in category $i: \mathbf{u}_{i}$;
- users in category i indicated by nonzero entry in \mathbf{v}_{i}^{T};
- full matrix written $\mathbf{X}=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.

Low-rank approximation

Real-world situations can deviate from the exact low-rank model.

- Noise:

$$
\mathbf{y}=\mathcal{M}(\mathbf{X})+\varepsilon
$$

- Approximate low-rank:

$$
\mathbf{X} \approx \mathbf{Z}
$$

where \mathbf{Z} is a rank- r matrix. The matrix \mathbf{X} is then often said to be compressible (rather than low-rank, which it is not).

Reminders on norms

$\|\|:. \mathbf{X} \rightarrow \mathbb{R}^{+}$is:

- A norm iff for all $\mathbf{X}, \mathbf{Y}, \lambda$:
(i) $\|\mathbf{X}\|=0$ iff $\mathbf{X}=\mathbf{0}$ (definiteness)
(ii) $\|\lambda \mathbf{X}\|=\mid \lambda\|\cdot\| \mathbf{X} \|$ (homogeneity)
(iii) $\|\mathbf{X}+\mathbf{Y}\| \leqslant\|\mathbf{X}\|+\| \mathbf{Y} \mid$ (triangle inequality)
- A quasi-norm: (i), (ii) and for some constant C (iii) $\|\mathbf{X}+\mathbf{Y}\| \leqslant C(\|\mathbf{X}\|+\|\mathbf{Y}\|)$.

Shatten norms S_{p}

Shatten norm of a matrix

For $0 \leq p \leq \infty$: using the SVD, $\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$, define

$$
\|\mathbf{M}\|_{S_{p}} \triangleq\|\operatorname{diag}(\boldsymbol{\Sigma})\|_{p}
$$

This is a quasinorm for $0<p<1$; a norm for $1 \leq p \leq \infty$.

Special cases:

- $p=0$: rank
- $p=1$: trace/nuclear norm
- $p=2$: Frobenius norm

$$
\begin{aligned}
\operatorname{rank}(\mathbf{M}) & =\|\mathbf{M}\|_{S_{0}} \\
\|\mathbf{M}\|_{\star} \triangleq \operatorname{trace}(\boldsymbol{\Sigma}) & =\|\mathbf{M}\|_{S_{1}} \\
\|\mathbf{M}\|_{F} \triangleq \sqrt{\sum_{i j} \mathbf{M}_{i j}^{2}} & =\|\mathbf{M}\|_{S_{2}} \\
\|\mathbf{M}\|_{o p} \triangleq \sup _{\|\mathbf{x}\|_{2}=1}\|\mathbf{M} \mathbf{x}\|_{2} & =\|\mathbf{M}\|_{S_{\infty}}
\end{aligned}
$$

- $p=\infty$: Spectral norm

Best low-rank approximation

- The error of best rank- r approximation of \mathbf{X} is:

$$
\sigma_{r}(\mathbf{X}) \triangleq \inf \{\|\mathbf{X}-\mathbf{Z}\|, \operatorname{rank}(\mathbf{Z}) \leq r\}
$$

- Consider $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ the SVD of \mathbf{X}. The matrix $\mathbf{Z} \triangleq \mathbf{U} \hat{\boldsymbol{\Sigma}} \mathbf{V}^{T}$, where $\hat{\boldsymbol{\Sigma}}$ matches $\boldsymbol{\Sigma}$ on the r largest diagonal entries and is zero everywhere else, realizes this infimum for Shatten norms $\|\mathbf{X}-\mathbf{Z}\|_{S_{p}}$, no matter the value of $p(>0)$.

Problem formulation: Ideal low-rank regularization

Given the observation \mathbf{y}, with known measurement operator \mathcal{M}, we wish to solve:

$$
\min _{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \quad \text { s.t. } \quad \mathbf{y}=\mathcal{M}(\mathbf{X})
$$

Contents

(1) Introduction: inverse problems with matrices
(2) Low-rank matrices: definitions and reminders
(3) Well-posedness of the low-rank recovery problem: a key result

- Result
- Demonstration (exercice)

4 Low-rank recovery algorithms: principles and first algorithms
(5) Theoretical guarantees
(6) Dimension reductionSummary

Well-posedness of the low-rank recovery problem

Given a low-rank matrix \mathbf{X}_{0} and $\mathbf{y} \triangleq \mathcal{M}\left(\mathbf{X}_{0}\right)$, consider the low-rank matrix recovery problem:

$$
\min _{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \quad \text { s.t. } \quad \mathbf{y}=\mathcal{M}(\mathbf{X})
$$

Theorem. Well-posedness of the low-rank recovery problem

The following properties are equivalent.
(i) Uniqueness of solutions of rank at most r : for any pair of matrices $\left(\mathbf{X}_{0}, \mathbf{X}_{1}\right)$ of rank at most r, if $\mathcal{M}\left(\mathbf{X}_{\mathbf{0}}\right)=\mathcal{M}\left(\mathbf{X}_{\mathbf{1}}\right)$ then $\mathbf{X}_{0}=\mathbf{X}_{1}$.
(ii) The null space $\operatorname{Ker}(\mathcal{M})$ does not contain any matrix of rank at most $2 r$ other than the zero matrix.

Well-posedness of the low-rank recovery problem

A shorter, easy to memorize formulation of the previous theorem is:

$$
\begin{gathered}
\forall \mathbf{X}_{0}, \mathbf{X}_{1} \in \Sigma_{r}, \mathcal{M}\left(\mathbf{X}_{0}\right)=\mathcal{M}\left(\mathbf{X}_{1}\right) \Rightarrow \mathbf{X}_{0}=\mathbf{X}_{1} \\
\Leftrightarrow \\
\operatorname{Ker}(\mathcal{M}) \cap \Sigma_{2 r}=\{\mathbf{0}\}
\end{gathered}
$$

Problem (Homework): consequence for Matrix Completion

- what is the measurement operator \mathcal{M} ?
- what is the rank of an s-sparse matrix \mathbf{X} ?
- for what rank r does the above property hold ?

Demonstration

Homework

Prove the theorem.

Number of measurements and sparsity

Comments on the previous theorem:

- This is a worst case analysis
- does not provide guarantees for matrix completion.
- more advanced analysis with random sampling (random missing entries) and incoherence of \mathbf{X} are available.
- Necessary number of measurements: .

$$
m \geq \operatorname{dim}\left(\Sigma_{2 r}\right)=2 r(p+q-2 r)
$$

Number of measurements and sparsity

Comments on the previous theorem:

- This is a worst case analysis
- does not provide guarantees for matrix completion.
- more advanced analysis with random sampling (random missing entries) and incoherence of \mathbf{X} are available.
- Necessary number of measurements: .

$$
m \geq \operatorname{dim}\left(\Sigma_{2 r}\right)=2 r(p+q-2 r) \ll p q \quad \text { for small } r
$$

Contents

(1) Introduction: inverse problems with matrices
(2) Low-rank matrices: definitions and reminders
(3) Well-posedness of the low-rank recovery problem: a key result

4 Low-rank recovery algorithms: principles and first algorithms

- Rank minimization is NP hard
- Three practical philosophies
(5) Theoretical guarantees
(6) Dimension reductionSummary

Rank minimization is NP hard

We want to solve the problem:

$$
\min _{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \quad \text { s.t. } \quad \mathbf{y}=\mathcal{M}(\mathbf{X})
$$

Bad luck: this is NP-hard, just as the ℓ^{0} minimization problem! (not really a surprise perhaps?)

Three practical philosophies

$\min _{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \quad$ s.t. $\quad \mathbf{y}=\mathcal{M}(\mathbf{X})$

Idea 2

Idea 1

Focus on $\operatorname{rank}(\mathbf{X})$

1. Add rank-one component
2. Check if $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$
3. Do it again until happy
4. Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$
5. Force it to be low-rank
6. Do it again until happy

Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X}) \quad$ Solve a nicer problem

1. Replace $\operatorname{rank}(\cdot)$ by nicer norm
2. Write a convex optim. problem
3. Use your favorite solver

Three practical philosophies

$$
{ }^{\text {nirxamk }(X)} \text { s.t } y=M(X)
$$

Idea 1
Idea 2

Idea 3

Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X}) \quad$ Solve a nicer problem

1. Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$
2. Force it to be low-rank
3. Do it again until happy
4. Replace $\operatorname{rank}(\cdot)$ by nicer norm
5. Write a convex optim. problem
6. Use your favorite solver

Three practical philosophies

$$
\min ^{\text {min } r \text { ank }(X)} \text { s.t } y=M(X)
$$

Idea 2

Idea 3

algorithms

Solve a nicer problem

1. Replace $\operatorname{rank}(\cdot)$ by nicer norm
2. Write a convex optim. problem
3. Use your favorite solver

Three practical philosophies

min

Idea 1
Idea 3

Solve a nicer problem

1. Replace $\operatorname{rank}(\cdot)$ by nicer norm
2. Write a convex optic. problem Use your favorite solved

Convex relaxation algorithms

Greedy algorithms

Kiryung Lee and Yoram Bresler. Admira: Atomic decomposition for minimum rank approximation, 2009. arXiv:0905.0044

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$
\Rightarrow underdetermined

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right) \quad \Rightarrow$ underdetermined
- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n - in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right) \quad \Rightarrow$ underdetermined
- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n - in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force it to be low-rank

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right) \quad \Rightarrow$ underdetermined
- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n - in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force it to be low-rank
\Rightarrow best rank- r approximation

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right) \quad \Rightarrow$ underdetermined
- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n - in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force it to be low-rank $\quad \Rightarrow$ best rank- r approximation

- keep r largest singular values of $\mathbf{X}_{n+1 / 2}$, set the other to zero.
- that is to say hard thresholding of singular values with $H_{r}(\cdot)$.

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right) \quad \Rightarrow$ underdetermined
- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n - in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force it to be low-rank $\quad \Rightarrow$ best rank- r approximation

- keep r largest singular values of $\mathbf{X}_{n+1 / 2}$, set the other to zero.
- that is to say hard thresholding of singular values with $H_{r}(\cdot)$.
(3) Do it again until happy

Hard thresholding algorithms

Hard thresholding algorithms

- Focus on $\mathbf{y} \approx \mathcal{M}(\mathbf{X})$
- Idea:
(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$
\Rightarrow underdetermined
- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force it to be low-rank $\quad \Rightarrow$ best rank- r approximation

- keep r largest singular values of $\mathbf{X}_{n+1 / 2}$, set the other to zero.
- that is to say hard thresholding of singular values with $H_{r}(\cdot)$.
(3) Do it again until happy
\Rightarrow stopping criterion

Summary: Singular Value Projection

Singular Value Projection (SVP)

Require: $\mathbf{y}, \mathcal{M}, r$
1: Initialize estimate: $\mathbf{X}_{0}=\mathbf{0}$
2: while (some stopping criterion is met) do
3: $\quad \mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)$
4: $\quad[\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}]=S V D\left(\mathbf{X}_{n+1 / 2}\right)$
5: $\quad \mathbf{X}_{n+1}=\mathbf{U} \operatorname{diag}\left(H_{r}(\operatorname{diag}(\boldsymbol{\Sigma}))\right) \mathbf{V}^{T}$
6: end while
7: return \mathbf{X}_{n}

- Inspired by Iterative Hard Thresholding (IHT) for sparse recovery, see e.g. [Blumensath \& Davies, 2008] (first paper with theoretical results: convergence to a stationary point)
- Described with recovery guarantees (see later) in: R. Meka, P. Jain and I. S. Dhillon, Guaranteed rank minimization via singular value projection, Advances in Neural Information Processing Systems, (2010), pp. 937-945

Comments on SVP

- Requires to know the expected rank r
- Requires that $\|\mathcal{M}\|_{o p}<1$ for convergence
- Recent works refines this to avoid cost of full SVD (with "lazy" SVD to get part associated to $2 r$ largest singular values only)

To go further

- Many other algorithms exist of this type exist, for instance the introduction of a step size in the gradient descent step:

$$
\left.\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mu_{n} \mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)\right)
$$

- Some variants focus on dealing with the case where r is unknown:
- Iterative soft thresholding or shrinkage (see next: convex relaxations)
- Varying r along the algorithm

Convex relaxation: reminder on ℓ_{p} norms for sparse recovery

We can get a visual intuition of the interest of ℓ_{p} norms for that:

$$
-\{x \text { s.t. } \mathbf{b}=\mathbf{A} x\}
$$

Both convex and promoting sparsity

- For sparse recovery: ℓ_{1} norm

Convex relaxation: reminder on ℓ_{p} norms for sparse recovery

We can get a visual intuition of the interest of ℓ_{p} norms for that:

$$
-\{x \text { s.t. } \mathbf{b}=\mathbf{A} x\}
$$

Both convex and promoting sparsity / promoting low-rank

- For sparse recovery: ℓ_{1} norm
- For low-rank recovery: trace/nuclear/Shatten-1 norm

$$
\|\mathbf{X}\|_{\star}=\|\mathbf{X}\|_{S_{1}}=\operatorname{Trace}(\boldsymbol{\Sigma}(\mathbf{X}))=\|\operatorname{diag}(\boldsymbol{\Sigma}(\mathbf{X}))\|_{1}
$$

Low-rank recovery as optimization problems

- Approximation

$$
\min _{\mathbf{X}}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2} \quad \text { such that } \quad\|\mathbf{X}\|_{\star} \leqslant \eta
$$

- Rank reduction

$$
\min _{\mathbf{x}}\|\mathbf{X}\|_{\star} \quad \text { such that } \quad\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2} \leqslant \varepsilon
$$

- Regularization

$$
\frac{1}{2} \min _{\mathbf{x}}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

All can be cast as Second Order Cone Programs (SOCP) and addressed with standard tools. This however does not take into account their specific structure.

Black boxes

Cvx in Matlab:

```
\(p=10 ; q=11\);
\(\mathrm{m}=10\);
\(M=\operatorname{randn}(m, p * q)\);
\(y=\operatorname{randn}(m, 1)\);
cvx_begin
        variable X(p,q)
        minimize ( norm_nuc(X) )
            subject to
            \(\mathrm{M} * \mathrm{X}(:)=\mathrm{y}\)
cvx_end
```


To go further

- Usage of generic optimization algorithms to solve those problems may not take benefit of their particularities.
- Advanced specific algorithms ? No surprise: yes, just as for ℓ_{1} !

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$
\Rightarrow underdetermined

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$ \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n - in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$ \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force small nuclear norm

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$ \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force small nuclear norm $\quad \Rightarrow$ singular value thresholding

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$ \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force small nuclear norm $\quad \Rightarrow$ singular value thresholding - soft thresholding of singular values $\boldsymbol{\Sigma}\left(\mathbf{X}_{n+1 / 2}\right)$ with $S_{\lambda}(\cdot)$.

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$ \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force small nuclear norm $\quad \Rightarrow$ singular value thresholding - soft thresholding of singular values $\boldsymbol{\Sigma}\left(\mathbf{X}_{n+1 / 2}\right)$ with $S_{\lambda}(\cdot)$.
(3) Do it again until happy

Soft thresholding algorithms

Soft thresholding algorithms

- Idea to adress regularized problem

$$
\min _{\mathbf{X}} \frac{1}{2}\|\mathcal{M}(\mathbf{X})-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

(1) Find some $\mathbf{y} \approx \mathcal{M}\left(\mathbf{X}_{n}\right)$ \Rightarrow underdetermined

- replace by: decrease the error $\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$ at each iteration n
- in practice: use of a gradient descent (Landweber iterations):

$$
\mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)
$$

(2) Force small nuclear norm $\quad \Rightarrow$ singular value thresholding - soft thresholding of singular values $\boldsymbol{\Sigma}\left(\mathbf{X}_{n+1 / 2}\right)$ with $S_{\lambda}(\cdot)$.
(3) Do it again until happy \Rightarrow stopping criterion

Summary: Singular Value Thresholding

Singular Value Thresholding (SVT)

Require: y, \mathcal{M}, r
1: Initialize estimate: $\mathbf{X}_{0}=\mathbf{0}$
2: while (some stopping criterion is met) do
3: $\quad \mathbf{X}_{n+1 / 2}=\mathbf{X}_{n}+\mathcal{M}^{*}\left(\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)\right)$
4: $\quad[\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}]=\operatorname{SVD}\left(\mathbf{X}_{n+1 / 2}\right)$
5: $\quad \mathbf{X}_{n+1}=\mathbf{U} \operatorname{diag}\left(S_{\lambda}(\operatorname{diag}(\boldsymbol{\Sigma}))\right) \mathbf{V}^{T}$
6: end while
7: return \mathbf{X}_{n}

- Described e.g. in [Cai, Candès, Chen 2010]
- Inspired by Iterative Shrinkage Thresholding Algorithm (ISTA) for sparse recovery, see e.g. [Daubechies, De Frise, De Mol, 2004] for global convergence guarantees

Comments on SVT

- Does not require to know the expected rank r...
- ... but requires to choose the regularization parameter λ (serves as a threshold)
- Requires that $\|\mathcal{M}\|_{o p}<1$ for convergence
- Recent works refines this to avoid cost of full SVD

A tentative big picture

Iterative/Greedy						
Principle	$\mathbf{r}_{n}=\mathbf{y}-\mathcal{M}\left(\mathbf{X}_{n}\right)$	$\min _{\mathbf{X}} \frac{1}{2}\\|\mathcal{M}(\mathbf{X})-\mathbf{y}\\|_{2}^{2}+\lambda\\|\mathbf{X}\\|_{S_{p}}^{p}$				
Tuning	Stopping criterion Target rank r	Regularization parameter λ				
Variants	Selection criterion Update strategy	Choice of sparsity measure p Optimization algorithm				

Homework 1

Repeat the steps of tutorial session 1 with a cvx implementation of nuclear norm minimization; with SVP instead of IHT; with SVT instead of ISTA.

