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Summary

• Session 1: 
✦ role of sparsity for compression and inverse problems

• Session 2: 
✦ Review of main algorithms & complexities
✦ Success guarantees for L1 minimization to solve under-

determined inverse linear problems 

• Session 3:
✦ Comparison of guarantees for different algorithms 
✦ Robust guarantees & Restricted Isometry Property
✦ Explicit guarantees for various inverse problems
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Signal space ~ RN

Set of signals 
of interest

Observation space ~ RM 
M<<N

Linear 
projection

Nonlinear 
Approximation = 

Sparse recovery

Inverse problems
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Courtesy: M. Davies, U. Edinburgh



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm 
✦ 1-sparse
✦ 2-sparse
✦ 3-sparse ...

•

Recovery analysis
for inverse problem
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b = Ax

�x�0 ≤ 1

{x = AlgoA(Ax)}

�x�0 ≤ k



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm
✦ 1-sparse
✦ 2-sparse
✦ 3-sparse ...

•

Recovery analysis 
for inverse problem
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�x�0 ≤ 1

b = Ax

{x = AlgoB(Ax)}

�x�0 ≤ k



Some “simple” recovery 
conditions
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I ⊂ �1, N�

Support

“recoverable supports” = 
subsets

such that

supp(x) := {k, xk �= 0} ⊂ I

x ∈

Sparsity level

“recoverable sparsity” = 
integers k 

such that

recoverable

�x0�0 ≤ k



“Bad 
supports”

Greedy vs L1: summary
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∅ �1, N�

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

Recoverable supports 
are not nested  ERC(I)

Sufficiently sparse,
guaranteed L1 recovery

At least one failing support

�I = �x�0

. . .

Trellis of supports

k1(A)k*MP(A)



Comparison between 
algorithms

• Recovery conditions based on number of 
nonzero components         for

• Warning : 
✦ there often exists vectors beyond these critical 

sparsity levels, which are recovered
✦ there often exists vectors beyond these critical 

sparsity levels, where the successful algorithm is not 
the one we would expect
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k*MP(A) ≤ k1(A) ≤ kp(A) ≤ kq(A) ≤ k0(A),∀A

�x�0 0 ≤ p ≤ q ≤ 1

[Gribonval & Nielsen, ACHA 2007]



Stability and robustness



Need for stable recovery
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Exactly sparse data Real data (from source separation) 



Formalization of stability

• Toy problem: exact recovery from 
✦ Assume sufficient sparsity 
✦ Wish to obtain 

• Need to relax sparsity assumption
✦ New benchmark = best k-term approximation

✦ Goal = stable recovery = instance optimality
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b = Ax
�x�0 ≤ kp(A) < m

x�
p(b) = x

�x�
p(b)− x� ≤ C · σk(x)

σk(x) = inf
�y�0≤k

�x− y�

[Cohen, Dahmen & De Vore 2006]



Stability for Lp 
minimization

• Assumption: «stable Null Space Property»

• Conclusion: instance optimality for all x
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z ∈ N (A), z �= 0
   NSP(k,   ,t)

when
�p

�zIk�p
p ≤ t · �zIc

k
�p

p

�x�
p(b)− x�p

p ≤ C(t) · σk(x)p
p

C(t) := 2
1 + t

1− t[Davies & Gribonval, SAMPTA 2009]



Reminder on NSP

• Geometry in coefficient space:
✦ consider an element z of the Null Space of A
✦ order its entries in decreasing order 

✦ the mass of the largest k-terms should not exceed a 
fraction of that of the tail
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k

All elements of the null space must be “flat”

�zIk�p
p ≤ t · �zIc

k
�p

p



Robustness

• Toy model = noiseless

• Need to account for noise
✦ measurement noise
✦ modeling error
✦ numerical inaccuracies ...

• Goal: predict robust estimation

• Tool: restricted isometry property
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b = Ax
b = Ax + e

�x�
p(b)− x� ≤ C�e�+ C �σk(x)



Restricted Isometry Property

• Definition

• Computation ? 
✦ naively: combinatorial
✦ open question: NP ? NP-complete ?
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A
N columns AI

max over                    subsets I

δk := sup
�I≤k, c∈Rk

����
�AIc|�2

2

�c�2
2

− 1
����

n ∈ I, �I ≤ k

N !
k!(N − k)!



Stability & robustness from RIP
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• Result: stable + robust L1-recovery under assumption that

✦ Foucart-Lai 2008: Lp with p<1, and
✦ Chartrand 2007, Saab & Yilmaz 2008: other RIP condition for p<1
✦ G., Figueras & Vandergheynst 2006: robustness with f-norms
✦ Needel & Tropp 2009, Blumensath & Davies 2009: RIP for greedy algorithms

RIP(k,   )

z ∈ N (A), z �= 0
   NSP(k,   ,t)

when

[Candès 2008]

δ

�1

δ2k(A) ≤ δ

δ2k(A) <
√

2− 1 ≈ 0.414
δ2k(A) < 0.4531

t :=
√

2δ/(1− δ)

�zIk�1 ≤ t · �zIc
k
�1



Is the RIP a sharp condition ?

• The Null Space Property
✦ “algebraic” + sharp property for Lp, only depends on 
✦  invariant by linear transforms 

• The RIP(k,   ) condition 
✦ “metric” ... and not invariant by linear transforms
✦ predicts performance + robustness of several algorithms
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N (A)
A→ BA

δ

NSP(k,     )

BA
RIP(k, 0.4)

A
�p

[Davies & Gribonval, IEEE Inf. Th. 2009]



Remaining agenda

• Recovery conditions based on number of 
nonzero components

• Question
✦ what is the order of magnitude of these numbers ?
✦ how do we estimate them in practice ?

• A first element: 
✦ if A is m x N, then
✦ for almost all matrices (in the sense of Lebesgue 

measure in            ) this is an equality
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k*MP(A) ≤ k1(A) ≤ kp(A) ≤ kq(A) ≤ k0(A),∀A
�x�0

k0(A) ≤ �m/2�

RmN

0 ≤ p ≤ q ≤ 1



Explicit guarantees in 
various inverse problems



Scenarios

• Range of  “choices” for the matrix A 
✦ Dictionary modeling structures of signals                    

union of wavelets + curvelets + spikes
✦ «Transfer function» from physics of inverse problem  

convolution operator / transmission channel
✦ Designed Compressed Sensing matrix                

random Gaussian matrix

• Estimation of the recovery regimes
✦ coherence for deterministic matrices
✦ typical results for random matrices
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• Audio = superimposition of structures

• Example : glockenspiel

✦ transients       = short, small scale
✦ harmonic part = long, large scale

• Gabor atoms

Multiscale Time-
Frequency Structures

�
gs,τ,f (t) =

1√
s
w

�
t− τ

s

�
e2iπft

�

s,τ,f
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Deterministic matrices 
and coherence

• Lemma
✦ Assume normalized columns
✦ Define coherence

✦ Consider index set I of size 
✦ Then for any coefficient vector

✦ In other words
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µ = max
i �=j

|AT
i Aj |

�I ≤ k

1− (k − 1)µ ≤ �AIc�22
�c�22

≤ 1 + (k − 1)µ

c ∈ RI

δ2k ≤ (2k − 1)µ

�Ai�2 = 1



Consequence

• Since                               we obtain            as 
soon as

• Combining with best known RIP condition for 
stable L1 recovery

• In fact, can prove with other techniques that
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δ2k ≤ δδ2k ≤ µ · (2k − 1)

δ ≈ 0.4531

k < (1 + δ/µ) /2

k1(A) ≥
��

1 + 0.4531/µ
�
/2

�

k0(A) ≥ k1(A) ≥
��

1 + 1/µ
�
/2

�
[G. Nielsen 2003]



Example: convolution operator

• Deconvolution problem

✦ Matrix-vector form                         with A = Toeplitz or 
circulant matrix                  

✦ Coherence =  autocorrelation, can be large

✦ Recovery guarantees 
✤ Worst case = close spikes, usually difficult and not robust 
✤ Stronger results assuming distance between spikes [Dossal 2005]
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y = h �s + e

b = Ax + e
[A1, . . . ,AN ]

An(i) = h(i− n) �An�2
2 =

�

i

h(i)2 = 1

µ = max
n �=n�

AT
nAn� = max

� �=0
h � h̃(�)

by convention



Example: image inpainting
Courtesy of: G. Peyré, Ceremade, Université Paris 9 Dauphine

Image

Result

Inpainting
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Mask b = My = MΦx

y = Φx



Coherence vs RIP
• Deterministic matrix, such as 

Dirac-Fourier dictionary

• Coherence

• “Generic” (random) dictionary 
[Candès & al 2004, Vershynin 2006, ...]

• Isometry constants

if

then

Am

N=2m

m

N

Recovery regimes
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A

x

kk

1√
m

e2iπnt/mδn(t)

µ = 1/
√

m

atn ∼ P (a), i.i.d.

m ≥ Ck log N/k

P (δ2k <
√

2− 1) ≈ 1

k1(A) ≈ 0.914
√

m

[Donoho & Tanner 2009][Elad & Bruckstein 2002]

with high
 probabilityk*MP(A) ≥ 0.5

√
m

k1(A) ≈ m

2e log N/m



Compressed sensing

• Approach = acquire some data y with a limited 
number m of (linear) measures, modeled by a 
measurement matrix

• Key hypotheses
✦ Sparse model: the data can be sparsely represented in 

some dictionary

✦ The overall matrix                   leads to robust + stable 
sparse recovery, e.g.

• Reconstruction = sparse recovery algorithm
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y ≈ Φx

b ≈ Ky

A = KΦ

σk(x) � �x�

δ2k(A)� 1



Key constraints to use 
Compressed Sensing
• Availability of sparse model= dictionary

✦ should fit well the data, not always granted. E.g.: cannot 
aquire white Gaussian noise!

✦ require appropriate choice of dictionary, or dictionary 
learning from training data 

• Measurement matrix
✦ must be associated with physical sampling process 

(hardware implementation)
✦ should guarantee recovery from          hence incoherence
✦ should ideally enable fast algorithms through fast 

computation of 
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Φ

K

KΦ

Ky,KT b



Remarks

• Worthless if high-res. sensing+storage = cheap 
 i.e., not for your personal digital camera!
• Worth it whenever

✦ High-res. = impossible (no miniature sensor, e.g, certain 
wavelength)

✦ Cost of each measure is high
✤ Time constraints [fMRI]
✤ Economic constraints [well drilling]
✤ Intelligence constraints [furtive measures]?

✦ Transmission is lossy 
	

 (robust to loss of a few measures)
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Excessive pessimism ?



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm

• Worst case 
= too pessimistic!

Recovery analysis
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b = Ax

�x�0 ≤ 1

{x = AlgoA(Ax)}

�x�0 ≤ k



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm

• Worst case 
= too pessimistic!

• Finer “structures” of x

Recovery analysis
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b = Ax

{x = AlgoA(Ax)}

support(x), sign(x)
Borup, G. & Nielsen ACHA 2008, A = Wavelets U Gabor, 
recovery of infinite supports for analog signals



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm

• Worst case 
= too pessimistic!

• Finer “structures” of x

• Average/typical case

Recovery analysis
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b = Ax

{x = AlgoA(Ax)}

G., Rauhut,, Schnass & Vandergheynst, JFAA 2008,  
“Atoms of all channels, unite! Average case analysis of multichannel 
sparse recovery using greedy algorithms”.

�x�0 ≤ k

support(x), sign(x)
Borup, G. & Nielsen ACHA 2008, A = Wavelets U Gabor, 
recovery of infinite supports for analog signals



Average case analysis ?
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�x0�0

P (x� = x0) x�
p = arg min

Ax=Ax0
�x�p

p=1
p=1/2 p=0

x0 b := Ax0P (x0) draw ground truth direct model

inverse problem

Typical observation

Bayesian! Favorable priors?

C. Dossal (U. Bordeaux): 
algorithm to search for 
worst-case 

P = 1− �, �� 1

k1(A) k1/2(A) k0(A)k1(A)



Phase transitions

m

N
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k

m ≥ Ck log N/k

P (δ2k <
√

2− 1) ≈ 1

k1(A) ≈ m

2e log N/m

k/m

L1 fails with 
high probability k

m/N

With high probability, L1 succeeds for ALL x

With high probability, L
1 succeeds for MOST x



Conclusions
• Sparsity helps solve ill-posed inverse problems (more 

unknowns than equations).

• If the solution is sufficiently sparse, any reasonable 
algorithm will find it (even simple thresholding!).

• Computational efficiency is still a challenge, but problem 
sizes up to 1000 x 10000 already tractable efficiently.

• Theoretical guarantees are mostly worst-case, empirical 
recovery goes far beyond but is not fully understood! 

• Challenging practical issues include: 
✦ choosing / learning / designing dictionaries;
✦ designing feasible compressed sensing hardware.
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The end

remi.gribonval@inria.fr
www.irisa.fr/metiss/gribonval
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The Bayesian bit: L1 
minimization and the 
Laplacian distribution



Bayesian modeling

• Observation : 

• “True” Bayesian model 

• Maximum likelihood estimation

• L1 minimization equivalent to MAP with Laplacian model

• Does L1 minimization fit Laplacian data ?
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max
x

�

k

P (xk)⇔ min
x

�

k

f(|xk|)

b = Ax

P̂ (xk) ∝ exp(−|xk|)

P (xk) ∝ exp(−f(|xk|))



L1 minimization for 
Laplacian data ...

• Gaussian matrix

• Laplacian data, 500 draws

• Reconstruction L1 or L2
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0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
comparison of l1 and l2 reconstruction of laplace dist

l1

l2

x ∈ RN

N = 128

b = Ax

x�
p := arg min �x�p, p = 1, 2 cf also Seeger and Nickish, ICML 2008

E�x�
p − x�2

2

A ∈ Rm×N
1 ≤ m ≤ 100

m

= ML with Laplacian / Gaussian prior
MAP is bad when the model fits the data!

Mikolova 2007, Inverse Problems and Imaging



Sparse recovery for 
Laplacian data ?

• Asymptotic analysis with “oracle” sparse estimation
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Sparse reconstruction better than min l2 at m/N=0.1488

Expected reconstruction error with min l2

Expected best m−term approx error for Laplacian
Expected oracle k−term reconstruction error for Laplacian
Oracle sparsity level β=k/m for mean error reconstruction

A = Gaussianm

N
x 

=
 L

ap
la

ci
an

N →∞
work in progress, G. & Davies


