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Intro First definitions Well-posedness Algorithms Guarantees Dimension reduction Summary

Overall course content

Part 1 (N. Bertin): Fundamentals
Definitions, first theoretical results, basic algorithmic principles

Part 2 (C. Herzet): Theoretical guarantees
Finer conditions for feasibility and convergence

Part 3 (A. Roumy): Compressed sensing, probability results
More conditions, information theory, number of measurements

Part 4 (R. Gribonval) & A. Deleforge ): Beyond sparsity
Today: From sparse vectors to low-rank matrices
Next: Compressed matrix sensing; Well-posedness and
algorithms for generic low-dimensional models; Dictionary
learning
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Detailed content of this part

1 Introduction: inverse problems with matrices

2 Low-rank matrices: definitions and reminders

3 Well-posedness of the low-rank recovery problem: a key result

4 Low-rank recovery algorithms: principles and first algorithms

5 Theoretical guarantees

6 Dimension reduction

7 Summary
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Examples of matrix inverse problems: Matrix completion
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Examples of matrix inverse problems: Matrix completion

Goal = complete a large matrix
Rows = movies (potentially tens of thousands)
Columns = users (potentially several millions)
Many missing entries (99.9% if each user rates ten items)
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Examples of matrix inverse problems: Phase retrieval

Magnitude only Fourier measurements: yi = |〈ai,x〉|
phase ambiguity: no uniqueness yi = |〈ai,x〉| = |〈ai, ejφx〉|
non-linear inverse problem in vector x . . .
. . . yet convertible to linear problem in the matrix X , xxH :

zi , y2i = |〈ai,x〉|2 = aHi xxHai
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Inverse problems with matrices: mathematical expression

Matrix ↔ vector conversions
matrix to vector: u = vec(U)

vector to matrix (of given size): U = mat(u)

Linear observation operator M(X) , (〈ai, vec(X)〉)mi=1

Linear inverse problem:
find p× q matrix X given y =M(X), of dimension m
Under-determined if m < pq ⇒ need a model
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Reminder: iconic inverse problem with sparse regularization

Here: signals → matrices; what set of “matrices of interest” ?
Image courtesy of Mike Davies, Univ. Edinburgh.
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Low-rank matrices: definitions and reminders

1 Introduction: inverse problems with matrices

2 Low-rank matrices: definitions and reminders
Definitions
Problem formulation

3 Well-posedness of the low-rank recovery problem: a key result

4 Low-rank recovery algorithms: principles and first algorithms

5 Theoretical guarantees

6 Dimension reduction

7 Summary
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Definition: low-rank matrix

Rank of a matrix (real or complex)

The rank of a p× q matrix X, rank(X) is the dimension of
the span of its columns (or equivalently of its rows).
Given the SVD X = UΣVT , with Σ “diagonal”, we have
rank(X) = ‖diag(Σ)‖0. As a result rank(X) ≤ min(p, q).

Informally, “low-rank” means rank(X)� min(p, q).
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Definition: set of low-rank matrices

Low-rank matrices (real or complex)

A p× q matrix X is of rank at most r iff it can be written as
X = UVT where U is p× r, V is q × r; or equivalently
X =

∑r
i=1 uiv

T
i , where ui is p× 1, vi is q × 1.

The set of all matrices of rank at most r is denoted:
Σr := {X ∈ Rp×q, rank(X) 6 r}

Σr is not a linear subspace of the space of p× q matrices:
If X,Y ∈ Σr, then X + Y ∈ Σ2r but in general X + Y /∈ Σr

In the sense of manifolds,

dim(Σr) = r(p+ q − r).

For small r, this is approximately r(p + q).

Intuition: p degrees of freedom for each ui; q for each vi; ⇒ p + q for each uiv
T
i
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Examples of low-rank matrices: Phase retrieval

Magnitude only measurements: yi = |〈ai,x〉|
phase ambiguity: no uniqueness yi = |〈ai,x〉| = |〈ai, ejφx〉|
non-linear inverse problem in vector x . . .
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Examples of low-rank matrices: Matrix completion

Simplistic user similarity model:
r user categories;
shared user preference profile in category i: ui;
users in category i indicated by nonzero entry in vT

i ;
full matrix written X =

∑r
i=1 uiv

T
i .
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Low-rank approximation

Real-world situations can deviate from the exact low-rank model.
Noise:

y =M(X) + ε

Approximate low-rank:

X ≈ Z

where Z is a rank-r matrix. The matrix X is then often said
to be compressible (rather than low-rank, which it is not).
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Reminders on norms

‖.‖ : X→ R+ is:

A norm iff for all X,Y, λ:
(i) ‖X‖ = 0 iff X = 0 (definiteness)
(ii) ‖λX‖ = |λ‖.‖X‖ (homogeneity)
(iii) ‖X + Y‖ 6 ‖X‖+ ‖Y| (triangle inequality)
A quasi-norm: (i), (ii) and for some constant C
(iii) ‖X + Y‖ 6 C(‖X‖+ ‖Y‖).
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Shatten norms Sp

Shatten norm of a matrix

For 0 ≤ p ≤ ∞: using the SVD, M = UΣVT , define

‖M‖Sp , ‖diag(Σ)‖p

This is a quasinorm for 0 < p < 1 ; a norm for 1 ≤ p ≤ ∞.

Special cases:
p = 0: rank rank(M) = ‖M‖S0

p = 1: trace/nuclear norm ‖M‖? , trace(Σ) = ‖M‖S1

p = 2: Frobenius norm ‖M‖F ,
√∑

ij M2
ij = ‖M‖S2

p =∞: Spectral norm ‖M‖op , sup
‖x‖2=1

‖Mx‖2 = ‖M‖S∞
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Best low-rank approximation

The error of best rank-r approximation of X is:

σr(X) , inf{‖X− Z‖, rank(Z) ≤ r}

Consider X = UΣVT the SVD of X. The matrix
Z , UΣ̂VT , where Σ̂ matches Σ on the r largest diagonal
entries and is zero everywhere else, realizes this infimum for
Shatten norms ‖X− Z‖Sp , no matter the value of p (>0).
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Problem formulation: Ideal low-rank regularization

Given the observation y, with known measurement operatorM, we
wish to solve:

min
X

rank(X) s.t. y =M(X)
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Contents

1 Introduction: inverse problems with matrices

2 Low-rank matrices: definitions and reminders

3 Well-posedness of the low-rank recovery problem: a key result
Result
Demonstration (exercice)

4 Low-rank recovery algorithms: principles and first algorithms

5 Theoretical guarantees

6 Dimension reduction

7 Summary
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Well-posedness of the low-rank recovery problem

Given a low-rank matrix X0 and y ,M(X0), consider the
low-rank matrix recovery problem:

min
X

rank(X) s.t. y =M(X)

Theorem. Well-posedness of the low-rank recovery problem
The following properties are equivalent.
(i) Uniqueness of solutions of rank at most r: for any pair of

matrices (X0,X1) of rank at most r, ifM(X0) =M(X1)
then X0 = X1.

(ii) The null space Ker(M) does not contain any matrix of rank
at most 2r other than the zero matrix.
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Well-posedness of the low-rank recovery problem

A shorter, easy to memorize formulation of the previous theorem is:

∀X0,X1 ∈ Σr,M(X0) =M(X1)⇒ X0 = X1

⇔
Ker(M) ∩ Σ2r = {0}

Problem (Homework): consequence for Matrix Completion

what is the measurement operatorM ?
what is the rank of an s-sparse matrix X ?
for what rank r does the above property hold ?
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Demonstration

Homework
Prove the theorem.
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Number of measurements and sparsity

Comments on the previous theorem:
This is a worst case analysis

does not provide guarantees for matrix completion.
more advanced analysis with random sampling (random
missing entries) and incoherence of X are available.

Necessary number of measurements: .

m ≥ dim(Σ2r) = 2r(p+ q − 2r)

� pq for small r
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Rank minimization is NP hard

We want to solve the problem:

min
X

rank(X) s.t. y =M(X)

Bad luck : this is NP-hard, just as the `0 minimization problem!
(not really a surprise perhaps?)
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Three practical philosophies

min
X

rank(X) s.t. y =M(X)

Idea 1 Idea 2 Idea 3

Focus on rank(X) Focus on y ≈M(X) Solve a nicer problem

1. Add rank-one component
2. Check if y ≈M(Xn)
3. Do it again until happy

1. Find some y ≈M(Xn)
2. Force it to be low-rank
3. Do it again until happy

1. Replace rank(·) by nicer norm
2. Write a convex optim. problem
3. Use your favorite solver

Greedy
algorithms

Hard thresholding
algorithms

Convex relaxation
algorithms
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Greedy algorithms

Kiryung Lee and Yoram Bresler. Admira: Atomic decomposition for
minimum rank approximation, 2009. arXiv:0905.0044
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Hard thresholding algorithms

Hard thresholding algorithms

Focus on y ≈M(X)

Idea:
1 Find some y ≈M(Xn)

⇒ underdetermined
replace by: decrease the error y −M(Xn) at each iteration n
in practice: use of a gradient descent (Landweber iterations):

Xn+1/2 = Xn +M∗(y −M(Xn))

2 Force it to be low-rank ⇒ best rank-r approximation
keep r largest singular values of Xn+1/2, set the other to zero.
that is to say hard thresholding of singular values with Hr(·).

3 Do it again until happy ⇒ stopping criterion
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Summary: Singular Value Projection

Singular Value Projection (SVP)

Require: y, M, r
1: Initialize estimate: X0 = 0
2: while (some stopping criterion is met) do
3: Xn+1/2 = Xn +M∗(y −M(Xn))
4: [U,Σ,V] = SV D(Xn+1/2)
5: Xn+1 = Udiag(Hr(diag(Σ)))VT

6: end while
7: return Xn

Inspired by Iterative Hard Thresholding (IHT) for sparse recovery, see e.g. [Blumensath &
Davies, 2008] (first paper with theoretical results: convergence to a stationary point)

Described with recovery guarantees (see later) in: R. Meka, P. Jain and I. S. Dhillon, Guaranteed
rank minimization via singular value projection, Advances in Neural Information Processing
Systems, (2010), pp. 937–945
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Comments on SVP

Requires to know the expected rank r
Requires that ||M||op < 1 for convergence
Recent works refines this to avoid cost of full SVD (with “lazy”
SVD to get part associated to 2r largest singular values only)
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To go further

Many other algorithms exist of this type exist, for instance the
introduction of a step size in the gradient descent step:
Xn+1/2 = Xn + µnM∗(y −M(Xn)))

Some variants focus on dealing with the case where r is
unknown:

Iterative soft thresholding or shrinkage (see next: convex
relaxations)
Varying r along the algorithm
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Convex relaxation: reminder on `p norms for sparse recovery

We can get a visual intuition of the interest of `p norms for that:

Both convex and promoting sparsity

/ promoting low-rank

For sparse recovery: `1 norm

For low-rank recovery: trace/nuclear/Shatten-1 norm

‖X‖? = ‖X‖S1 = Trace(Σ(X)) = ‖diag(Σ(X))‖1
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Low-rank recovery as optimization problems

Approximation

min
X
‖M(X)− y‖22 such that ‖X‖? 6 η

Rank reduction

min
x
‖X‖? such that ‖M(X)− y‖22 6 ε

Regularization

1
2 min

x
‖M(X)− y‖22 + λ‖X‖?

All can be cast as Second Order Cone Programs (SOCP) and
addressed with standard tools. This however does not take into
account their specific structure.
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Black boxes

Cvx in Matlab:
p=10;q=11;
m=10;
M = randn(m,p*q);
y = randn(m,1);
cvx_begin

variable X(p,q)
minimize ( norm_nuc(X) )

subject to
M*X(:) = y

cvx_end
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To go further

Usage of generic optimization algorithms to solve those
problems may not take benefit of their particularities.
Advanced specific algorithms ? No surprise: yes, just as for `1 !
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Soft thresholding algorithms

Soft thresholding algorithms

Idea to adress regularized problem

min
X

1
2‖M(X)− y‖22 + λ‖X‖?

1 Find some y ≈M(Xn)

⇒ underdetermined
replace by: decrease the error y −M(Xn) at each iteration n
in practice: use of a gradient descent (Landweber iterations):

Xn+1/2 = Xn +M∗(y −M(Xn))

2 Force small nuclear norm ⇒ singular value thresholding
soft thresholding of singular values Σ(Xn+1/2) with Sλ(·).

3 Do it again until happy ⇒ stopping criterion
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Summary: Singular Value Thresholding

Singular Value Thresholding (SVT)

Require: y, M, r
1: Initialize estimate: X0 = 0
2: while (some stopping criterion is met) do
3: Xn+1/2 = Xn +M∗(y −M(Xn))
4: [U,Σ,V] = SV D(Xn+1/2)
5: Xn+1 = Udiag(Sλ(diag(Σ)))VT

6: end while
7: return Xn

Described e.g. in [Cai, Candès, Chen 2010]

Inspired by Iterative Shrinkage Thresholding Algorithm (ISTA) for sparse recovery, see e.g.
[Daubechies, De Frise, De Mol, 2004] for global convergence guarantees
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Comments on SVT

Does not require to know the expected rank r . . .
. . . but requires to choose the regularization parameter λ
(serves as a threshold)
Requires that ||M||op < 1 for convergence
Recent works refines this to avoid cost of full SVD
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A tentative big picture

Iterative/Greedy Optimization
Principle rn = y −M(Xn) minX

1
2‖M(X)− y‖22 + λ‖X‖pSp

Tuning Stopping criterion Regularization parameter λ
Target rank r

Variants Selection criterion Choice of sparsity measure p
Update strategy Optimization algorithm

Homework 1
Repeat the steps of tutorial session 1 with a cvx implementation of
nuclear norm minimization; with SVP instead of IHT; with SVT
instead of ISTA.
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