Performance of Sparse Decomposition Algorithms with Deterministic versus Random Dictionaries

Rémi Gribonyal **EPI METISS** INRIA Rennes - Bretagne Atlantique

remi.gribonval@inria.fr http://www.irisa.fr/metiss/members/remi

Slides

http://www.irisa.fr/metiss/members/remi/talks/

Summary

- Session I:
 - role of sparsity for compression and inverse problems
- Session 2:
 - ♦ Review of main algorithms & complexities
 - ♦ Success guarantees for L1 minimization to solve underdetermined inverse linear problems
- Session 3:
 - ◆ Comparison of guarantees for different algorithms
 - ♦ Robust guarantees & Restricted Isometry Property
 - Explicit guarantees for various inverse problems

Inverse problems

Courtesy: M. Davies, U. Edinburgh

Recovery analysis for inverse problem ${\bf b}={\bf A}x$ • Recoverable set for a given "inversion" algorithm

- Level sets of L0-norm
 - I-sparse
 - 2-sparse
 - 3-sparse ...

Recovery analysis for inverse problem ${\bf b}={\bf A}x$ • Recoverable set for a given "inversion" algorithm

- Level sets of L0-norm
 - I-sparse
 - 2-sparse
 - 3-sparse ...

Some "simple" recovery conditions

Support

"recoverable supports" = subsets $I \subset [\![1,N]\!]$ such that

$$\operatorname{supp}(x) := \{k, x_k \neq 0\} \subset I$$

Sparsity level

"recoverable sparsity" = integers *k* such that

$$||x_0||_0 \le k$$

Greedy vs L1: summary

Sufficiently sparse, guaranteed LI recovery

At least one failing support

Comparison between algorithms

• Recovery conditions based on number of nonzero components $||x||_0$ for $0 \le p \le q \le 1$

$$k_{\text{*MP}}(\mathbf{A}) \le k_1(\mathbf{A}) \le k_p(\mathbf{A}) \le k_q(\mathbf{A}) \le k_0(\mathbf{A}), \forall \mathbf{A}$$

• Warning:

- there often exists vectors beyond these critical sparsity levels, which are recovered
- there often exists vectors beyond these critical sparsity levels, where the successful algorithm is not the one we would expect

[Gribonval & Nielsen, ACHA 2007]

Stability and robustness

Need for stable recovery

Formalization of stability

- Toy problem: exact recovery from $\mathbf{b} = \mathbf{A}x$
 - lack Assume sufficient sparsity $||x||_0 \le k_p(\mathbf{A}) < m$
 - Wish to obtain $x_n^*(\mathbf{b}) = x$
- Need to relax sparsity assumption
 - ♦ New benchmark = best k-term approximation

$$\sigma_k(x) = \inf_{\|y\|_0 \le k} \|x - y\|$$

Goal = stable recovery = instance optimality

$$||x_p^{\star}(\mathbf{b}) - x|| \le C \cdot \sigma_k(x)$$

[Cohen, Dahmen & De Vore 2006]

Stability for Lp minimization

Assumption: «stable Null Space Property»

$$\begin{aligned} & \text{NSP}(\mathbf{k}, \ell^p_{,\mathbf{t}}) \\ & \|z_{I_k}\|_p^p \leq t \cdot \|z_{I_k^c}\|_p^p \qquad \text{when } z \in \mathcal{N}(\mathbf{A}), z \neq 0 \end{aligned}$$

• Conclusion: instance optimality for all x

$$||x_p^{\star}(\mathbf{b}) - x||_p^p \le C(t) \cdot \sigma_k(x)_p^p$$

$$C(t) := 2\frac{1+t}{1-t}$$

[Davies & Gribonval, SAMPTA 2009]

Reminder on NSP

- Geometry in coefficient space:
 - → consider an element z of the Null Space of A
 - order its entries in decreasing order

ullet the mass of the largest k-terms should not exceed a fraction of that of the tail $\|z_{I_k}\|_p^p \leq t \cdot \|z_{I_k^c}\|_p^p$

All elements of the null space must be "flat"

Robustness

Toy model = noiseless

- $\mathbf{b} = \mathbf{A}x$ $\mathbf{b} = \mathbf{A}x + \mathbf{e}$
- Need to account for noise
 - leed to account for noise
 - measurement noise
 - ♦ modeling error
 - numerical inaccuracies ...
- Goal: predict robust estimation

$$||x_p^*(\mathbf{b}) - x|| \le C||e|| + C'\sigma_k(x)$$

Tool: restricted isometry property

Restricted Isometry Property

Definition

N columns

- Computation?
 - naively: combinatorial
 - open question: NP? NP-complete?

Stability & robustness from RIP

 $RIP(k, \delta)$

$$\delta_{2k}(\mathbf{A}) \leq \delta$$

[Candès 2008]

$$t := \sqrt{2}\delta/(1-\delta)$$

 $\mathsf{NSP}(k,\ell^1_{\mathbf{,t}})$ $\|z_{I_k}\|_1 \leq t \cdot \|z_{I_k^c}\|_1 \quad \text{when} \quad z \in \mathcal{N}(\mathbf{A}), z \neq 0$

• Result: **stable + robust** LI-recovery under assumption that

$$\delta_{2k}(\mathbf{A}) < \sqrt{2} - 1 \approx 0.414$$

- ullet Foucart-Lai 2008: Lp with p<1, and $\,\delta_{2k}({f A}) < 0.4531$
- ♦ Chartrand 2007, Saab & Yilmaz 2008: other RIP condition for p<1</p>
- ◆ G., Figueras & Vandergheynst 2006: robustness with f-norms
- Needel & Tropp 2009, Blumensath & Davies 2009: RIP for greedy algorithms

Is the RIP a sharp condition?

- The Null Space Property
 - "algebraic" + sharp property for Lp, only depends on $\mathcal{N}(\mathbf{A})$ invariant by linear transforms $\mathbf{A} o \mathbf{B} \mathbf{A}$
- The RIP(k, δ) condition
 - "metric" ... and not invariant by linear transforms
 - predicts performance + robustness of several algorithms

[Davies & Gribonval, IEEE Inf.Th. 2009]

Remaining agenda

• Recovery conditions based on number of nonzero components $||x||_0$ $0 \le p \le q \le 1$

$$k_{\text{*MP}}(\mathbf{A}) \le k_1(\mathbf{A}) \le k_p(\mathbf{A}) \le k_q(\mathbf{A}) \le k_0(\mathbf{A}), \forall \mathbf{A}$$

Question

- what is the order of magnitude of these numbers ?
- + how do we estimate them in practice?
- A first element:
 - ullet if $oldsymbol{A}$ is m imes N, then $k_0(oldsymbol{A}) \leq \lfloor m/2 \rfloor$
 - $\mbox{+}$ for almost all matrices (in the sense of Lebesgue measure in \mathbb{R}^{mN}) this is an equality

Explicit guarantees in various inverse problems

Scenarios

- Range of "choices" for the matrix A
 - Dictionary modeling structures of signals union of wavelets + curvelets + spikes
 - «Transfer function» from physics of inverse problem convolution operator / transmission channel
 - Designed Compressed Sensing matrix
 random Gaussian matrix
- Estimation of the recovery regimes
 - coherence for deterministic matrices
 - typical results for random matrices

Multiscale Time-Frequency Structures

- Audio = superimposition of structures
- Example: glockenspiel

- transients = short, small scale
- ♦ harmonic part = long, large scale
- Gabor atoms

$$\left\{ g_{s,\tau,f}(t) = \frac{1}{\sqrt{s}} w \left(\frac{t-\tau}{s} \right) e^{2i\pi f t} \right\}_{s,\tau,f}$$

Deterministic matrices and coherence

Lemma

- Assume normalized columns
- Define coherence

$$\|\mathbf{A}_i\|_2 = 1$$

$$\mu = \max_{i \neq j} |\mathbf{A}_i^T \mathbf{A}_j|$$

$$1-(k-1)\mu \leq \frac{\|\mathbf{A}_I c\|_2^2}{\|c\|_2^2} \leq 1+(k-1)\mu$$

$$\bullet \quad \text{In other words} \quad \frac{\|\mathbf{A}_I c\|_2^2}{\|c\|_2^2} \leq 1+(k-1)\mu$$

Consequence

Since $\delta_{2k} \leq \mu \cdot (2k-1)$ we obtain δ_{2k} as δ soon as

$$k < (1 + \delta/\mu)/2$$

Combining with best known RIP condition for stable L1 recovery $\delta \approx 0.4531$

$$k_1(\mathbf{A}) \ge \lfloor \left(1 + 0.4531/\mu\right)/2 \rfloor$$

In fact, can prove with other techniques that

$$k_0(\mathbf{A}) \ge k_1(\mathbf{A}) \ge \lfloor (1 + 1/\mu)/2 \rfloor$$

IG. Nielsen 2003]

Example: convolution operator

- Deconvolution problem $y = h \star s + e$
 - ullet Matrix-vector form ${f b}={f A}x+{f e}$ with ${f A}$ = Toeplitz or circulant matrix $[\mathbf{A}_1,\ldots,\mathbf{A}_N]$

$$\mathbf{A}_n(i) = h(i-n)$$
 by convention $\|\mathbf{A}_n\|_2^2 = \sum_i h(i)^2 = 1$

◆ Coherence = autocorrelation, can be large

$$\mu = \max_{n \neq n'} \mathbf{A}_n^T \mathbf{A}_{n'} = \max_{\ell \neq 0} h \star \tilde{h}(\ell)$$

- Recovery guarantees
 - Worst case = close spikes, usually difficult and not robust
 - Stronger results assuming distance between spikes [Dossal 2005]

Example: image inpainting

Courtesy of: G. Peyré, Ceremade, Université Paris 9 Dauphine

$$y = \Phi x$$

Inpainting

$$\mathbf{b} = \mathbf{M}y = \mathbf{M}\mathbf{\Phi}x$$

Coherence vs RIP

 Deterministic matrix, such as Dirac-Fourier dictionary

Coherence

$$\mu = 1/\sqrt{m}$$

"Generic" (random) dictionary

[Candès & al 2004, Vershynin 2006, ...]

Isometry constants

m

$$\inf \qquad m \ge Ck \log N/k$$

then
$$P(\delta_{2k} < \sqrt{2} - 1) \approx 1$$

$$k_1(\mathbf{A}) \approx 0.914\sqrt{m}$$

 $k_{\mathrm{*MP}}(\mathbf{A}) \ge 0.5\sqrt{m}$

$$k_1(\mathbf{A}) pprox rac{m}{2e \log N/m}$$

with high probability

Compressed sensing

- Approach = acquire some data y with a limited number m of (linear) measures, modeled by a measurement matrix $\mathbf{b} \approx \mathbf{K} y$
- Key hypotheses
 - + Sparse model: the data can be sparsely represented in some dictionary $y pprox \mathbf{\Phi} x \qquad \sigma_k(x) \ll \|x\|$
 - + The overall matrix ${\bf A}={\bf K}{f \Phi}$ leads to robust + stable sparse recovery, e.g. $\delta_{2k}({\bf A})\ll 1$
- Reconstruction = sparse recovery algorithm

Key constraints to use Compressed Sensing

- Availability of sparse model= dictionary Φ
 - * should fit well the **data**, not always granted. E.g.: cannot aquire white Gaussian noise!
 - require appropriate choice of dictionary, or dictionary learning from training data
- lacktriangle Measurement matrix ${f K}$
 - must be associated with physical sampling process (hardware implementation)
 - ullet should guarantee **recovery** from $\mathbf{K} \Phi$ hence incoherence
 - should ideally enable fast algorithms through fast computation of Ky, K^Tb

Remarks

- Worthless if high-res. sensing+storage = cheap i.e., not for your personal digital camera!
- Worth it whenever
 - High-res. = impossible (no miniature sensor, e.g, certain wavelength)
 - ◆ Cost of each measure is high
 - Time constraints [fMRI]
 - Economic constraints [well drilling]
 - Intelligence constraints [furtive measures]?
 - Transmission is lossy (robust to loss of a few measures)

Excessive pessimism?

Recovery analysis b = Ax

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
- Worst case
 - = too pessimistic!

Recovery analysis b = Ax

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
- Worst case
 - = too pessimistic!
- Finer "structures" of x $\operatorname{support}(x), \operatorname{sign}(x)$

Borup, G. & Nielsen ACHA 2008, **A** = Wavelets U Gabor, recovery of infinite supports for analog signals

Recovery analysis b = Ax

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
- Worst case
 - = too pessimistic!
- Finer "structures" of x support(x), sign(x)

Borup, G. & Nielsen ACHA 2008, **A** = Wavelets U Gabor, recovery of infinite supports for analog signals

Average/typical case

G., Rauhut,, Schnass & Vandergheynst, JFAA 2008, "Atoms of all channels, unite! Average case analysis of multichannel sparse recovery using greedy algorithms".

Average case analysis?

Phase transitions

Conclusions

- Sparsity helps solve ill-posed inverse problems (more unknowns than equations).
- If the solution is sufficiently sparse, any reasonable algorithm will find it (even simple thresholding!).
- Computational efficiency is still a challenge, but problem sizes up to 1000 x 10000 already tractable efficiently.
- Theoretical guarantees are mostly worst-case, empirical recovery goes far beyond but is not fully understood!
- Challenging practical issues include:
 - choosing / learning / designing dictionaries;
 - designing feasible compressed sensing hardware.

Thanks to

- F. Bimbot, G.Gonon, S.Krstulovic, B. Roy
- A. Ozerov, S. Lesage, B. Mailhé
- M. Nielsen, L. Borup (Aalborg Univ.)
- P.Vandergheynst, R. Figueras, P. Jost, K. Schnass (EPFL)
- H. Rauhut (U. Vienna)
- M. Davies (U. Edinburgh)
- and several other collaborators ...

The end

remi.gribonval@inria.fr www.irisa.fr/metiss/gribonval

The Bayesian bit: LI minimization and the Laplacian distribution

Bayesian modeling

- Observation: $\mathbf{b} = \mathbf{A}x$
- "True" Bayesian model $P(x_k) \propto \exp(-f(|x_k|))$
- Maximum likelihood estimation

$$\max_{x} \prod_{k} P(x_k) \Leftrightarrow \min_{x} \sum_{k} f(|x_k|)$$

• LI minimization equivalent to MAP with Laplacian model

$$\hat{P}(x_k) \propto \exp(-|x_k|)$$

Does LI minimization fit Laplacian data?

LI minimization for Laplacian data ...

Gaussian matrix

$$\mathbf{A} \in \mathbb{R}^{m \times N} \quad N = 128 \quad 1 \le m \le 100$$

Laplacian data, 500 draws

$$x \in \mathbb{R}^N \longrightarrow \mathbf{b} = \mathbf{A}x$$

Reconstruction LI or L2

$$x_p^* := \arg\min \|x\|_p, \ p = 1, 2$$

= ML with Laplacian / Gaussian prior

cf also Seeger and Nickish, ICML 2008

MAP is bad when the model fits the data! Mikolova 2007, Inverse Problems and Imaging

Sparse recovery for Laplacian data?

Asymptotic analysis with "oracle" sparse estimation

