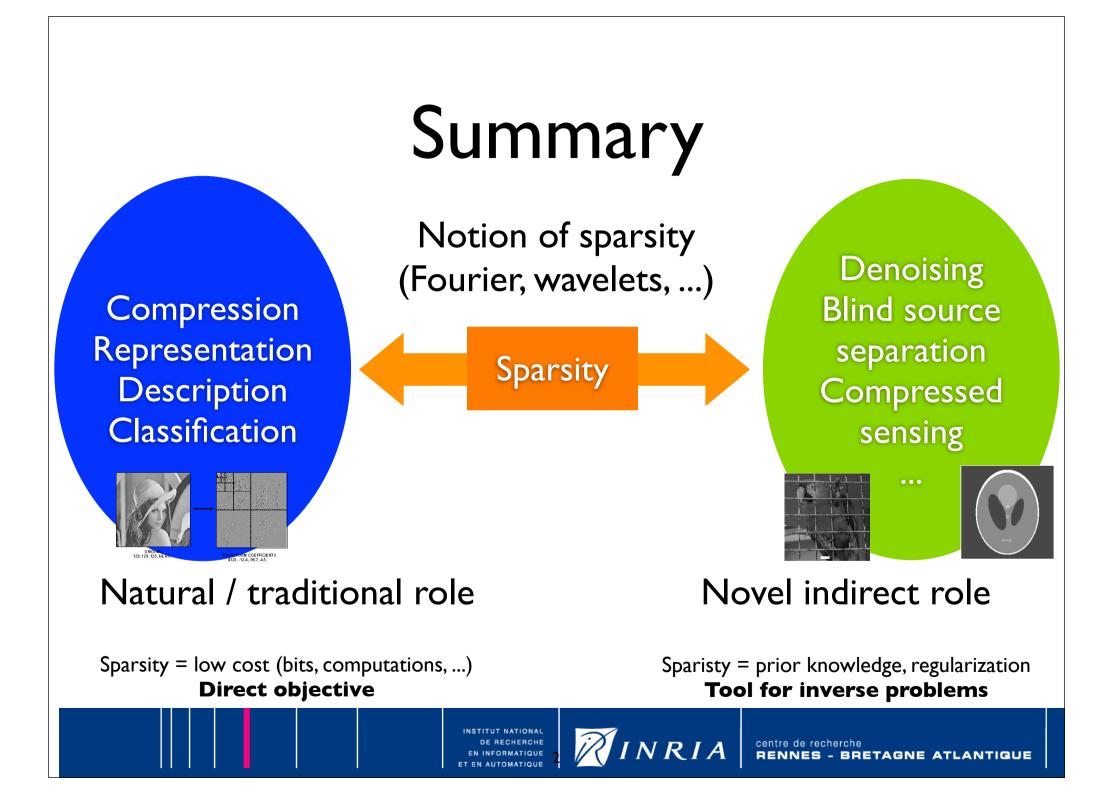
Pursuit Algorithms for Sparse Representations

Rémi Gribonval EPI METISS INRIA Rennes - Bretagne Atlantique

<u>remi.gribonval@inria.fr</u> <u>http://www.irisa.fr/metiss/members/remi</u>

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE



Overview

- Convex optimization algorithms
- Greedy algorithms
- Comparison of complexities
- Exact recovery conditions for Lp minimization

Overall compromise

• Approximation quality

$$\|\mathbf{A}x - \mathbf{b}\|_2$$

• Ideal sparsity measure : ℓ^0 "norm"

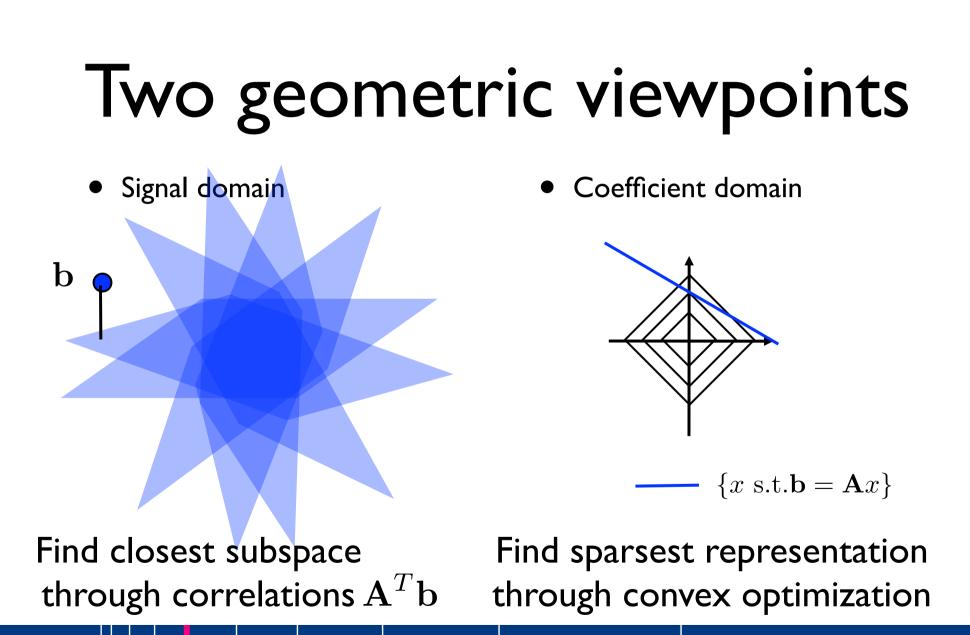
$$||x||_0 := \sharp\{n, x_n \neq 0\} = \sum |x_n|^0$$

n

RINRIA

• "Relaxed" sparsity measures n0

NSTITUT NATIONAL



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Algorithms for LI: Linear Programming

• LI minimization problem of size $m \ge N$

Basis Pursuit (BP) LASSO

$$\min_{x} \|x\|_1, \text{ s.t. } \mathbf{A}x = \mathbf{b}$$

• Equivalent linear program of size $m \ge 2N$

INSTITUT NATIONAL

$$\min_{\substack{z \ge 0 \\ \mathbf{c} = (c_i), \ c_i = 1, \forall i }} \mathbf{c}^T z, \text{ s.t. } [\mathbf{A}, -\mathbf{A}] z = \mathbf{b}$$

INRIA Centre de recherche RENNES - BRETAGNE ATL

Ll regularization: Quadratic Programming • LI minimization problem of size $m \ge N$ $\min_{x} \frac{1}{2} \|\mathbf{b} - \mathbf{A}x\|_{2}^{2} + \lambda \|x\|_{1}$ **Basis Pursuit Denoising** (BPDN) Equivalent quadratic program of size m x 2N $\min_{z>0} \frac{\mathbf{I}}{2} \|\mathbf{b} - [\mathbf{A}, -\mathbf{A}]z\|_2^2 + \mathbf{c}^T z$ $\mathbf{c} = (c_i), \ c_i = 1, \forall i$

Generic approaches vs specific algorithms

- Many algorithms for linear / quadratic programming
- Matlab Optimization Toolbox: linprog /qp
- But ...
 - The problem size is "doubled"
 - Specific structures of the matrix A can help solve BP and BPDN more efficiently
 - More efficient toolboxes have been developed
- CVX package (Michael Grant & Stephen Boyd):
 - http://www.stanford.edu/~boyd/cvx/

Overview

Convex optimization algorithms

- Greedy algorithms
- Comparison of complexities
- Exact recovery conditions for Lp minimization

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Example: orthonormal **A**

• Assumption : m=N and **A** is orthonormal

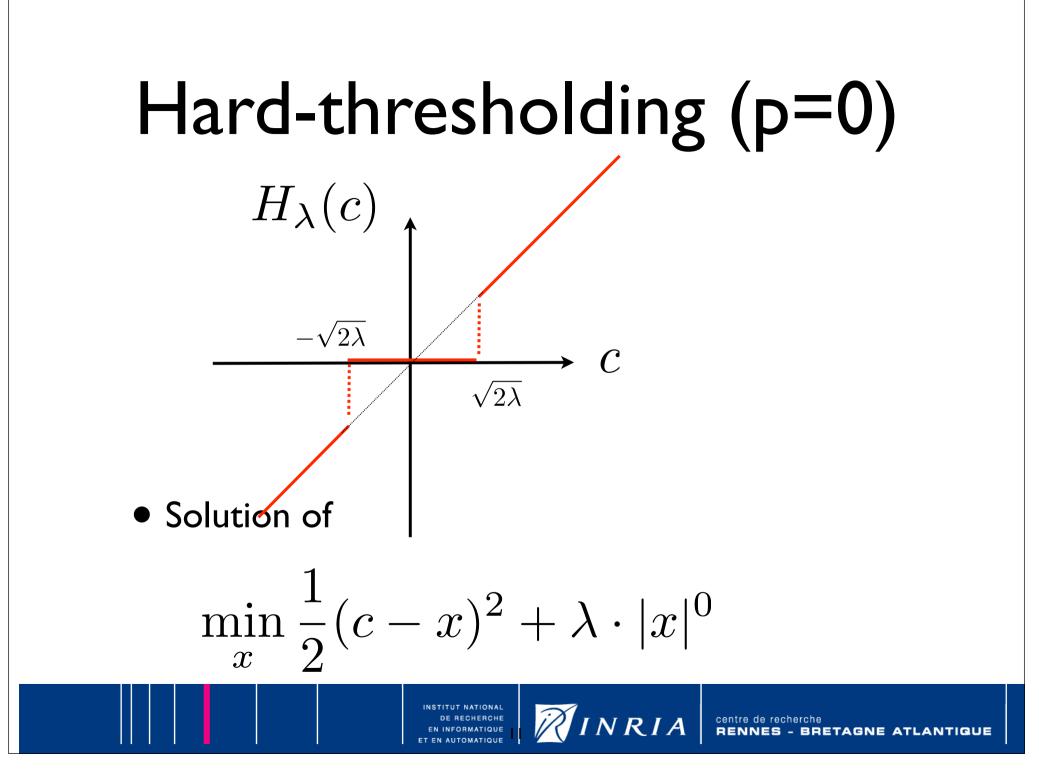
$$\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I} \mathbf{d}_N$$
$$\|\mathbf{b} - \mathbf{A} x\|_2^2 = \|\mathbf{A}^T \mathbf{b} - x\|_2^2$$

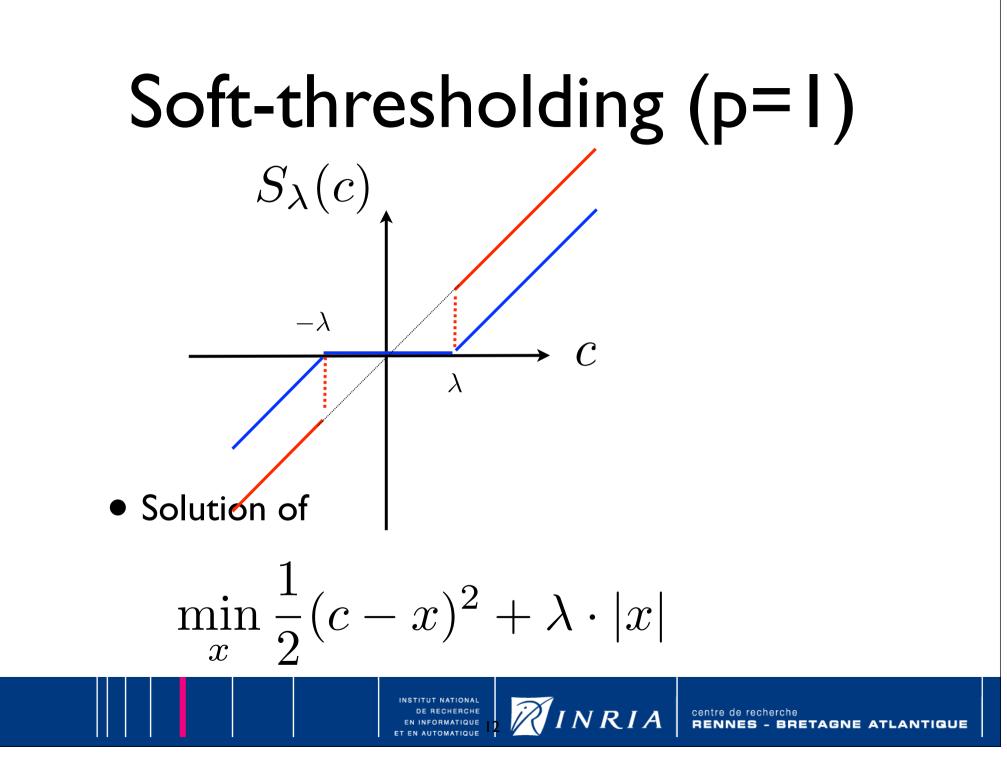
• Expression of BPDN criterion to be minimized

$$\sum_{n} \frac{1}{2} \left((\mathbf{A}^T \mathbf{b})_n - x_n \right)^2 + \lambda |x_n|^p$$

DE RECHERCHE EN INFORMATIQUE

• Minimization can be done coordinate-wise $\min_{x_n} \frac{1}{2} (c_n - x_n)^2 + \lambda |x_n|^p$





Iterative thresholding

• Proximity operator

$$\Theta_{\lambda}^{p}(c) = \arg\min_{x} \frac{1}{2}(x-c)^{2} + \lambda |x|^{p}$$

• Goal = compute

$$\arg\min_{x} \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_{2}^{2} + \lambda \|x\|_{p}^{p}$$

• Approach = iterative alternation between

INSTITUT NATIONAL

+ gradient descent on fidelity term

$$x^{(i+1/2)} := x^{(i)} + \alpha^{(i)} \mathbf{A}^T (\mathbf{b} - \mathbf{A}x^{(i)})$$

NRIA

thresholding

$$x^{(i+1)} := \Theta_{\lambda^{(i)}}^p (x^{(i+1/2)})$$

Iterative Thresholding

- **Theorem :** [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008] + consider the iterates $x^{(i+1)} = f(x^{(i)})$ defined by
 - the thresholding function, with $p \geq 1$

$$f(x) = \Theta_{\alpha\lambda}^p (x + \alpha \mathbf{A}^T (\mathbf{b} - \mathbf{A}x))$$

+ assume that $\forall x, \|\mathbf{A}x\|_2^2 \leq c \|x\|_2^2$ and $\alpha < 2/c$

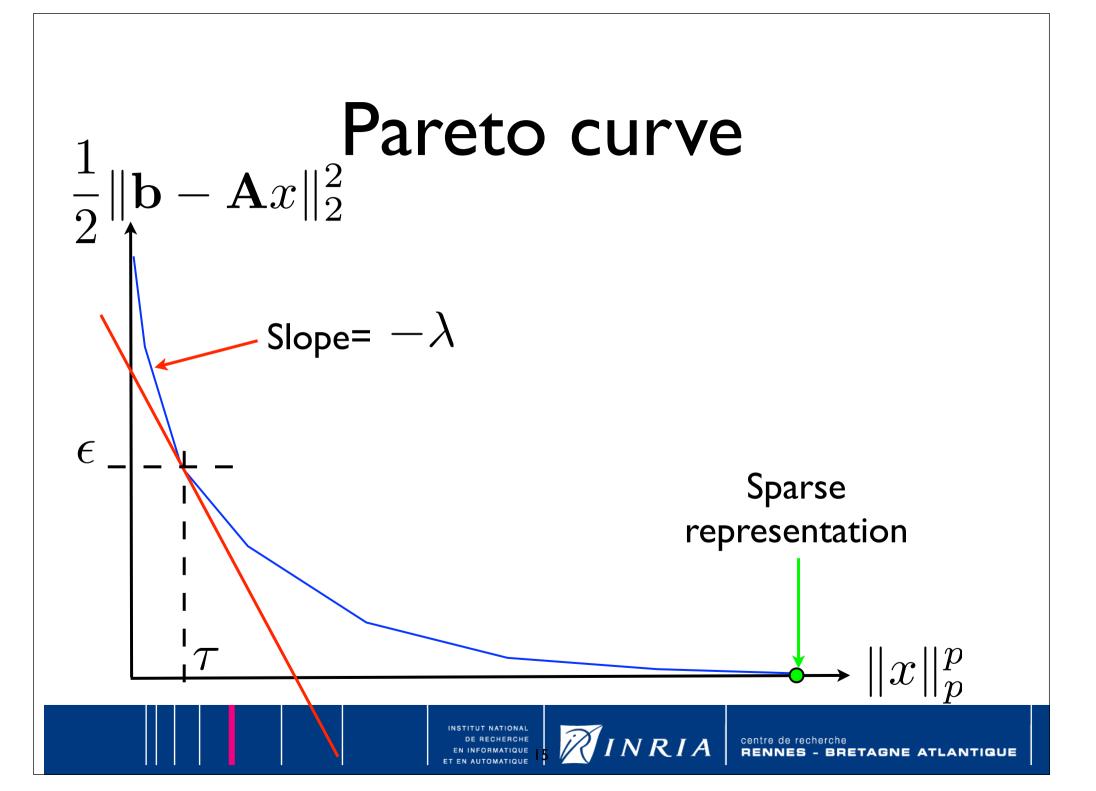
 \bullet then, the iterates converge strongly to a limit x^{\star}

$$\|x^{(i)} - x^\star\|_2 \to_{i \to \infty} 0$$

+ the limit x^* is a global minimum of $\frac{1}{2} ||\mathbf{A}x - \mathbf{b}||_2^2 + \lambda ||x||_p^p$

RINRIA

+ if p>1, or if **A** is invertible, x^* is the *unique* minimum



Path of the solution

• Lemma: let x^* be a local minimum of BPDN $\arg \min_x \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_2^2 + \lambda \|x\|_1$

- let *I* be its support
- Then $\mathbf{A}_{I}^{T}(\mathbf{A}x^{\star} \mathbf{b}) + \lambda \cdot \operatorname{sign}(x_{I}^{\star}) = 0$ $\|\mathbf{A}_{I^{c}}^{T}(\mathbf{A}x^{\star} - \mathbf{b})\|_{\infty} < \lambda$
- In particular

$$x_I = (\mathbf{A}_I^T \mathbf{A}_I)^{-1} \left(\mathbf{A}_I^T \mathbf{b} - \lambda \cdot \operatorname{sign}(x_I) \right)$$

Homotopy method

- \bullet Principle: track the solution $\ x^{\star}(\lambda)$ of BPDN along the Pareto curve
- Property:
 - * solution is characterized by its sign pattern through $x_I = (\mathbf{A}_I^T \mathbf{A}_I)^{-1} \left(\mathbf{A}_I^T \mathbf{b} - \lambda \cdot \operatorname{sign}(x_I) \right)$
 - + for given sign pattern, dependence on λ is affine .
 - + sign patterns are piecewise constant functions of λ

NRIA

- overall, the solution is piecewise affine
- Method = iteratively find breakpoints

Overview

- Convex optimization algorithms
- Greedy algorithms
- Comparison of complexities
- Exact recovery conditions for Lp minimization

Matching Pursuit (MP)

- Matching Pursuit (aka Projection Pursuit, CLEAN)
 - + Initialization $\mathbf{r}_0 = \mathbf{b}$ i = 1
 - Atom selection:

$$n_i = \arg\max_n |\mathbf{A}_n^T \mathbf{r}_{i-1}|$$

Residual update

$$\mathbf{r}_i = \mathbf{r}_{i-1} - (\mathbf{A}_{n_i}^T \mathbf{r}_{i-1}) \mathbf{A}_{n_i}$$

NRIA

• Energy preservation (Pythagoras theorem)

$$\|\mathbf{r}_{i-1}\|_2^2 = |\mathbf{A}_{n_i}^T \mathbf{r}_{i-1}|^2 + \|\mathbf{r}_i\|_2^2$$

Main properties

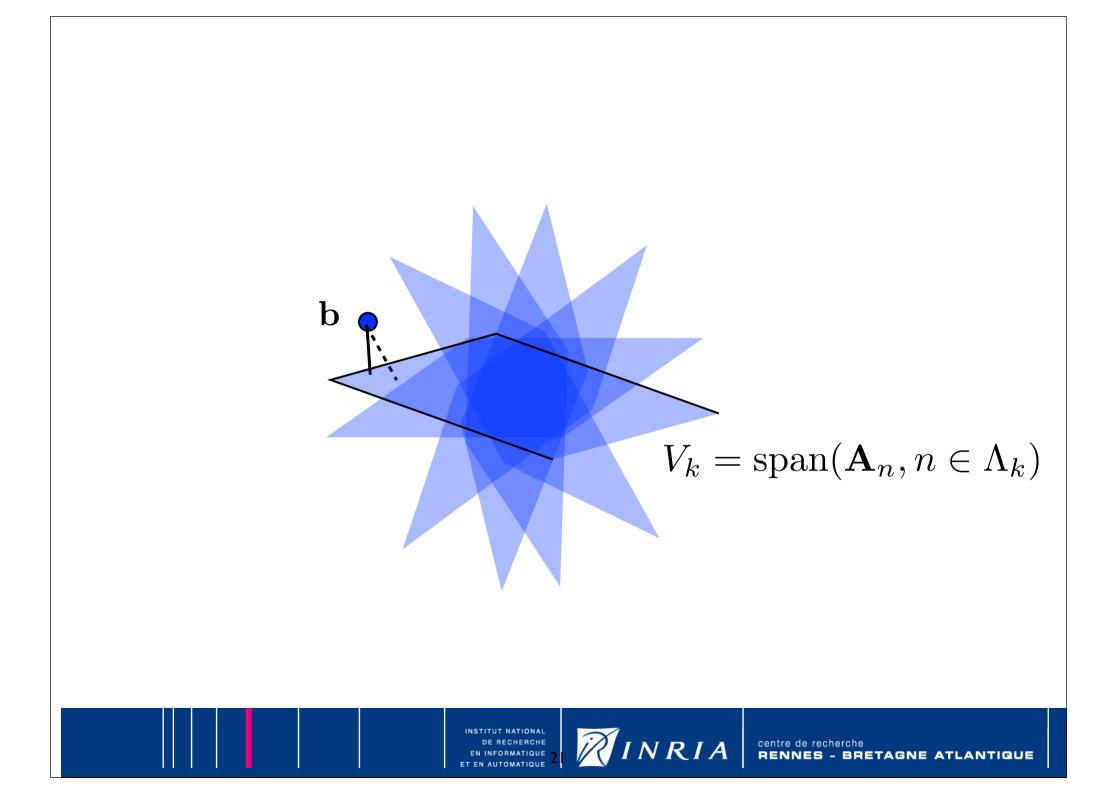
- Global energy preservation $\|\mathbf{b}\|_{2}^{2} = \|\mathbf{r}_{0}\|_{2}^{2} = \sum_{i=1}^{k} |\mathbf{A}_{n_{i}}^{T}\mathbf{r}_{i-1}|^{2} + \|\mathbf{r}_{k}\|_{2}^{2}$
- Global reconstruction

$$\mathbf{b} = \mathbf{r}_0 = \sum_{i=1}^k (\mathbf{A}_{n_i}^T \mathbf{r}_{i-1}) \mathbf{A}_{n_i} + \mathbf{r}_k$$

• Strong convergence

$$\lim_{i \to \infty} \|\mathbf{r}_i\|_2 = 0$$

DE RECHERCHE EN INFORMATIQUE



Orthonormal MP (OMP)

- Observation: after k iterations
- $\mathbf{r}_k = \mathbf{b} \sum \alpha_k \mathbf{A}_{n_i}$ Approximant belongs to

$$V_k = \operatorname{span}(\mathbf{A}_n, n \in \Lambda_k)$$
$$\Lambda_k = \{n_i, 1 \le i \le k\}$$

INRIA

• Best approximation from V_k = orthoprojection $P_{V_k}\mathbf{b} = \mathbf{A}_{\Lambda_k}\mathbf{A}_{\Lambda_k}^+\mathbf{b}$ • OMP residual update rule $\mathbf{r}_k = \mathbf{b} - P_{V_k} \mathbf{b}$

OMP

Same as MP, except residual update rule
 Atom selection:

$$n_i = \arg\max_n |\mathbf{A}_n^T \mathbf{r}_{i-1}|$$

+ Index update $\Lambda_i = \Lambda_{i-1} \cup \{n_i\}$

INSTITUT NATIONAL

Residual update

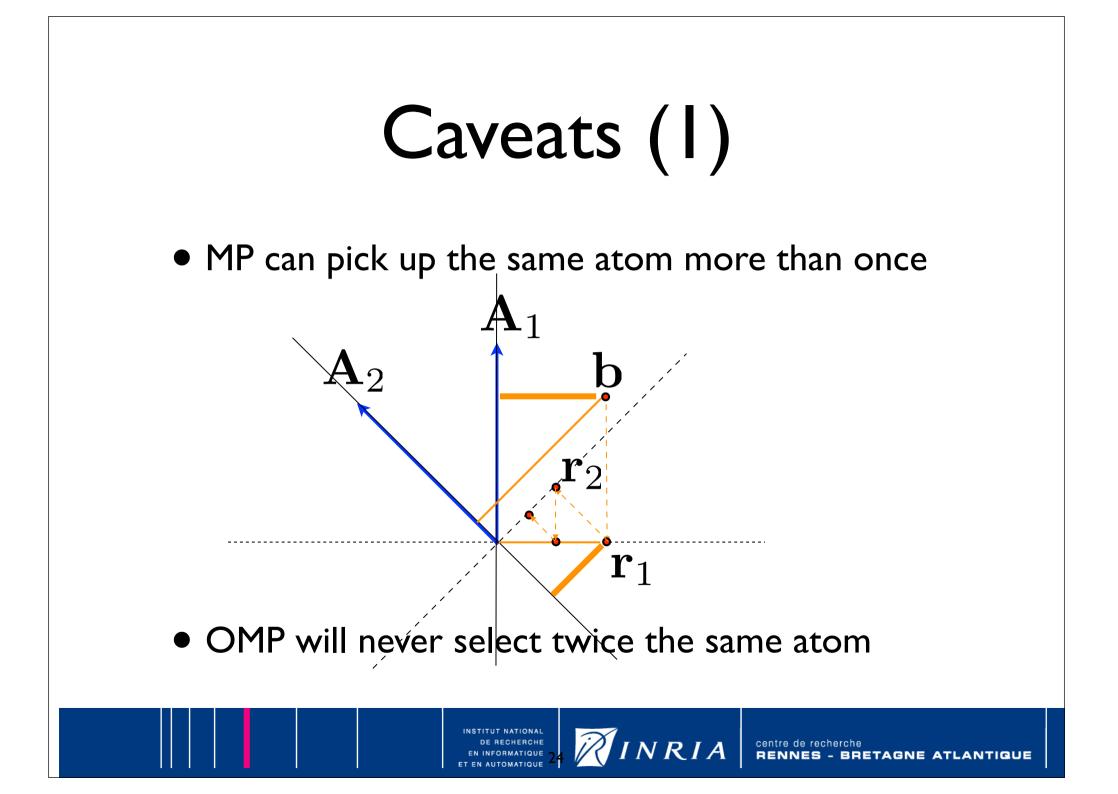
$$V_i = \operatorname{span}(\mathbf{A}_n, n \in \Lambda_i)$$

 $\mathbf{r}_i = \mathbf{b} - P_{V_i}\mathbf{b}$

RINRIA

• Property : strong convergence

 $\lim_{i \to \infty} \|\mathbf{r}_i\|_2 = 0$



Caveats (2)

- "Improved" atom selection does not necessarily improve convergence
- There exists two dictionaries **A** and **B**
 - + Best atom from **B** at step i:

$$n_i = \arg\max_n |\mathbf{B}_n^T \mathbf{r}_{i-1}|$$

Better atom from A

$$\mathbf{A}_{\ell_i}^T \mathbf{r}_{i-1} | \geq | \mathbf{B}_n^T \mathbf{r}_{i-1} |$$

Residual update

• Divergence!
$$\mathbf{r}_i = \mathbf{r}_{i-1} - (\mathbf{A}_{\ell_i}^T \mathbf{r}_{i-1}) \mathbf{A}_{\ell_i}$$

 $\exists c > 0, \forall i, \|\mathbf{r}_i\|_2 \ge c$

INSTITUT NATIONAL

NRIA

Stagewise greedy algorithms

- Principle = select *multiple* atoms at a time to accelerate the process
- Example of such algorithms
 - Morphological Component Analysis [MCA, Bobin et al]
 - ✦ Stagewise OMP [Donoho & al]
 - ✦ CoSAMP [Needell & Tropp]
 - ✦ ROMP [Needell & Vershynin]
 - + Iterative Hard Thresholding [Blumensath & Davies 2008]

Main greedy algorithms

$$\mathbf{b} = \mathbf{A}x_i + \mathbf{r}_i$$
 $\mathbf{A} = [\mathbf{A}_1, \dots, \mathbf{A}_N]$

	Matching Pursuit	OMP	Stagewise	
Selection	$\Gamma_i := \arg \max_n \mathbf{A}_n^T \mathbf{r}_{i-1} $		$\Gamma_i := \{ n \mid \mathbf{A}_n^T \mathbf{r}_{i-1} > \theta_i \}$	
	$\Lambda_i = \Lambda_{i-1} \cup \Gamma_i$	$\Lambda_i = \Lambda_{i-1} \cup \Gamma_i$		
Update	$x_i = x_{i-1} + \mathbf{A}_{\Gamma_i}^+ \mathbf{r}_{i-1}$	$x_i = \mathbf{A}^+_{\Lambda_i} \mathbf{b}$		
	$\mathbf{r}_i = \mathbf{r}_{i-1} - \mathbf{A}_{\Gamma_i} \mathbf{A}_{\Gamma_i}^+ \mathbf{r}_{i-1}$	$ $ $\mathbf{r}_i =$	$\mathbf{b} - \mathbf{A}_{\Lambda_i} x_i$	

MP & OMP: Mallat & Zhang 1993 StOMP: Donoho & al 2006 (similar to MCA, Bobin & al 2006)

Summary					
	Global optimization	Iterative greedy algorithms			
Principle	$\min_{x} \frac{1}{2} \ \mathbf{A}x - \mathbf{b}\ _{2}^{2} + \lambda \ x\ _{p}^{p}$	iterative decomposition $\mathbf{r}_i = \mathbf{b} - \mathbf{A} x_i$ • select new components • update residual			
Tuning quality/sparsity	regularization parameter $~\lambda$	stopping criterion (nb of iterations, error level,) $\ x_i\ _0 \ge k \ \mathbf{r}_i\ \le \epsilon$			
Variants	 choice of sparsity measure p optimization algorithm initialization 	 selection criterion (weak, stagewise) update strategy (orthogonal) 			
	INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE	28 RINRIA centre de recherche RENNES - BRETAGNE ATLANTIQUE			

Overview

- Convex optimization algorithms
- Greedy algorithms
- Comparison of complexities
- Exact recovery conditions for Lp minimization

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Complexity of IST

- Notation: $O(\mathbf{A})$ cost of applying \mathbf{A} or \mathbf{A}^T
- Iterative Thresholding $f(x) = \Theta_{\alpha\lambda}^p(x + \alpha \mathbf{A}^T(\mathbf{b} \mathbf{A}x))$

INRIA

- + cost per iteration = $O(\mathbf{A})$
- + when A invertible, linear convergence at rate

$$\|x^{(i)} - x^{\star}\|_2 \lesssim C\beta^i \|x^{\star}\|_2 \qquad \beta \le 1 - \frac{\sigma_{\min}^2}{\sigma_{\max}^2}$$

+ number of iterations guaranteed to approach limit within relative precision $\boldsymbol{\epsilon}$

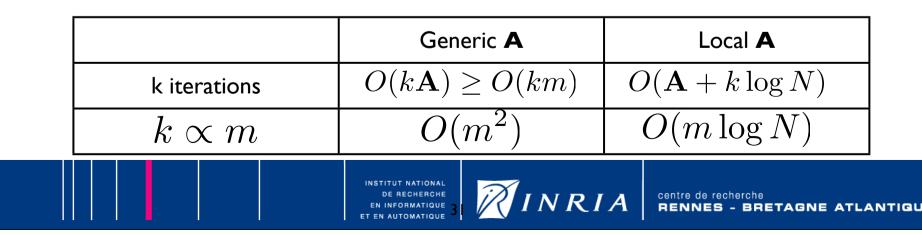
 $O(\log 1/\epsilon)$

• Limit depends on choice of penalty factor $\lambda,$ added complexity to adjust it

Complexity of MP

- Number of iterations depends on stopping criterion $\|\mathbf{r}_i\|_2 \leq \epsilon, \|x_i\|_0 \geq k$
- Cost of first iteration = atom selection (computation of all inner products) $O(\mathbf{A})$
- Naive cost of subsequent iterations = $O(\mathbf{A})$
- If "local" structure of dictionary [Krstulovic & al, MPTK]

+ subsequent iterations only cost $O(\log N)$



Complexity of OMP

- Number of iterations depends on stopping criterion $\|\mathbf{r}_i\|_2 \leq \epsilon, \|x_i\|_0 \geq k$
- Naive cost of iteration *i*
 - + atom selection $O(\mathbf{A})$ + orthoprojection $O(i^3)$
- With iterative matrix inversion lemma
 - + atom selection $O(\mathbf{A})$ + coefficient update O(i)
- If "local" structure of dictionary [Mailhé & al, LocOMP]

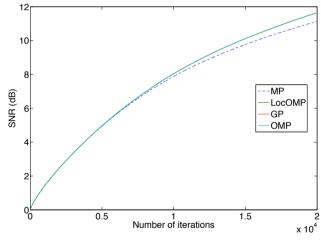
 subsec 	uent ap	oroximate	iterations	only	cost	$O(\log N)$
				-		

	Generic A	Local A	
k iterations	$O(k\mathbf{A} + k^2)$	$O(\mathbf{A} + k \log N)$	
$k \propto m$	$O(m^3)$	$O(m \log N)$	
	INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE 32	A centre de recherche RENNES - BRETAGNE ATLA	NTIQUE

LoCOMP

• A variant of OMP for shift invariant dictionaries (Ph.D. thesis of Boris Mailhé, ICASSP09)

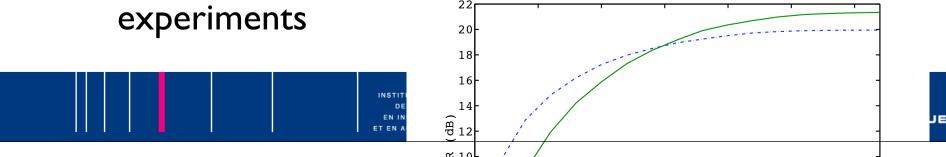
Fig. 1. SNR depending on the number of iterations



 $N = 5.10^5$ samples, k = 20000 iterations

Table 3. CPU time per iteration (s)						
Iteration	MP	LocOMP	GP	OMP		
First $(i = 0)$	3.4	3.4	3.4	3.5		
Begin ($i \approx 1$)	0.028	0.033	3.4	3.4		
End $(i \approx I)$	0.028	0.050	40.5	41		
Total time	571	854	$4.50 \cdot 10^{5}$	$4.52 \cdot 10^{5}$		

• Implementation in MPTK in progress for larger scale



Software ?

- Matlab (simple to adapt, medium scale problems):
 - Thousands of unknowns, few seconds of computations
 - LI minimization with an available toolbox
 - <u>http://www.l1-magic.org</u>/ (Candès et al.), cvx, ...
 - Iterative thresholding
 - <u>http://www.morphologicaldiversity.org</u>/ (Starck et al.), FISTA, NESTA, ...
 - Matching Pursuits
 - ➡ sparsify (Blumensath), GPSR, ...
- SMALLbox (to be released soon): unified API for several Matlab toolboxes
- MPTK : C++, large scale problems
 - * Millions of unknowns, few minutes of computation
 - specialized for local + shift-invariant dictionaries
 - built-in multichannel
 - ➡ <u>http://mptk.irisa.fr</u>

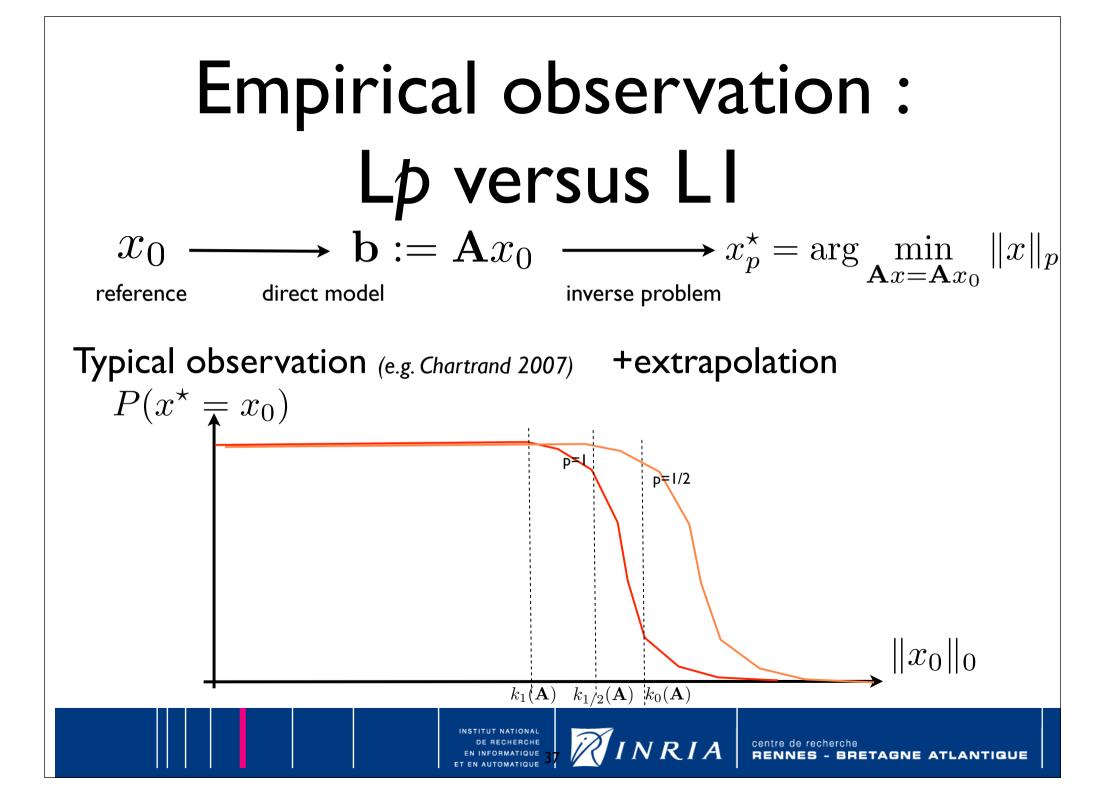
Overview

- Convex optimization algorithms
- Greedy algorithms
- Comparison of complexities
- Exact recovery conditions for Lp minimization

Usual sparsity measures

- L0-norm $||x||_0 := \sum_k |x_k|^0 = \sharp\{k, x_k \neq 0\}$ support(x)
- Lp-norms $||x||_p^p := \sum_k |x_k|^p, 0 \le p \le 1$
- Constrained minimization

$$x_p^\star \in rg\min_x \|x\|_p$$
 subject to $\mathbf{b} = \mathbf{A}x$



Proved Equivalence between L0 and L1

- "Empty" theorem : assume that $\mathbf{b} = \mathbf{A} x_0$ • if $||x_0||_0 \le k_0(\mathbf{A})$ then $x_0 = x_0^*$ • if $||x_0||_0 \le k_1(\mathbf{A})$ $x_0 = x_1^\star$
- Content = estimation of $k_0(\mathbf{A})$ and $k_1(\mathbf{A})$
 - Donoho & Huo 2001 :
 - ✤ Donoho & Elad 2003, Gribonval & Nielsen 2003 :
 - Candes, Romberg, Tao 2004 : random dictionaries,
 - Tropp 2004 : idem for Orthonormal Matching Pursuit,
- What about

$$x_p^\star, 0 \le p \le 1$$

NRIA

pair of bases, coherence dictionary, coherence restricted isometry constants cumulative coherence

Exact recovery: Lp minimization

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche RENNES - BRETAGNE ATLANTIQUE

Null space

• Null space = kernel

$$z \in \mathcal{N}(\mathbf{A}) \Leftrightarrow \mathbf{A}z = 0$$

• Particular solution vs general solution

INSTITUT NATIONAL

DE RECHERCHE

NFORMATIQUE

particular solution

$$\mathbf{A}x = \mathbf{b}$$

+ general solution

$$\mathbf{A}x' = \mathbf{b} \Leftrightarrow x' - x \in \mathcal{N}(\mathbf{A})$$

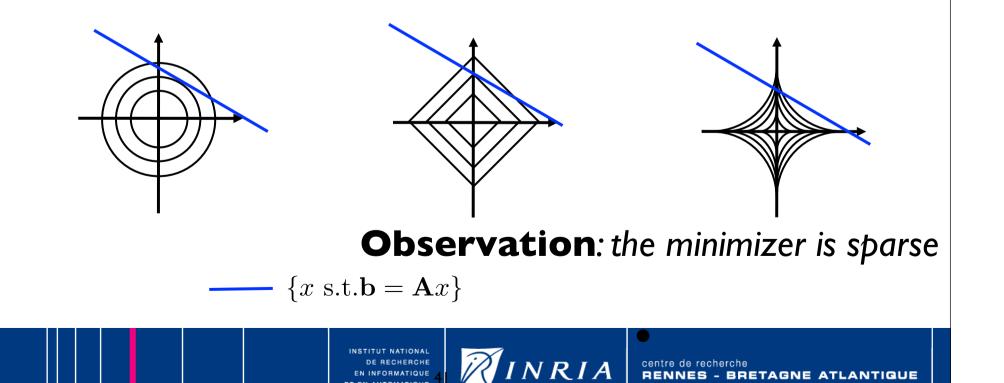
NRIA

R

centre de recherche RENNES - BRETAGNE ATLANTIQUE

Lp "norms" level sets

Strictly convex
 Convex p=1
 Nonconvex p<1



Exact recovery: necessary condition

- Notations
 - index set I
 - vector z
 - + restriction $z_I = (z_i)_{i \in I}$
- Assume there exists $z \in \mathcal{N}(\mathbf{A})$ with $\|z_I\|_f > \|z_{I^c}\|_f$
- Define $\mathbf{b} := A z_I = A(-z_{I^c})$
- The vector z_I is supported in I but is *not* the minimum norm representation of \mathbf{b}

NRIA

Exact recovery: sufficient condition

 Assume quasi-triangle inequality $\forall x, y \| x + y \|_f \leq \| x \|_f + \| y \|_f$ • Consider x with support set I and x' with Ax' = Ax• Denote $z := x' - x \in \mathcal{N}(\mathbf{A})$ and observe $||x'||_{f} = ||x + z||_{f} = ||(x + z)_{I}||_{f} + ||(x + z)_{I^{c}}||_{f}$ $= ||x + z_I||_f + ||z_{I^c}||_f$ $\geq \|x\|_{f} - \|z_{I}\|_{f} + \|z_{I^{c}}\|_{f}$ Conclude:

If $\|z_{I^c}\|_f > \|z_I\|_f$ when $z \in \mathcal{N}(\mathbf{A})$ then I is recoverable

Recoverable supports : the "Null Space Property" (1)

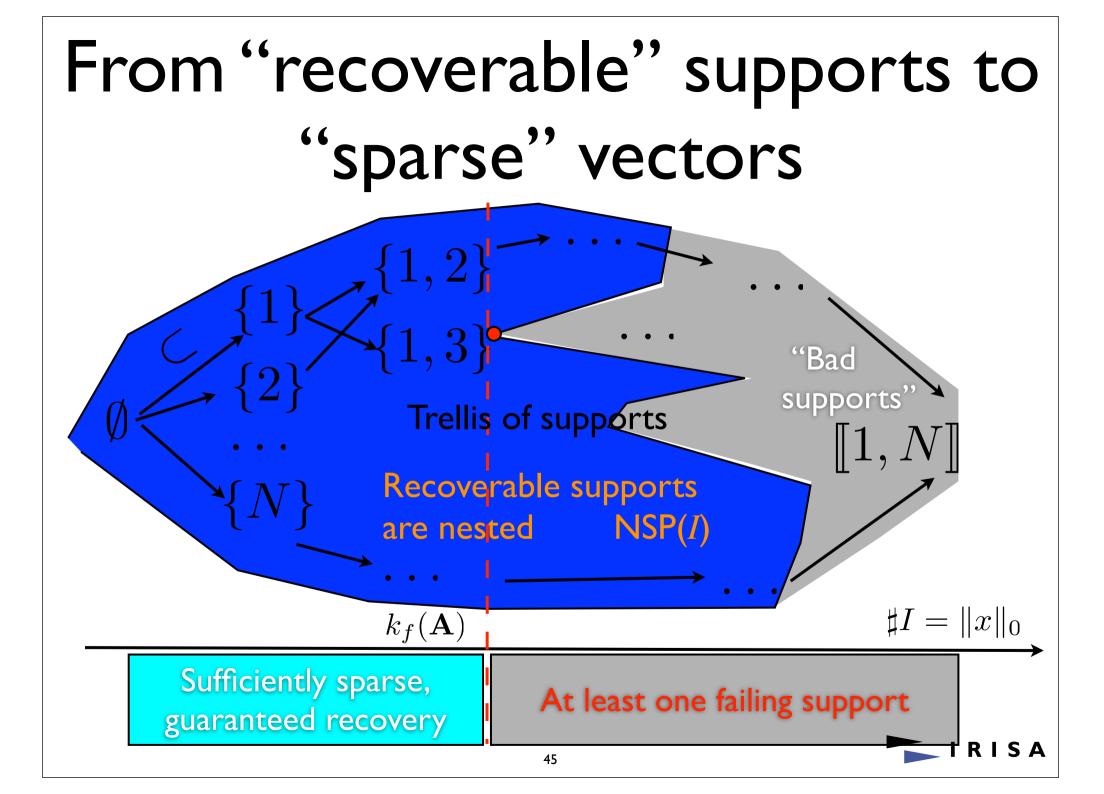
• **Theorem I** [Donoho & Huo 2001 for L1, G. & Nielsen 2003 for Lp] • Assumption I: sub-additivity (for quasi-triangle inequality) $f(a + b) \leq f(a) + f(b), \forall a, b$

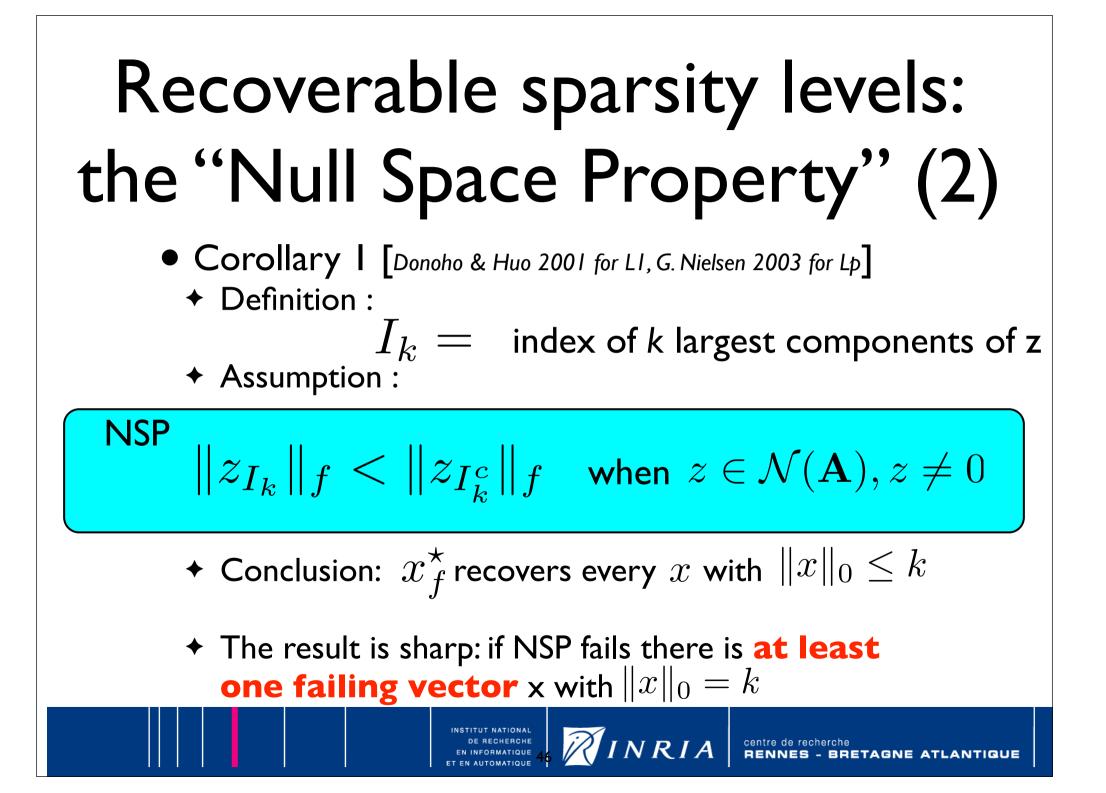
Assumption 2:

NSP

 $\|z_I\|_f < \|z_{I^c}\|_f$ when $z \in \mathcal{N}(\mathbf{A}), z \neq 0$

- + Conclusion: x_f^\star recovers every x supported in I
- The result is sharp: if NSP fails on support I there is at least one failing vector x supported in I

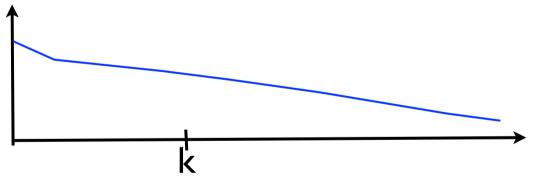




Interpretation of NSP

• Geometry in coefficient space:

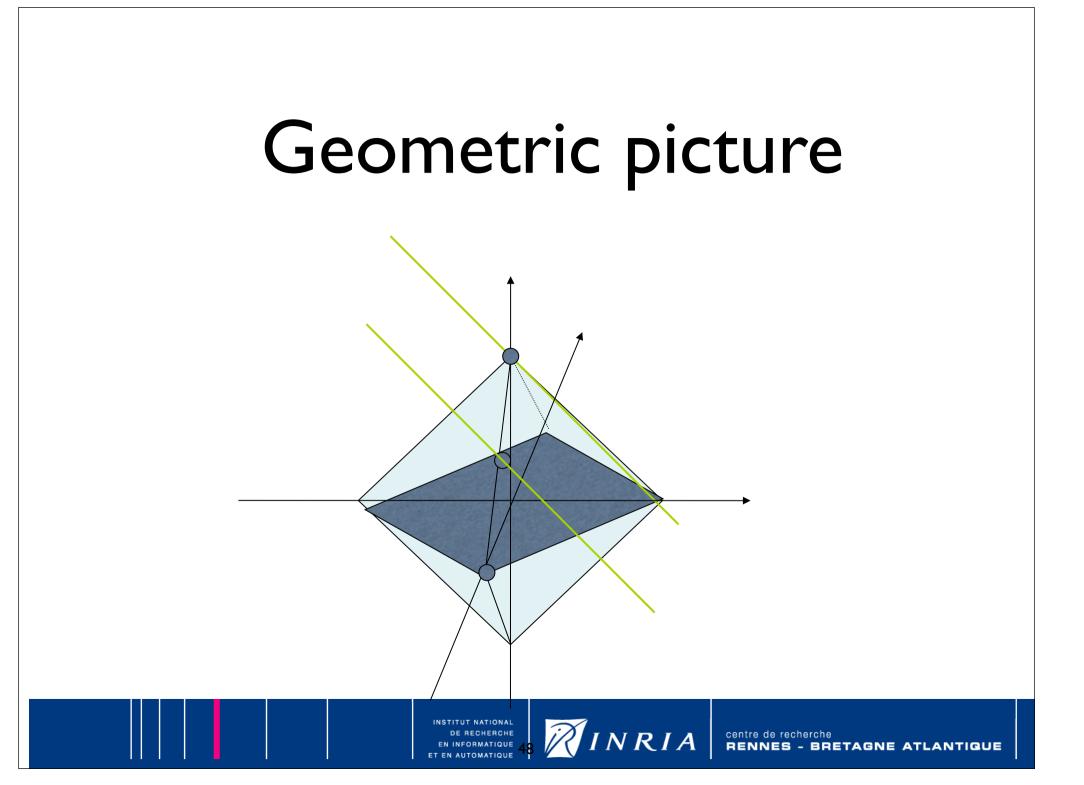
- consider an element z of the Null Space of A
- order its entries in decreasing order



+ the mass of the largest k-terms should not exceed that of the tail $||z_{I_k}||_f < ||z_{I_k^c}||_f$

All elements of the null space must be rather "flat"

NRIA



Summary

- Review of main algorithms & complexities
- Success guarantees for L1 minimization to solve under-determined inverse linear problems
- Next time:
 - success guarantees for greedy algorithms
 - robust guarantees
 - practical conditions to check guarantees

