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ABSTRACT

The European project PICASSO intends to develop and
test several telematics transaction services that will be
accessible via the worldwide telephone network.
In this framework, ENST works on developing an
Automated Speech Recognition system of pronounced
and spelled names, for telephone quality speech in
French. The recognizer is based on Hidden Markov
modeling of speech units using word models for spelled
letters and phone models for name pronunciation.
Bigram probabiliti es are introduced at this stage for
phonemes and letters, in order to improve the quality of
decoding.
The directory was built automatically from the list of the
names contained in the database, using a grapheme to
phoneme converter for the names and rules for
spelli ngs, each entry in the directory consisting of
several pronunciations and spelli ng variants.
After the acoustic recognition phase, the corresponding
entry in the directory is then found using dynamic
alignment of symbol sequences, with insertion, deletion
and substitution costs determined from the training data
to take into account acoustic confusabilit y.
As this lexical search is very time consuming for large
directories, we present a faster method using pre-
selection in a tree-based representation of the lexicon. A
rescoring strategy on the 10 best outputs is also
evaluated.

I. INTRODUCTION

Automatic retrieval of names from their pronunciation
and spelli ng is a diff icult problem in speech recognition,
possible applications being name retrieval through the
telephone network for purchase, financial, or multi -
media telecommunication services.
Such systems need to integrate various speech
technologies (e.g. speech recognition, speaker verifi-
cation, text-to-speech synthesis) into intuitive, user
friendly and secure interfaces.

Many studies address the general problem of alphabet
recognition, which is known to be a diff icult task
because of acoustic similarities between some letters
(e.g. the well known E-set in English). When working
with telephone quality speech, the confusabilit y
increases drastically.
Cole et al. presented experiments with telephone speech
for recognition on French and English alphabets [1,2].
Letters, separated by pauses, are segmented and then
classified using a MLP with phonetic features. More
recently, HMM based methods have been proposed, as
in [3] and [4], where letter models are used. The first of
these studies compares DTW- and HMM-based lexical
search strategies to retrieve names from natural spelli ng.
HMM-based lexical search can also be seen as a DTW
whose insertion, deletion and substitution costs are
learnt from the training data. The second study is based
on a multil evel classification with a N-best approach,
using DTW and a restricted grammar for lexical search.
These studies however fail to address a number of
problems that are critical in the perspective of real
applications. First, they greatly underestimate the
variabilit y observed in real-li fe spelli ngs. Second,
phonetic knowledge is only used to help letter
discrimination but not for the DTW-based lexical
access. Finally, the name itself (i.e. the pronunciation of
the name) is a source of information that has rarely been
used (see however [5]).
In this paper, experiments on name retrieval from the
pronunciations and the spelli ngs are reported, using
Hidden Markov Models of speech units and robust
lexical access based on phoneme or letter confusabilit y.
The name directory is build automatically and integrates
pronunciation and spelli ng variants.
The paper is organized as follows. In the next section,
the database is described and the construction of the
directory is explained. Acoustic modeling is then
presented, along with some results. In section 4,
different retrieval strategies are evaluated. Experiments
on rescoring are then discussed, and their results
commented. Finally, other possible improvements of
this baseline system are mentioned.



II. DATABASE AND DIRECTORY

The Swiss-French Polyphone database1 was recorded
over telephone lines with 5,000 speakers calli ng once, a
call i ncluding the pronunciation and spelli ng of 3
names, where a name can be a person name, a city name
or any common noun. Spelli ngs were prompted but no
specific guidelines were given to the callers. As a result,
in addition to “standard” spelli ngs, the corpus contains
occurrences of comparisons, such as “a comme Alain”
(a not so uncommon way to minimize confusions
between letters), occurrences of aeronautic-like
spelli ngs, e.g. “alpha bravo…”  etc.
A subset of the database is used, containing 11,920
speech segments from 3,998 speakers. This subset was
divided in three corpora. The first one is the train
corpus, containing 5,390 segments from 3,223 speakers.
The remaining items belong to the test corpus, from
which a special subset, the “clean” test corpus, is
extracted. This “clean” test corpus contains the items
for which the spelli ng conforms to the “standard”
spelli ng conventions. It contains 5,015 segments from
3,097 speakers, corresponding to 3,478 different names
and is used to evaluate the quality of acoustic modeling.
The directory from which names are to be retrieved
contains the 8,261 entries presented to the callers. Given
the typical size of directories and the fact that only few
occurrences of each name are available for training, we
cannot rely upon whole word based recognition.
Therefore, each directory entry contains one or several
phonetic transcription(s) of the name, plus one or
several possible spelli ngs. These phonetic transcriptions
were automatically produced by a grapheme to phoneme
converter developed during the course of the
Onomastica project [6,7]. This transcriber has been
explicitly devised to cope with proper names
idiosyncrasies. It also contains a module for recognition
of proper names origins and is likely to output
pronunciation variants. The spelli ng variants are
generated by a rule-based system. For each letter (or
cluster of letters), all possible spelli ngs are considered.
For instance, the letter “é” can be spelled “e accent
aigu” , “e aigu” or “é” ; the cluster “nn” can be spelled
“deux n” or “n n”… In the remainder of the paper, a
directory entry Ei will be referred to as {Ni,j=1,…,ni,
Si,j=1,…,si} , where Ni,j (resp. Si,j) is the j-th
pronunciation (resp. spelli ng) variant.

III. ACOUSTIC MODELING

3.1 Models and grammar
The first processing stage consists in acoustic decoding.
Speech is encoded using 12 Mel frequency cepstral
coeff icients and log energy, with first and second order
derivatives, computed every 10 ms on 25.6 ms frames.
In order to estimate phone models for recognition of
names and letter models for recognition of spelli ngs, the

                                                          
1 The Swiss-French Polyphone database, recorded by Swiss Telecom
PTT, is distributed by the European Language Resource Association.
http://www.icp.inpg.fr/ELRA

training corpus is first automatically segmented from its
orthographic transcription, using speaker-independent
HMMs of phones. The latter are also used as bootstrap
models. Phone model parameters are then re-estimated
using the standard Baum-Welch algorithm. Letter
models are created by concatenating the bootstrap
models that correspond to the letter pronunciation, and
performing re-estimation afterwards. Because of the
possible liaisons after some words such as “deux”, some
letters can have two models, one with liaison and one
without. A simple grammar is also used during the
decoding procedure. This grammar describes an
utterance as a name followed by a spelli ng where a
name can be any sequence of phonemes and a spelli ng
any sequence of letters. An optional silence is also
specified between the name and the spelli ng, which has
been shown to improve the recognizer's detection of
spelli ng's start [8].
It is important to realize that our grammatical model
allows one or the other part of the utterance to be
skipped by the speaker, a very likely situation in real
applications. A short silence is forced after each letter in
the spelli ng. In fact, a preliminary study inspired from
[9] showed that forcing a short silence gives better
accuracy for letter recognition. Using the grammar
defined above, the recognizer finds out the most likely
sequence in the speech signal.

3.2 Results and discussion
In this section, results concerning speech unit
recognition are presented and discussed, allowing for an
independent evaluation of the acoustic models. Tables 1
and 2 report various phone and letter recognition rates
and accuracies on the train and test corpora.
The accuracy corresponds to the number of correctly
recognized units minus the number of insertions and is a
much more reliable measure of the recognition quality
than the correct recognition rate. As can be seen on
these tables, although the correct recognition rate is
quite good, there are many phoneme insertions.
Reducing the number of insertions can be done by
introducing a penalty for the transition between two
models of the form p+s*log(P[Wi|Wi-1]), where p is a
fixed penalty, P[Wi|Wi-1] the bigram probabilit y of
speech unit Wi following Wi-1, and s a scale factor which
determines the importance given to the bigrams.

phonemes letters
Penalty factors: correct. accuracy correct. accuracy

p=0       s=0 58.71 14.42 83.16 74.56
p=-17.5  s=0 54.35 41.50 83.44 80.27
p=0       s=8 59.31 51.52 89.74 84.09

Table 1- Recognition rate (in %) and accuracy for
phonemes and letters, on the train corpus.



Separate optimizations on p (see [10]) and s (see below,
figure 1) yielded the results mentioned above. Experi-
ments combining a fixed penalty with bigrams (p and s
non-null ) showed lower values of accuracy than the best
bigrams approach without fixed penalty (p=0 and s=8).
This can be explained by the fact that p is a kind of
fixed bigram probabilit y, the best strategy being then to
take into account the real transition probabiliti es
between speech units, which were computed on a
lexicon of 50,000 words. For this task, we used the
CMU Statistical Language Modeling Toolkit along with
a linear discounting method, which gave the lowest
perplexity for the resulting language model [11].
Finally, figure 1 plots the correct recognition rates and
accuracies on the train corpus, as a function of the scale
factor s (with p=0). The corresponding name retrieval
rates are also plotted. These results point out the facts
that letter recognition is much more reliable than phone
recognition, and that the language model helps to
improve greatly the accuracy of phone recognition.

Fig. 1 - Recognition rates on the train corpus as a
function of the bigram scale factor.

Hereafter the recognition rates for speech units on the
clean test corpus are presented (Table 2). As specified
above, these results directly depend on the quality of
acoustic decoding.

Phonemes Letters
Penalty factors correct. accuracy correct. accuracy

p=-17.5  s=0 56.24 34.39 82.77 78.43
p=0       s=8 60.21 47.55 88.01 81.90

Table 2 - Recognition rate (in %) and accuracy for
phonemes and letters, on the clean test corpus.

Using a fixed or a bigram based transition penalty does
not affect much letter recognition rates. For phonemes
however, the accuracy is much better when bigrams are
used, but the difference between phones and letters is
still of 30%. These remarks are important, as they will

help us comment the name retrieval rates we obtain
when using these different decoding procedures (see
section IV). We must now deal with another aspect of
acoustic decoding quality, which concerns the detection
of spelli ng start. Indeed, the number of phone insertion
can be explained by the fact that the recognizer often
detects the beginning of the spelli ng too late. This is a
consequence of the fact that phones may be recognized
where letters should be recognized…For that reason,
phonemes tend to be overestimated, while letters in the
spelli ng can be lost when confused with phoneme
sequences. The last improvement concerning that
problem was the specification of a silence in the
grammar between name and spelli ng, which decreased
the error rate due to an erroneous identification of
spelli ng start from 65% of the errors, down to about
35% [8]. Still , this problem remains quite important, as
shown below.
In order to estimate the importance of a correct
discrimination between name and spelli ng during
recognition, a simulation was made, which consisted in
splitti ng artificially the encoded signal corresponding to
speech in two parts: one, corresponding to the name' s
pronunciation, and the second one, corresponding to its
spelli ng. This artificial splitti ng was done using the label
files obtained from forced recognition. These label files
were used when training the models. As the forced
recognition was based on transcriptions of what was
prompted, we used here an a posteriori knowledge
concerning how the speakers behaved. Table 3 reports
the following results.

Phonemes LettersPenalty factors
p=0   s=8 correct accuracy correct accuracy

actual splitti ng 60.21 47.55 88.01 81.90
artificial splitti ng 63.06 50.21 88.22 83.38

Table 3 - Recognition rate (in %) and accuracy with
natural decoding and artificial splitti ng.

It appears that the bigrams strategy tends to improve the
natural discrimination between phonemes and letters, as
there is just a slight difference between the accuracies
obtained through a normal decoding, or with the
procedure using an artificial splitti ng. A comparison
made on lexical access, reported in next section will
conclude on this quite important question.
A more detailed study of the letter recognition errors
outlines the standard confusions between acoustically
similar letters such as “b” and “d”, “f” and “s” or “p”
and “t”. As noted in many studies on alphabet
recognition (e.g. [3, 12]) letter HMMs are not really
able to distinguish two letters whose spelli ng only differ
by a short transitional acoustic event. For example,
letters “m” and “n” share the same vowel and are
separable by the last consonant. But phonemes /m/ and
/n/ are quite similar, and their confusion is also one of
the most common substitution at the phoneme level.
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IV. LEXICAL SEARCH

4.1 Search strategy
The second step consists in retrieving the name in the
directory from the recognized strings. This is done by
calculating the dissimilarity measure between the
recognized form R and each lexical entry Ei according
to:

D (R,Ei) = 
�

 (min d(Rs,Si,j)) + (1–
�

) (min d(Rn,Ni,j))
j         j

where Rs (resp. Rn) is the recognized spelli ng (resp.
pronunciation). The retrieved name is the one for which
the dissimilarity is the smallest. Parameter 

�
allows to

balance the respective contributions of the spelling and
pronunciation. Dissimilarity d(.,.) is computed by
dynamic alignment using specific costs for each possible
substitution, insertion and deletion. Those costs are
usually arbitrarily fixed. However, as some pairs of
symbols (letters or phonemes) are more confusable than
others, it seems natural to assign a smaller cost for the
substitution of confusable symbols.
Therefore, the weighted cost for the substitution of x by
y is -log (p(y|x)), where p(y|x) is estimated on the train
corpus. The same procedure is used to determine
insertion and deletion costs. This approach is somewhat
similar to the HMM-based alignment procedure in [3].
Instead of using phonetic knowledge to achieve better
discrimination as in [12], this knowledge is learnt from
the training data and used for name retrieval rather than
for symbol recognition. Setting � = 0.5 and with no
transition probabilities between models (p=s=0), name
recognition rate achieves 52.11% with binary confusion
costs, and 82.11% with weighted costs.
Figure 2 gives the name retrieval rate as a function of � ,
with p= -17.5 and s=0 on the train corpus. The best
results are achieved for � � 0.6, with 94.17% of names
retrieved on the train corpus, and 82.68% on the test
corpus.
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Fig 2 – Name recognition rate as a function of � �

Using just the pronunciation (��� 0), the rate is less than
40%, while a spelling only recognition (��� 1) goes

beyond 90% of retrieved names. This is due to a more
accurate letter recognition that we noticed in section 3.2.
The spelling can therefore be seen as the main source of
information, while the pronunciation brings some kind
of redundancy, which improves slightly the global
retrieving process.

Fig 3 - Name recognition rates as a function of � � for
best decoding using fixed or bigrams-dependant

transition penalties.

The integration of the bigram language model described
in the previous section gave the following results
concerning lexical access: the best rate for a decoding
using bigrams is also obtained for 	�
 0.6 (see figure 3).
On the test corpus, the corresponding rate is now
83.53%, which shows an increase of less than one point.
This result can easily be explained if one remembers
(see 3.2) that introducing our bigram language model
really improved the phone accuracy, while the
corresponding value on letters was just slightly
modified, but was still much higher than the
performance on phonemes. That is why here the global
retrieval rate shows only a small improvement, since
letters remain the main source of information for lexical
search.
Anyway, as it is shown below, any improvement of
speech units decoding accuracy should not be neglected,
even at that stage where the global performances of the
system are not much modified. Indeed, the experiment
described in section 3.2, which consisted in performing
an artificially exact splitting between name and spelling
during the decoding procedure gave a low increase, on
both phonemes and letters accuracy. When performing
lexical access on this basis, with the previously
optimized parameters concerning the bigrams strategy
(p=0, s=8, 	�
 0.6), we obtain a retrieval rate of 90.43%
on the clean test corpus, while we have 89.11% with a
natural splitting on the same corpus.
This result shows that the integration of a language
model both improved the accuracy on speech units and
the detection of spelling start, as we' ve seen here that an
artificially correct splitting brought low increase both on
the speech units accuracy and on the names retrieval
rate.
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4.2 Pre-selection
The name retrieval procedure described in the previous
section is extremely time consuming, as it requires the
computation of dynamic alignments between the recog-
nized spelli ng and pronunciation, and each variant of
each lexical entry. Obviously, this brute force approach
is only applicable in the context of small or medium
sized name directories. As a first step towards very large
directory name retrieval, an alternative search strategy is
evaluated in this section. This new strategy consists in
the two following stages: first, on the basis of the
spelli ng alone, a set of N possible entries are selected
using a fast approximative lexical search; this subset is
then exhaustively explored, according to the procedure
defined in the previous section. The approximative
lexical search implements a variant of the algorithm
originally proposed in [13] for error tolerant lexical
recognition. Given a possibly erroneous form, this
algorithm eff iciently retrieves every lexical entry whose
edit distance (computed as the number of deletions,
insertions and substitutions between two forms) to the
form falls below a predefined threshold d.
This search procedure crucially relies upon a finite state
representation (tree-based, in this implementation) of
the lexicon, which makes it possible to optimize the
computation of edit distances. Furthermore, the use of
uniform unitary costs for weighting insertions, deletions
and substitutions allows to compute, given the edit
distance between x and a lexical prefix s, a lower bound
of the minimum edit distance between the searched form
and every lexical entry whose prefix is s. As a conse-
quence, the traversal of the tree can be dramatically
speeded up, since the exploration of entire branches can
be stopped after the computation of the distance
between the form and lexical prefixes.
The pre-selection implementation follows the same
lines, with one slight difference: we are interested in
retrieving a fixed number N of lexical neighbors, rather
than all the neighbors within a given distance.
Accordingly, the threshold d is initially set to be equal
to the N-th closest distance, and let this threshold
decrease as better lexical candidates are retrieved. If this
patch appears to somehow slow down the search, the
pre-selection stage remains however extremely fast.
Retrieval of an entry is about 9 times faster with the pre-
selection of 100 lexical neighbors with a very small
decrease in terms of recognition rate.
Figure 4 plots the recognition rates as a function of the
number of neighbors selected. As N increases, the
recognition rate tends toward the rate obtained with no
pre-selection. With only 250 neighbors, the recognition
rate is very close to the optimal one and the computation
times are severely reduced.
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Fig 4 – Retrieval rates as a function of the number of
pre-selected candidates.

V. RESCORING STRATEGY

In order to evaluate a possible improvement of the
baseline system described above, a rescoring on the 10
closest names outputted by the previously described
lexical search was finally performed [4]. This strategy
consists simply in a second decoding pass, based on
constraint grammars: for each item in the test corpus, a
specific grammar is used for its decoding, which forces
the recognizer to choose one entry among the ten closest
entries given as output of the first pass' s lexical search.
The best entry among the 10 possible ones is chosen by
calculating the recognition scores over the selected
HMMs when the recognizer performs Viterbi alignment.
This experiment was designed as a second pass
following the one described in the previously discussed
recognitions, with p=-17.5, s=0, and ��� 0.6.
Performing this experiment gave us the following
results: the lexical access rate showed a value of 82.09%
on the corpus used (as rescoring is very time consuming,
we used a large subset of the test corpus). Knowing that
the rate for the first pass’s lexical search was 82.75%,
with a confidence interval that is [81.76%, 83.59%], we
can say that rescoring brought no significant change on
lexical access performance.
The rank correlation matrix shows that the first output
remains in first position for 82% of the rescored items,
which is normal as it may correspond more or less to the
82% of correct outputs given by the first pass. It
appears, therefore, that rescoring fails when the decoder
tries to re-estimate the scores on the remaining outputs
in order to find the best one.
This can be interpreted as the sign of a limit reached in
the quality of decoding, related to the quality of the
models themselves. That is, performing rescoring seems
to be useless, since the same models are used in both
passes and that they are likely to make the same errors.



VI. CONCLUSION

Experiments on letter recognition using Hidden Markov
Models outlined that this technique does not avoid
standard confusions between phonetically similar letters.
However, the knowledge of letter confusabilit y can be
used to improve the lexical search by adapting the
dynamic alignment costs to the possible confusions. A
decoding taking into account bigram probabiliti es of
phonetic units gave good results for speech units
accuracy (especially for phonemes) and also for spelli ng
detection. In addition, an algorithm for the selection of a
list of possible entries speeds up the computation time
required for a lexical access with a very small l oss in the
recognition rate. A rescoring experiment suggested also
that a limit had been reached in the quality of the
models used here in order to improve the decoding
procedure. The evaluations presented in this study were
made with real-li fe (i.e. unconstrained) natural
pronunciations and spelli ngs. In this framework,
something should be done in order to deal with non-
standard spelli ngs. With the grammar defined, such
spelli ngs may be recognized as a sequence of phones or
letters, thus introducing errors in the lexical search. It
seems obvious that a system able to detect and ignore
(or use) non-standard spelli ng should perform better on
the entire test corpus.
Such an Automated Speech Recognition system,
designed for real-li fe conditions, could be integrated as
a front end to a speaker verification system, in order to
hypothesize an identity, as needed in the PICASSO
project.
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