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ABSTRACT
We consider the problem of extracting the source signals
from an under-determined convolutive mixture assuming that
the mixing filters are known. We wish to exploit the sparsity
and approximate disjointness of the time-frequency represen-
tations of the sources. However, classical time-frequency
masking techniques cannot be directly applied due to the
convolutive nature of the mixture. To address this problem,
we first formulate it as the minimization of a functional com-
bining a classical `2 discrepancy term between the observed
mixture and the mixture reconstructed from the estimated
sources and a sparse regularization term defined in terms of
mixed `2/`1 norms of source coefficients in a time-frequency
domain. The minimum of the functional is then obtained by a
thresholded Landweber iteration algorithm. Preliminary re-
sults are discussed for two synthetic audio mixtures.

1. UNDER-DETERMINED SOURCE SEPARATION

We consider the source separation problem for convolutive
mixtures of the form

x = A? s , (1)

with x= (x1, . . . ,xM)T , xm ∈RTx ∀m, the channels of the ob-
served mixture, s = (s1, . . . ,sN)T , sn ∈ RTs ∀n, the unknown
source signals, and A the mixing filter system. In the case of
an under-determined mixture (M < N), this problem is gen-
erally split into two distinct steps, namely the estimation of
the mixing system A and the extraction of the source signals
s given A and x. Both steps are equally challenging. In the
following, we focus on the estimation of s, assuming that A
is known.

Since the linear system (1) is under-determined, addi-
tional hypotheses are needed in order to ”invert it” and es-
timate the original sources. A classical assumption is to sup-
pose that only few sources are simultaneously active. This
assumption is often roughly satisfied after a properly cho-
sen transform. In the case of audio sources, this is generally
the case after switching to the time-frequency domain using
the short-time Fourier transform (STFT). Taking the STFT of
both hand sides of (1) yields the narrowband approximation

x̂( f , t) ≈ Â( f )ŝ( f , t) , (2)

where x̂ (resp. ŝ) is the STFT transform of x (resp. s) and Â
is the Fourier transform of A. The sparsity assumption means

that for each time-frequency point ( f , t), few sources are si-
multaneously active. A classical approach [1, 2] to identify
their contributions is to solve for each ( f , t) the optimization
problem

min
ŝ
‖ŝ( f , t)‖p

p = min
ŝ

N

∑
n=1
|ŝn(t, f )|p (3)

subject to x̂( f , t) = Â( f )ŝ( f , t) ,

where the `p norm is a measure of sparsity for p ≤ 1. Al-
gorithms such as FOCUSS [3] or the study made in [4] can
be used to solve (3). While this approach results in M active
sources per time-frequency point for small p [4], a single ac-
tive source can be selected instead using a time-frequency
masking algorithm such as DUET [5]. A variable number
of active sources between 0 and M can also be determined
via `1-regularized minimization [6] or via a probabilistic ap-
proach [7].

The above source separation techniques cannot easily be
applied to convolutive mixtures, or even anechoic mixtures
with rather long delays, because the approximation (2) be-
comes to crude. Indeed, even if the sources happen to have
sparse and almost disjoint time-frequency representations,
their contributions an ? sn to the mixture (where an is the n-th
column of the filter matrix A) may have significantly more
overlapping time-frequency representations. In this paper,
we give a general approach to estimate s from (1), avoiding
the approximation made in (2). Our approach is based on the
minimization of a suitable functional, discussed in section 2.
We then derive a thresholded Landweber iteration algorithm
that minimizes this functional in section 3. Section 4 pro-
vides some results for audio data.

2. SOURCE SEPARATION BY MINIMIZATION OF
A SUITABLE FUNCTIONAL

The goal of this section is to provide, under the form of an
optimization problem, a simple formulation to estimate the
original sources. The problem of source separation (1) can
be viewed as a linear inverse problem. A classical estimate
for s is then given by minimizing the discrepancy

‖x−A? s‖2
2 , (4)

where the `2 norm is the Froebenius norm (the sum of the
energy across all channels). In a Bayesian point of view, it
corresponds to a Gaussian prior on the residual.



However, minimizing the discrepancy term (4) is often
insufficient and does not provide a good separation of the
sources. In particular, when the mixture is under-determined,
there are infinitely many solutions and one must introduce
additional knowledge about the sources, which can be done
by choosing a suitable regularization term.

Usually, the source signals are modeled by their expan-
sion s = ∑k skφ T

k = sΦT in a dictionary Φ associated with a
time-frequency transform, such as the modified discrete co-
sine transform (MDCT) [8], and the regularization term is
defined in terms of the transformed coefficients s. This leads
to the following functional

min
s

[∥∥x−A?
(
sΦ

T )∥∥2
2 +λE(s)

]
, (5)

where E is the regularization term, and λ ∈R+ a free penalty
factor. The choice of the regularization term E depends on
the assumptions made about the sources.

2.1 `1 regularization
One possible assumption is that the signals are sparse in the
time-frequency domain [1]. This assumption has been used
in particular by the Multichannel Morphological Component
Analysis (MMCA) [9] algorithm, which relies on the follow-
ing functional for instantaneous over-determined source sep-
aration

min
s

[∥∥x−A
(
sΦ

T )∥∥2
2 +λ‖s‖1

]
. (6)

where Φ is chosen as a union of frames (or bases) adapted to
different components of the sources.

However, additional experiments showed us that this
functional was not adapted to the under-determined case. In
this case, the functional tends to threshold out the sources at
high frequencies, and keep them all at low frequencies since
they have higher energy. In other words, the sources are dis-
torted at high frequencies and remain mixed together at low
frequencies.

2.2 `1,2 regularization
In order to achieve better separation, we follow the usual
assumption made in the under-determined case: only few
sources are active for each time-frequency index. However
we would like to avoid ”over-sparsifying”, that is threshold-
ing out time-frequency regions which have less energy. The
mixed norm defined hereafter is well adapted to this aim.

Definition 1 Let p ≥ 1 and q ≥ 1. Let x ∈ RL be labeled
by a double index (n,k) such that L = N×K. We call mixed
norm of x, the norm `p,q defined by

‖x‖p,q =

 K

∑
k=1

(
N

∑
n=1
|xn,k|p

)q/p
1/q

. (7)

The cases p = +∞ and q = +∞ can be obtained by replacing
the corresponding norm by the supremum.

This type of norm was studied in the context of functional
spaces (see e.g [10] and references therein). Such norms al-
low the “structuring” of sparsity on the coefficients: contrary
to the simple `p norms, the coefficients are not considered to
be independently distributed. The `p,1 norm was used in the

context of multichannel signal processing [11–13] and under
the name of joint-sparsity [14–16]. The `2,1 norm is used in
the statistical community for the group-lasso [17] estimate.

In the context of source separation, the `1,2 norm can be
used to model the sparsity through the channels. Indeed, let
k be a time-frequency index and n be the channel index, and
consider the following `1,2 norms on the sources:

‖s‖2
1,2 = ∑

k

(
∑
n
|sn,k|

)2

.

Minimizing such a quantity will enforce sparsity across chan-
nels for each time-frequency index k, but not necessarily
sparsity across time-frequency indices: for a given time-
frequency index, we hope to keep only the coefficients cor-
responding to the most significant channels, but we expect
some coefficients to be kept for most time-frequency indices.
This behavior will be enlightened at the end of section 3.

Using this mixed norm as the regularization term in the
functional (5), we obtain the following optimization problem

min
s

[
Ψ(s) :=

∥∥x−A?
(
sΦ

T )∥∥2
2 +λ‖s‖2

1,2

]
. (8)

Such a functional remains convex and can be minimized by
a thresholded Landweber iteration following [18]. This is
detailed in the next section.

3. ITERATIVE MINIMIZATION ALGORITHM

For the sake of simplicity, we introduce the following linear
operator, which reconstructs a mixture from a representation
of the sources by applying first the source reconstruction op-
erator ·ΦT , then the filter matrix A:

F : RN×Ts → RM×Tx

s 7→F (s) = A?
(
sΦ

T ) . (9)

Then, one can apply the thresholded Landweber iteration al-
gorithm described in [19], to minimize (8). We recall the
iteration hereafter in the context of source separation.

If we differentiate the functional Ψ of (8) with respect to
sn,k, the resulting system of variational equations is not read-
ily solvable. Indeed these equations are coupled due to the
presence of convolution products. In order to decouple the
variational equations, we introduce the surrogate functional:

Ψ
sur(s,z) = ‖x−F (s))‖2

2 +C‖s−z‖2
2−‖F (s)−F (z)‖2

2

+λ‖s‖2
1,2 ,

(10)

where C is chosen greater than the square of the operator
norm of F , i.e. such that ‖F (s)‖2

2 < C‖s‖2
2 for all s. Let us

introduce the following notations: x̃ := (A∗ ?x)Φ and z̃ :=
{A∗ ? (A ? (zΦT ))}Φ, where we denoted by A∗ the adjoint
operator of A, that is obtained by transposition of the channel
indices and the source indices, and time reversal of A. Then,
if we denote by

yn,k =
x̃n,k +Csn,k− z̃n,k

C
,



the variational equations associated with Ψsur are the follow-
ing

∀(n,k) sn,k = yn,k− sgn(sn,k)
λ

C
‖sk‖1 , (11)

where sk := (s1,k, . . . ,sN,k) . Applying the theorem 3 of [19],
the solution of this equation and then the argmin ŝ of
Ψsur(s,z) with respect to s, is given coordinatewise by 1

ŝn,k = sgn
(
yn,k
)(∣∣yn,k

∣∣− λ/C

1+Lk
λ

C

‖|yk‖|

)+

∀(n,k) ,

(12)

with ‖|yk‖|=
Lk
∑

l=1
y̌k,l , where y̌k,l denote the coefficients |yk,l |

ordered by descending order. The quantity Lk is the number
such that

y̌k,Lk+1≤ λ

Lk+1

∑
`=1

(
y̌k,`− y̌k,Lk+1

)
and y̌k,Lk > λ

Lk

∑
`=1

(
y̌k,`− y̌k,Lk

)
.

(13)
Knowing this new “generalized thresholding operator”,

one can apply the thresholded Landweber iteration which is,
starting from any s(0),

s(m+1) = argmin
s

Ψ
sur
(
s,s(m)

)
.

These iterations lead then to the following practical algo-
rithm for source separation, with the mixing filter system A
known.

Algorithm 1 Let x̃ = (x̃1, . . . , x̃N) := (A∗ ?x)Φ,
s(0) = 0
m = 0
do

s̃(m) =
(
s̃(m)

1 , . . . , s̃(m)
N

)
:= {A∗ ? (A? (s(m)ΦT ))}Φ,

for each time-frequency index k and each source index n

y(m)
n,k =

x̃n,k +Cs(m)
n,k − s̃(m)

n,k

C

s(m+1)
n,k = sgn

(
y(m)

n,k

)(∣∣∣y(m)
n,k

∣∣∣− λ/C

1+L(m)
k

λ

C

∥∥∥∣∣∣y(m)
k

∥∥∥∣∣∣)+

with L(m)
k and

∥∥∥∣∣∣y(m)
k

∥∥∥∣∣∣ as defined in (13) and (12).
endfor

until convergence

It has been shown in [19] that this algorithm converges to
a global minimum of the original functional Ψ of (8).

We shall stress that in the extreme case λ = +∞, for a
given index k, at least one coefficient will be kept among
(y(m)

1,k , . . . ,y(m)
N,k) at each iterations. Furthermore, equation (11)

assures that y(m)
k = 0 if and only if s(m+1)

k = 0. This remark
guaranties that once the algorithm converged, at least one
coefficient is non zero for each time-frequency index if x̃k 6=
0.

1The operator + is defined as follow: x+ = x if x≥ 0, and 0 if x < 0 .

4. SOURCE SEPARATION RESULTS

We assessed the source separation performance of our algo-
rithm on an anechoic audio mixture and a convolutive audio
mixture obtained with simulated room impulse responses.
We compared the performance of our algorithm with an im-
plementation of DUET based on the narrowband approxima-
tion (2), using a STFT with a Gaussian window and defining
Â( f ) as the Fourier transform of the known mixing filters.
The window size for DUET has an influence on the perfor-
mance: the window must be long enough in order for (2) to
hold, but a too long window results in greater overlap of the
sources. 1024 samples seems a good compromise for both
examples. The resulting audio signals can be downloaded
from [20] for listening comparisons.

We would like to stress again that the mixing filter system
A is supposed to be known.

4.1 Anechoic mixture
The anechoic mixture consisted of four musical sources.
Each source was sampled at 44100 Hz and had a duration
of 217 samples (about 3 s ). The mixing system was obtained
by combining the following instantaneous matrix (available
on [21]) with delays between 0 and 512 samples(

0.3420 0.6428 0.7934 0.9239
0.9397 0.7660 0.6088 0.3827

)
.

The chosen dictionary Φ was a MDCT basis with a sine win-
dow of 2048 samples (about 46 ms). Note that, similarly as
above, a different window length could affect the results but
that the chosen length seems a good compromise.

We display in Figure 1 the SDR (Signal to Distortion
Ratio), SIR (Signal to Interference Ratio) and SAR (Sig-
nal to Artifact Ratio) [22], averaged over the four sources,
as a function of the penalty factor λ . A larger value of
SDR/SIR/SAR means a better quality of the separation. As
one could expect, the SIR of DUET is always better than
the SIR of our algorithm: since DUET uses only one source
for each time-frequency index, it avoids as much as possible
interference between sources. This comes to the price of a
larger mismatch between the mixture and its reconstruction
from the estimated sources. On the opposite, the SAR ob-
tained by our algorithm is systematically better, because of
the discrepancy term.

The SDR curve gives an idea of the global performance,
taking into account both artifacts and interferences. One can
see that, for well chosen λ , our iterative algorithm performs
better than DUET. Having to choose the penalty factor λ is
certainly one of the main drawbacks of the functional ap-
proach (5). On Figure 2 we plot the percentage of coeffi-
cients which are set to zero, and observe that the algorithm
performs best when about 50 % coefficients are zeroed. Here,
this means that on the average, at each time-frequency point
two sources are considered active and two are set to zero.
This seems a good compromise for a stereo mixture, and we
believe that such a heuristic could be used as an adaptive
strategy to tune the penalty factor in other settings.

4.2 Convolutive mixture
The convolutive mixture was generated by simulation of a
recording in a meeting room with 250 ms reverberation time
using a pair of omnidirectional microphones spaced by 1 m.



Figure 1: SDR, SIR, SAR of the proposed iterative algorithm
and DUET as a function of the penalty factor λ (log scale).

Figure 2: Percentage of coefficients set to zero as a function
of the penalty factor λ (log scale).

The mixing filters were simulated by the image method and
had a length of 4000 samples. The sources were four female
speech recordings, sampled at 16000 Hz, and 217 samples
long (about 8 s). The matrix Φ corresponded to a MDCT
basis, with a window of 512 samples (about 32 ms). All the
data (sources and mixing system) are available on [21].

As for the anechoic mixture, we display in Figure 3 the
the SDR, SIR and SAR obtained by our algorithm, averaged
over four sources, as a function of the penalty factor. These
are compared to the ones obtained by DUET. Figure 4 shows
the percentage of coefficients which are set to zero.

In this case too, one can remark that the iterative algo-
rithm performs best when about 50 % of coefficients are set
to zero, even if the point λ = 104 seems to perform better
than the others in terms of SAR (and correspond to 75 % of
coefficients set to zero). Indeed, these curves are made in
average, and, by chance, the first and the second sources are
well estimated for this value of λ . These two sources are
the best estimated ones by DUET, and that can explain why
the iterative algorithm performs well. Further experiments

showed that, in general, the iterative algorithm performs best
when 50 % of coefficients are set to zero2.

Figure 3: SDR, SIR, SAR of the proposed iterative algorithm
and DUET as function of the penalty factor λ (log scale).

Figure 4: Percentage of coefficients set to zero as a function
of the penalty factor λ (log scale).

We also compared briefly the results obtained by our min-
imization to the results given by an approach such (3), with
p = 1 and p = 10−3. It appears that the Landweber itera-
tion gives better results in term of SDR/SIR/SAR in average
on the sources, but can provide lower SDR/SIR on particular
sources (typically, on the third source of the used mixture).

4.3 Computational efficiency
The computation time of the proposed algorithm depends
mainly on the efficiency of the time-frequency transform and
that of the convolution by the mixing system and its adjoint.
The convergence of the thresholded Landwebver iterative al-
gorithm itself is known to be quite slow, but potential speed-
ups are proposed in the literature [23, 24]. In the above ex-
periments, the overall computation time was about 5 min in

2For a stereo mixture of four sources.



the anechoic case and between 1 h for small values of λ and
5 min for very large values of λ in the convolutive case.

5. CONCLUSION

In this paper we developed an iterative optimization approach
to separate convolutive mixtures using sparse source models
in a time-frequency dictionary, when the mixing filter sys-
tem is supposed to be known. Instead of the classical `1
penalty, we showed that the `1,2 mixed norm appears to be
well adapted to respect the sparse hypothesis over the chan-
nels: for each time-frequency index, only few sources are
active. The functional we proposed can be easily minimized
by a thresholded Landweber iteration and leads to a simple
algorithm that one can quickly implement.

We showed that this approach gives interesting results
compared to DUET: despite an expected lower SIR, the SAR
is always better, and the SDR can be improved too. More-
over, this algorithm works for any number of mixture and
any number of sources to estimate, i.e. for any M,N ∈ N
with M < N.

One of the major benefits of the proposed approach, is
that one can make additional assumptions on the sources, and
take them into account in the regularization term. Indeed, the
next step should be to try to incorporate some structures on
each source, as, for example, harmonicity for music sources.
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