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Abstract. Automatic Speech Processing (Speech Recognition, Coding,
Synthesis, Language Identification, Speaker Verification, Interpreting Tele-
phony,...) has progressed to a level which allows its integration in the
context of Interactive Voice Servers (IVS). The description of a personal
telephone attendant ("Majordome’) focusses on some of the issues in the
development of IVS. In particular, users should be allowed to dialogue
with automatic systems over the telephone in their native language. To
achieve this goal, we propose an approach called ALISP (Automatic Lan-
guage Independent Speech Processing). The needs for ALISP are justified
and some of the corresponding tools are described. Applications to very
low bit rate coders, automatic speech recognition and speaker verification
illustrate our proposal.

1 Introduction

An increasing amount of interpersonal communication is realized over the tele-
phone. The widespread use of mobile telephones accentuates this situation. In
many occasions, a telephone call is either quite disturbing or does not reach
the desired person. Voice messaging systems, either centralized or individual,
provide a partial but often frustrating solution. Recent progress in Automatic
Speech Recognition, Understanding and Synthesis create new opportunities for a
profitable speech market. Many products are available for call centers, automatic
telephone attendants, information and reservation systems, and many more are
under field tests. They are grouped here under the denomination of telephone In-
teractive Voice Servers (IVS). Such servers interact with the caller using speech
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input (recognition and understanding) and output (synthesis). For some appli-
cations (telephone card, banking, ...), the identity of the caller is of interest
and Speaker Recognition technology is deployed. The description of a personal
information server ("Majordome’) illustrates here many of the desired features of
an IVS. The "Majordome’ serves as a telephone attendant which identifies famil-
iar voices and verifies the identity of authorized users. It also recognizes proper
names and spellings and can be used to access e-mail, fax-mail, voice-mail and
web pages from any telephone.

Although existing servers often restrict the language, the words, the syn-
tax they can interpret, the future calls for "Unrestricted Vocabulary Continu-
ous Speech Recognition’ for any speaker, any language, any dialect, sometimes
under noisy or distorted conditions. State of the art large vocabulary continu-
ous speech recognition technology relies on stochastic models of a limited set
of acoustic units such as phones (the acoustic realization of phonemes). The
estimation of the parameters of these models requires the availability of large
phonetically annotated speech databases. The annotation and labeling of these
databases is time consuming (and therefore expensive) and prone to errors. A
different approach is developed here: Automatic Language Independent Speech
Processing (ALISP) tools are proposed as automatic learning techniques to solve
some speech processing problems when no labeled data are available. In partic-
ular, Speech Recognition, Speaker Verification and Language Identification are
possible within this framework. ALISP tools can be used to define a set of univer-
sal acoustic units without any phonetic knowledge. Large speech corpora could
be used in this framework with no requirements for phonetic annotation nor
labeling. It is argued that the development of a very low bit rate speech coder
permits an evaluation of segmental models and a potential generalization to all
languages of the world. Variable length sequence modeling (also refered to as
‘multigrams’) is one of the generic ALISP tools which finds applications at dif-
ferent levels of speech processing. It is applied here at the acoustic and lexical
levels but could potentially be used for language modeling and translation.

This chapter is organized as follows: the 'Majordome’ is first described to
illustrate some of the problems of Interactive Voice Servers which motivate our
emphasis on ALISP tools (for very low bit rate vocoding and lexical encoding),
on the phonetization and recognition of proper names and spellings, and on
speaker verification. Results are given concerning our experiments using some of
the ALISP tools for the NIST! speaker verification evaluation campaigns.

2 Interactive Voice Servers

An automatic system connected to the telephone network and able to manage
some vocal dialogue with a caller will be denominated an Interactive Voice Server
(IVS) in the context of this paper. Automatic train and airline travel information

! NIST organizes every year an evaluation of speaker verification systems. A unique
data set and evaluation protocol are provided to each participating laboratory, so
that intra- and inter-laboratory algorithms comparisons are significantly easier.



and reservation, stock quotes [23] or automatic telephone assistance systems [17]
are typical examples which require different levels of complexity in speech recog-
nition and synthesis. A telebanking system will also necessitate some form of
identity verification, speech being the preferred support in this context.

The size and diversity of the population that will use the server, the re-
strictions on the dialogue, the size of the lexicon of interest, the necessity of
performing caller identification and/or verification are all features which influ-
ence current research and development for IVS. Our "Majordome’, a personal
information server, offers many of the possible features; it

— accepts any calls (the potential population is very large) in any language
and dialect,

— recognizes proper names and spellings,

— interprets messages in order to summarize or translate them,

— identifies familiar callers (open-set speaker identification),

— adapts to the voice of the caller,

— verifies the identity of clients from the pronunciation of their name, password
(text-dependent, speaker verification) and continuously during the dialogue
(text-independent),

— browses the web to satisfy any request from the caller (the application do-
main may not be restricted).

Let us first give some motivations for such a 'Majordome’, then indications
about existing hardware and software, an example on how it could be used and
implications concerning speech technology.

2.1 Motivations for a "Majordome’

Time and space asynchronous personal communication is achieved by various
means: surface, electronic, voice and fax mail. However, those means are not
equivalent in their usefulness. For example, surface mail can be used to transmit
nearly any type of objects (letters, books, audio tapes, photographs,...), but
takes a long time to reach the recipient. On the other hand, electronic, voice
and fax mail are delivered almost instantaneously. Voice mail, faxes and e-mails
have different areas of use. While it is easy to transmit some pages of source
code via e-mail or even fax (although Optical Character Recognition (OCR) or
retyping is necessary in order to use the code and not just to read it), or to
transfer a file using e-mail, it is not convenient to transfer a voice message by
fax or to give much details about an image or a drawing using speech. But, as
versatile as fax and specially electronic mail may be, there is still a problem
accessing the information. Not everybody owns a Personal Digital Assistant
capable of connecting to one’s mailbox via cellular phone. On the other hand,
it just takes a simple (public) phone to access an answering machine from any
location in the world and therefore be up to date about the latest calls. Hence,
came the thought of developing an “intelligent answering machine”, that is not
only capable of storing voice messages and, faxes and e-mails, but also interprets



them so that the owner of these messages could access them from any telephone
upon verification of his identity. Some interests in the 'Majordome’ project are,
amongst others:

— a telephone attendant when the owner is absent or too busy to answer the
phone,

— a transfer of urgent calls,

— avoice controlled interface, i.e. no more nestling around with telephone pads,

— using speaker verification to restrict access to the accounts,

— integrate text-to-speech technology for reading faxes and e-mails to the ac-
counts’ owner,

— Integrated Services Digital Network (ISDN) based, computer-sided interface
to the telephone lines,

— using OCR and handwriting recognition to determine the fax recipient and
sender names and interpret the content of the message,

— the possibility of dictating an e-mail, fax or voice message to be delivered
by the Majordome,

— the owner could ask any question about any subject. The Majordome will
browse the web to find some relevant answers.

Furthermore, it is thought of developing a client software that permits access to
Majordome on a HTTP/HTML basis, so that the information can be retrieved
from an Internet account as well.

2.2 Hardware and Software

Some virtual assistant services (Wildfire?, Portico®) are being commercialized.
They use proprietary hardware and software to be shared by multiple users.
A more individualized solution is proposed here: a PC with an ISDN board is
the minimum hardware necessary to install a "Majordome’. ISDN provides the
proper telephone interface to handle simultaneously voice and fax calls. Since
every standard ISDN board is able to handle two channels (any combination of
two incoming or outgoing calls) at the same time, different numbers are given
to the different services, i.e. one number for incoming calls, one for faxes and a
third one for communication with registered users.

Another advantage of ISDN boards is the fact that multiple applications can
gain access to them, so that the Majordome server will not prevent other appli-
cations from running on the same computer, like dial-up networking or Internet
access. The ISDN board is programmed using Microsoft Visual C++ 5.0 Profes-
sional and the CAPI, the Common ISDN Application Programming Interface, a
now widely accepted and OS independent standard for developing applications
for ISDN boards. The problem is, of course, that this limits Majordome to some
lowest common denominator, i.e. that features like call redirection might not be
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accessible using this kind of API. Anyway, this approach is far better than writ-
ing a program for especially one card and thus limiting the possible equipment
on the target server. No decision has yet been made about the language that
is going to be used for the client software, since it may be a very convenient,
time and cost saving way to write this client software using Java, but some
requirements for the client are not yet met by the Java language, such as OS
independent audio recording.

2.3 Some Examples of Use of Majordome

Let us now consider a case where the Majordome is centralized at the level of a
company. This company owns a digital Public Access Branch eXchange (PABX)
telephone system capable of transferring calls in case of no response. It sets up
the Majordome server properly on a PC, assigning it the phone number #01 for
incoming phone calls, #02 for incoming fax messages and #03 for communica-
tions with users that have an account on that majordome server. In addition to
that, the PC is connected to the company wide intranet. Let’s assume person
A calls person Z, who has an account on the Majordome. If Z is away from his
phone or does not want to answer, the PABX of the company transfers the call
to #01 after 5 tones. The Majordome picks up the call, A is asked by Major-
dome to give his name and the name of the recipient. The names are tentatively
recognized and in case of ambiguity, spelling is requested. This information is
used to determine the correct account by speech recognition and to inform Z
that he received a call from A. If Z has left a phone number to Majordome, the
Majordome attempts to reach him on line #03. Otherwise, Majordome knows
from the Intranet whether or not Z is connected on a terminal and sends a warn-
ing on that terminal for connection on line #03. Z has therefore the possibility
of monitoring the dialogue between A and the Majordome. In the mean time,
Majordome asks A to deposit a message. Z can take up the call at any time. If
he chooses not to do that, the recorded message is placed into Z’s mail box.

Simultaneously, B could send a fax to the Majordome server, thus dialing
#02. Majordome attempts to find out the sender and recipient names of the
fax using OCR and handwriting recognition. If it fails to recognize the recipient
name, it transfers the fax to an operator. If it recognizes Z as the recipient, it
stores that fax into Z’s mail box and try to contact Z on the intranet.

If Z is outside the company, he may want to call Majordome at any time
to access his mail box or get some answers about any question of interest to
him. He calls Majordome on line #03. He is asked to give his name and his
password. He is identified by the name and verified by the pronunciation of both
the name and the password. When Z passes both test, Majordome tells him
that he received a voice message from A, a number of e-mails and a fax. He
can ask Majordome to read a summary of the messages to him, to read just the
first n lines or the subject, to delete the messages or to forward any of them to
someone else. If Z can not understand the name of the sender, Z can also ask
Majordome to spell the name. Z may ask Majordome to attempt to interpret
the fax content. He could ask Majordome to forward that fax to a given number.



Z has the possibility of making vocal database inquiry through his Majordome.
In particular, Majordome may browse for information on the Intranet and the
Internet upon request.

2.4 Interactive Voice Servers and ALISP

The success of Interactive Voice Servers may depend on the ergonomy and ro-
bustness of the dialogue. A caller should be able to use his native language
and therefore, specific recognizers and synthesizers must be developed for all
languages and dialects of the world. The next section proposes an approach to
Automatic Language Independent Speech Processing (ALISP) which may facili-
tate such developments both at the acoustic and linguistic levels. No restriction
on the vocabulary or the syntax should be imposed to a caller. Proper names
recognition is of crucial importance for a personal information or directory as-
sistance server. Spelling could be used if necessary to achieve a sufficient level of
accuracy. Section 4 of this chapter deals with the recognition of proper names
and spellings. The identification of a caller may be necessary to restrict access
to personal information. This could be done explicitly by requesting a name and
password and implicitly from the speech signal produced by the caller. The Na-
tional Security Agency (NSA) in the United States has mandated the National
Institute of Standards and Technology (NIST) to organize annual evaluation
campaigns concerned with speaker verification. The last section of this chapter
reports on our participation to these evaluations using some of the ALISP tools.

3 Automatic Language Independent Speech Processing

Automatic Language Independent Speech Processing (ALISP) adapts and ap-
plies Machine Learning algorithms to the Speech and Natural Language fields.
It is assumed that an automaton can learn from examples. Children acquire a
language from interactions with other children and adults. They do not need an
explicit labeling of the data they receive. In a similar way, ALISP should dis-
cover the structure of speech and natural languages from large corpora of speech
signal and texts.

Speech is a continuous signal to which some form of symbolic representation
must be associated. Lexical units (words) seem to be a useful level common to
speech and natural language processing. Words can be described in terms of
smaller units. Linguists have proposed the phoneme as the formal unit to dis-
tinguish a *minimal pair’ of words (the pronunciation of the English words "tee’,
‘pea’, key’, "bee’, ‘me’, fee’, “see’, *we’ differs in their initial part). The problem
is that phonemes in different contexts exhibit different acoustic characteristics.
We propose to find a set of segmental units automatically from recordings of
continuous speech. These units are evaluated in the context of a very low bit
rate coder (see Sect. 3.4).

Variable length sequence modeling is a general tool to discover regularities in
strings of symbols. We first introduce this technique and suggest its application
at different levels of speech and language processing.



3.1 Variable Length Models of Language Processing

Most application-oriented models of language processing rely upon a common
representation of linguistic data, usually taking the form of sequences of primi-
tive discrete symbolic units. Syntactical analysis decomposes sequences of words
into hierarchical sequences of syntagmatic categories, morphological analysis de-
composes sequences of phonemes or letters (word forms) into sequences of mor-
phemes, etc. These (minimal) units are assumed to be provided by traditional
linguistic descriptions.

The multigram model [5] promotes quite a different view: the segmentation
units should also be subject to some kinds of discovery procedure, in order to
more accurately model the facts that i) relevant (or optimal) units for a given
task might cover a variable number of “primitive” units, and that ii) depen-
dences between adjacent units might span over a variable length number of
“primitive” units. Grapheme-to-phoneme conversion is a clear-cut example of i):
many groups of letters in fact function as a whole, like ph, sh, ...; similarly,
the modeling of co-articulation effects in speech recognition or in concatena-
tive speech synthesis is a well-known case of variable-length dependency, when
expressed at the phonetic level of representation.

This model has been found suitable for a wide range of application, like the
identification of multi-word units in statistical language models [12], the specifi-
cation of a minimal set of units for speech synthesis [4], automatic segmentation
of texts [5],.. .. In this section, we briefly survey two applications of this model
which are of particular interest for building interactive voice servers, i.e. the
identification of recognition units (see Sect. 3.2), and the construction of proper
names pronunciation dictionaries (see Sect. 4).

3.2 Automatically Derived Sub-Word Units

Sub-word units are widely used in various domains of speech processing. Clas-
sically, they are based on phonemes or phoneme-related units such as context-
dependent phonemes, syllables, . ... Their search requires an important amount
of phonetic and linguistic knowledge. In order to train a speech processing sys-
tem, annotated training databases are necessary. The annotation using phonetic-
ally-derived units is a time-consuming, costly and error-prone task. Even if nat-
ural language processing can not be done without phonetic and/or linguistic
expertise, recent advances in Automatic Language Independent Speech Process-
ing [8] have shown, that many tasks relying currently on such knowledge can
be performed using data-driven approaches. From a practical point of view, ex-
tensive human efforts can be replaced by an automated process. This fact could
bring revolutionary changes to the methodology of speech processing.

3.3 ALISP tools

Several tools are used for unsupervised search of acoustically coherent speech
units. They are based on speech signal data rather than on the textual represen-



tation of the latter. The tools are modular and Fig. 1 gives an example of how
they are linked in the framework of speech coding.

First, the goal of temporal decomposition (TD) is to detect quasi-stationary
parts in the parametric representation of speech. This method, introduced by
Atal [1] approximates the trajectories of parameters z;(n) by a sum of m targets
a;r, weighted by interpolation functions (IF)

. = X = A 3
xz(n) = ;aik¢k(n)7 or (P x N) (P X m) (m X N) ’ (]‘)

in matrix notation, where the lower line indicates matrix dimensions. The initial
interpolation functions are found using local Singular Value Decomposition with
adaptive windowing [3], followed by post-processing (smoothing, decorrelation
and normalization). Target vectors are then computed by A = X&%#, where
®# denotes the pseudo-inverse of the IF matrix. IF and targets are iteratively
locally refined by minimizing the distance between X and X. Intersections of
interpolation functions defines speech segments.

Then, unsupervised clustering assigns segments to classes. Vector quantiza-
tion (VQ) is used for automatic determination of classes. The VQ codebook
Y ={yi1,...,yr} is trained by K-means algorithm with binary splitting. Train-
ing is performed using vectors positioned at the gravity centers of the interpola-
tion functions, while the quantization takes into account entire segments using
cumulated distances between all vectors of a segment and a code-vector. Tem-
poral decomposition along with vector quantization can produce a phone-like
segmentation of speech.

Multigrams (MG) [11] may serve for finding characteristic sequences of quan-
tized TD events or of segments determined by HMMSs. The method is based
on finding optimal segmentation of symbol string into variable length sequences
called multigrams using a maximum likelihood criterion

X* = argmax £(0, X|{z}) , (2)

where O is the string of observations, X is the segmentation and {z;} is the
codebook of available MGs. The likelihood is given by the product of probabil-
ities P(z;) of MGs in the segmentation X. These are not known and must be
estimated on the training corpus using iterations of segmentation according to
(2) and of probabilities re-estimation using sequence counts.

Finally, Hidden Markov models (HMM) can be used to model the units. HMM
parameters are initialized using context-free and context-dependent Baum-Welch
training with TD+VQ or TD4+VQ+MG transcriptions, and refined in successive
steps of corpus segmentation using HMMs and model parameters re-estimation.
The speech represented by the observation vector string O can then be aligned
with models by maximizing the likelihood

L(O| M) L(M7Y)
Z(0) SNC)

arg max £L(M]|0), where £(M]N|O)=
{Mm{'}
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Fig. 1. Data-driven derivation of coding unit set in VLBR phonetic vocoder

M} is the sequence of models and £(M}V) the prior probability of MY deter-
mined by a language model (LM).

3.4 Very Low Bit-Rate Coding

Very low bit-rate (VLBR) coding with data-driven units is a framework to test
the efficiency and usefulness of the ALISP approach. In this area, the task of
pronunciation modeling does not need to be resolved, but the efficiency of al-
gorithms is evaluated by re-synthesizing the speech and by comparing it to the
original. If this output is intelligible, one must admit, that this representation
is capable of capturing acoustic-phonetic structure of the message and that it
is appropriate also in other domains. Moreover (in contrast with classical ap-
proach, where the unit set is fixed a-priori and can not be altered), the coding
rate in bps and the dictionary size carry information about the efficiency of the
representation, while the output speech quality is related to its accuracy.

The flow-chart given in Fig. 1 shows how data-driven derived coding units
(CU) are obtained using a training corpus. With these units, the test corpus
is encoded by aligning the data with HMMs and the efficiency of coding is
evaluated by the average bit rate R, (in bps) supposing uniform encoding of
sequence indices. Prosody information is not taken into account and synthesis is
done using representatives drawn from the training corpus. Experimental setup
and results are summarized in Tab. 1. In the first case, the synthesis was done
by a simple concatenation of representative signals. In Boston University (BU)
experiments, the synthesis was LPC-based using the original prosody. In both
sets of experiments, the resulting speech was found intelligible, but the quality
is significantly worse than for codecs at several kbps. Details and speech files
can be found in [40] and its related Web-page.



Table 1. Summary of VLBR coding experiments

database PolyVar BU Radio Speech Corpus
language Swiss French American English
speakers 1 (the most represented) 2 (F2B, M2B)
parameterization 10 LPCC,ALPCC,E,AE| 16 LPCC,ALPCC,E,AE
TD avg. 15 events/sec avg. 17 events/sec
VQ codebook 64 64

MGs prior to HMMs yes no

HMMs to train 1666 64

HMM refinements 1 5

MGs after HMMs no yes

coding units 1514 722 (F2B), 972 (M2B)
representatives per CU 8 8

R, [bps] (test set) 120 110 (F2B), 119 (M2B)

3.5 Comparison with Phonetic Alignments

The phonetic alignments available with the BU corpus allowed us to investigate
the correspondence of phones and ALISP units. These alignments were obtained
at BU using a segmental HMM recognizer constrained by possible pronuncia-
tions of utterances [31]. In our comparison, the alignment files without hand-
corrections were used. Phonetic alignments were taken as reference and ALISP
segmentations (last generation HMM) were compared against them. The mea-
sure of correspondence was the relative overlap r of ALISP unit with a phoneme.
The results are summarized in a confusion matrix X (n, x ny), whose elements
are defined

Zgi) r(p’ik ) Clj)

c(pi)

where n, and n, are respectively the sizes of phoneme and ALISP unit dictio-
naries, p; is the i-th phoneme, a; is the j-th ALISP unit, c¢(p;) is the count of
p; in the corpus and r(p;,,a;) is the relative overlap of k-th occurrence of p;
with ALISP unit a;. The columns of X are rearranged to let the matrix have a
quasi-diagonal form* and the resulting matrix is given in Fig. 2. On contrary to
BU alignments, where stressed vowels are differentiated from unstressed ones,
we used the original TIMIT phoneme set.

Although these experiments showed a correlation of phonemes and ALISP
units, an ALISP recognition system should not be based on direct phoneme—
ALISP mapping. It would be more efficient to represent the target dictionary as
probabilistic combinations of sequences of ALISP units. The work of Fukada [16]
on phoneme and word based automatically derived segment unit composition,
and Deligne’s joint multigrams [11] bring interesting insights on this representa-
tion.

; (4)

Tij =

4 Thanks to Vladimir Sebesta and Richard Mensik (Inst. of Radioelectronics TU Brno)
for their help in the visualization of confusion matrices.
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Fig. 2. Correspondence of ALISP segmentation and phonetic alignment for speaker
F2B in BU corpus. White color corresponds to zero correlation, black to maximum
value z;,;=0.806

4 Recognition of Proper Names and Spelling

4.1 Introduction

Automatic retrieval of names from their pronunciation and spelling is a popular
topic in speech recognition. It is also a key problem for IVS since many aspects
of a system like Majordome (see section 2) critically rely on its ability to handle
proper names properly. For instance, the identification procedure requires the
recognition of the owner account’s name; mail reading requires the ability to
utter accurately (intelligibly) the sender’s name, ....

Many studies address the problem of alphabet recognition, which is known
to be a difficult task because of acoustic similarities between some letters (e.g.
the well-known E-set in English). When working with telephone quality speech,
the confusability between letters increases drastically. For example, Cole et al.
presented experiments with telephone speech for the recognition of English and
French alphabets [9], [36]. Letters, separated by pauses, are segmented and then
classified using a Multi-Layer Perceptron (MLP) with phonetic features. More
recently, Hidden Markov Model (HMM) based methods have been proposed,
as in [21] and [22] where letter models are used. The first study compares dy-
namic time warping (DTW) and HMM based lexical search strategies to retrieve



names from natural spelling. HMM based lexical search can also be seen as a
DTW whose insertion, deletion and substitution costs are learnt from the train-
ing data. The second study is based on a multi-level classification with a N-best
approach, using DTW and a restricted grammar for lexical search. These studies
however fail to address a number of problems that are critical in the perspective
of real applications. First, they greatly underestimate the variability observed in
real-life spellings. Second, phonetic knowledge is mainly used to improve letter
discrimination but not for the lexical access. Finally, the name itself (i.e. the pro-
nunciation of the name) is a source of information for name retrieval applications
that has rarely been used (see however [27]).

In this section we present a system for the recognition of proper names from
the pronunciation and spelling. The results reported here are described in more
details in [18] and [28]. Section 4.2 presents an overview of the system where
the two main stages are described. The first stage consists in acoustic decoding
while the second one consists in lexical search. The automatic generation of the
lexicon from orthographic names is also explained. Results of several optimiza-
tion experiments are presented in Sect. 4.3. It must be stressed that currently,
this system does not use any of the ALISP techniques proposed so far in the
paper. However, as a conclusion we explain in Sect. 4.4 how multigrams can be
extended to induce the pronounciation of proper names.

4.2 System Description

The name recognition system presented here is divided in two successive stages.
In the first stage, acoustic decoding, based on HMM, is performed without any
knowledge of the lexicon content. In the second stage, the recognized sequence
of phones and letters is matched against all the entries of the lexicon to find out
the name. Furthermore, this system is designed to be as extensible as possible
and therefore the lexicon is generated automatically and the acoustic models are
trained in an unsupervised manner. The advantage of the two-pass architecture
compared to a Large Vocabulary Continuous Speech Recognition (LVCSR) based
system, where the decoding is constrained by the lexicon, is that the former is
not limited by the size of the lexicon and can therefore deal with larger lexicons.

Lexicon. An entry in the lexicon contains one or several phonetic transcrip-
tion(s) of the name as well as one or several possible spellings. The entries are
generated automatically from the orthographic transcription of the name us-
ing a grapheme to phoneme converter for the pronunciation(s) and a rule-based
system for the spelling(s). The grapheme to phoneme converter used here was
developed during the course of the Onomastica project [37] [43] and has been
explicitly devised to cope with proper names idiosyncrasies. It also contains a
module for recognition of proper name origins and is likely to output pronuncia-
tion variants. The possible spellings of a name are generated using a rule-based
system which considers all the possible pronunciations for each cluster of letters.
For example, the letter “é” can be spelled “e accent aigu”’, “e aigu” or “¢€’; the
cluster “nn” can be spelled “deuz n” or “n n”...



In the remainder, the i-th lexicon entry, denoted e;,will be refered to as
{nij=1,....Ni>Si,j=1,...,5; }, where n; ; (resp. s;;) is the j-th pronunciation (resp.
spelling) variant.

Acoustic modeling. To recognize the pronunciations, phone models are nec-
essary while letter models are better adapted to spelling recognition. It must be
stated that the word “letter” here designs the alphabet letters plus some addi-
tional words used for spellings in French (such as “accent”, “trait”, “d’union”,

..) which are of course also modeled. The acoustic modeling relies on Hidden
Markov Models. Phone HMM parameters are estimated on a training corpus
from the speech data and the orthographic transcription. First, the training
corpus is first automatically segmented from its orthographic transcription, us-
ing task-independent phoneme models, trained on sentences of the Swiss-French
Polyphone database [7]°, also used as bootstrap models. The parameters of the
bootstrap models are then re-estimated on the pronunciations. Letter models are
created by concatenating the bootstrap models corresponding to the letter pro-
nunciation, and then performing re-estimation. Because of the possible liaisons
after some words such as “deuz’, some letters may have two models, one with
the liaison and one without.

The grammar used for the acoustic decoding is rather simple. A pronunciation
can be any, possibly empty, sequence of phones while a spelling is any, possibly
empty, sequence of letters. Optional silences can be found at the beginning and
at the end of an utterance, and between the pronunciation and the spelling. A
short silence (i.e. a silence model with a skip transition) is forced after each letter
since previous studies [33] showed that this technique significantly improve the
accuracy of the letter recognition. The optimization of the system parameters
on the training corpus is presented in Sect. 4.3.

The speech signal is encoded using 12 Mel frequency cepstral coefficients and
log energy, with first and second order derivatives, computed every 10 ms on
25.6 ms frames.

Name retrieval strategy. The distance between a lexical entry e; and the
form r = (rp,rs) recognized during the first stage is defined by

D(ei,r) = Bmind(rs, s;,;) + (1 — B) mind(rp,n; ;) ,
J J

where r; (resp. r,,) is the recognized spelling (resp. pronunciation). The dissim-
ilarity measure d(.,.) is computed by dynamic alignment using specific costs for
each possible substitution, insertion and deletion. Those costs are usually arbi-
trarily fixed. However, as some pairs of symbols (letters or phonemes) are more
confusable than others, it seems natural to assign a smaller cost for the substitu-
tion of confusable symbols. Therefore, the weighted cost for the substitution of z
by y is — log(p(y|x)), where p(y|z) is estimated using the confusion matrix on the

5 Distributed by ELRA http://www.icp.inpg.fr/ELRA



training corpus. The same procedure is used to determine insertion and deletion
costs. This approach is somewhat similar to HMM based alignment procedure
in [21]. Instead of using phonetic knowledge to achieve a better discrimination
as in [24], this knowledge is learnt from the training data and used for name
retrieval rather than for symbol recognition. Parameter 3 allows to balance the
respective contributions of the spelling and pronunciation.

4.3 Experiments

Database Experiments are carried out on the Swiss-French Polyphone database
which was recorded over the telephone with 5,000 speakers calling once, a call
including the pronunciation and spelling of 3 names. Spellings were prompted but
no specific spelling guidelines were given to the callers. As a result, in addition
to “standard” spellings, the corpus contains occurrences of comparisons, such
as “a comme alain” (a not so uncommon way to minimize confusions between
letters), occurrences of aeronautic-like spellings, eg. “alpha bravo ...”, etc.

A subset of the database is used, containing 11,920 speech segments from
3,998 speakers. This subset was divided in three corpora. The first one is the
train corpus, containing 5,390 segments from 3,223 speakers. The remaining
items belongs to the test corpus, from which a special subset, the “clean” test
corpus, is extracted. This “clean” test corpus contains the items for which the
spelling conforms to the “standard” spelling conventions. The “clean” test corpus
contains 5,015 segments from 3,097 speakers, corresponding to 3,478 different
names and is used to evaluate the quality of acoustic modeling. Finally, the
entire corpus contains 8,261 names.

Acoustic decoding The acoustic decoding without language model or fixed
transition penalty gives very poor results, specially at the phone level. Indeed
for the phones we have an accuracy of 14.4 on the training corpus which dras-
tically decreases to -6.7 on the clean test corpus. The recognition of letters is
much more reliable since the accuracy is 69.7 on the clean test corpus. So weak
performances are due to the huge amount of insertions. In order to reduce the
number of insertions, the fixed transition log-probability p was introduced. Fig-
ure 3 plots the correct recognition rates and the accuracy as a function of the
fixed probability p. The name retrieval rate is also plotted and it can be seen
that, though the phone accuracy significantly increases, the name recognition
rate does not really improve. This is explained by the fact that the costs for
the dynamic alignment of two forms are learned on the training corpus. It also
points out that the technique which consists in determining the substitution,
insertion and deletion costs is effective. The use of a bigram language model
instead of a fixed transition probability was also tested and results are reported
in Fig. 4 where the phone and letter accuracy are reported for several values of
the fudge factor s. Better accuracies are obtained with the LM than with the
fixed probability but no real difference is observed at the name recognition level.
Table 2 gives the recognition rates and the accuracies for the optimal values of
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Table 2. Recognition rate (in %)/accuracy for phones and letters

phones letters
p=—175| s=8 |p=-—-17.5 s=38
train 54.3/41.5 (59.3/51.5| 83.4/80.3 |89.7/84.1
clean test|56.2/34.4 |60.2/47.5| 82.7/78.4|88.0/81.9

s and p on the training and clean test corpora. In each cell of the table, the left
figure corresponds to the recognition rate while the right one corresponds to the
accuracy. As can be seen, the LM significantly improves the quality of the phone
decoding but letter recognition still remains more reliable.

Finally, a more detailed study of the letter recognition errors outlines the
standard confusions between acoustically similar letters such as “b” and “d”,
“f” and “s” or “p” and “t”. As noted in many studies on alphabet recognition
(eg. [21],][24]), letter HMMSs are not really able to distinguish two letters whose
spellings only differ by a short transitional acoustic event. For example, letters
“m” and “n” share the same vowel and are separable by the last consonant. But
phonemes /m/ and /n/ are quite similar, and their confusion is also one of the
most common substitution at the phoneme level.

Name retrieval Results on the name recognition rates are reported. To mea-
sure the respective importance of the pronunciation and the spelling, the recog-
nition rate is computed on the training corpus for various values of 3. Results
are reported in fig. 5 for p = —17.5. An optimal value is found for 8 = 0.6 which
reflects the fact that the pronunciation is a valuable source of information for
the task. Similar curves are obtained on the clean and complete test corpora
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with recognition rates of respectively 84.0% and 79.1% at the optimal point.
When using a LM instead of the fixed transition log-probability, the recognition
rates are slightly better. The effectiveness of the learnt dynamic alignment cost
is clearly shown since for a recognition rate of 56.2% on the clean test corpus for
binary costs, the rate increases to 82.1% with learnt cost.

The search strategy presented before implies an exhaustive search across the
entire lexicon and is rather time consuming. Therefore, a fast pre-selection, based
on the spellings, of a set of possible entries in the lexicon was developed. This
approximative search is based on a variant of the algorithm originally proposed
in [29] for error-tolerant lexical recognition. For a 8K lexicon, the search is about
9 times faster with a pre-selection of 100 lexical entries with a very small decrease
of the performances (83.2% instead of 83.6%).

4.4 Inducing the Pronunciation of Proper Names

Independent of the speech recognition and synthesis methods used, a represen-
tation of the proper name pronunciation is necessary, which is not easily ob-
tained [37]. In fact, proper names represent a challenging task for traditional,
rule-based transcription systems: they often contain very unusual letter-sound
associations, a fact which is dramatically severed by the variety of linguistic ori-
gins of names [41]. Given the very high number of different proper names, and
the pace of apparition of new items, pure lexical approaches, only providing a
limited coverage of the proper name diversity, are also bound to fail.

The methodology we advocate consists in using self-learning techniques al-
lowing to generalize over existing pronunciation dictionaries. Several well known
learning algorithms have been proposed and used to this ends: neural net-
works [38], decision-trees [14], nearest neighbors [39], etc. However, these tech-
niques make assumptions regarding phonetic representations, in particular that
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phonetic and graphemic strings have approximately equal length, and that the
former are shorter than the latter. Chunk-based transcription models [10], [25],
[42], which dispense with this kinds of assumptions, seem to fit in better with
our general principles: language independence, use of acoustic or linguistic units
for representing pronunciations. In line with the core ideas of ALISP, we develop
hereafter yet another instance of chunk-based model, namely the joint-multigram
model [13], which extends the multigram model (see Sect. 3.1) to the case of bi-
dimensional streams.

The basic idea of the joint-multigram model is to automatically identify re-
current joint sequences in a pronunciation dictionary, and use these as the pri-
mary units for the transcription of unknown words. Formally, a joint sequence

p...0,

tively to sequences of graphemes and of phonetic or acoustic units. In its simplest
form, the joint-multigram model considers each pronunciation sample as the re-
sult of the concatenation of joint sequences, the border of which are not known.
Training simply consists in finding, in a set of examples, the most likely pairing
of variable-length sequences of graphemes with variable-length sequences pho-
netic/acoustic units. The resulting set of sequences, along with their probability
of co-occurence, can be used to infer, through a sequence-by-sequence decoding
process, the string of units 2 which best matches a given orthographic form O.
This transduction task can be expressed as a standard maximum a posteriori
decoding problem, consisting in finding the most likely (2 given O:

[al' -dn ] is made of two parallel chunks, corresponding in our context respec-

~

n= arg max L(2]|0) = arg max L(0, 2) . (5)

Under the traditional assumption that L* = (Lg),LY,), the most likely joint
segmentation of the two strings, accounts for most of the likelihood, the maxi-



mization program is rewritten:
2 = arg max L(0, 2, Ly, L) (6)
=argmax L(0, Lo | 2, Lg) L(2, Ly) (7)

by application of the Bayes rule. £(O, Ly, | 2, L%,) scores how well the
graphemic sequences in the segmentation L, match the inferred phonetic repre-
sentation in LY. It is computed as [] p(s() | o(4)), where the conditional proba-
bilities are deduced from the probabilities p(s;, o;) estimated during the training
phase. The term £(f2, L%,) measures the likelihood of the inferred pronuncia-
tion: it can, for instance, be estimated as Z(Q, L%,)), using a language model.
This decoding strategy is a way to impose syntagmatical constraints in the string
2 (here phonotactical constraints). The maximization (7) finally rewrites as

Q" = Argmazo L(0, L5 | 2, L) L(2, L) . (8)

This model, and extensions thereof [13], has been evaluated on a French lexicon
of common words, and has proved to achieve satisfying results, both in terms of
the identified segmentation, and in terms of the overall pronunciation accuracy.
At current stage, however, its benefits are still limited by the need to learn the
model parameters from transcriptions at the word level which are not directly
obtained from raw speech data. The next step [8] is thus to extend this model
and to enable training to take place directly on ALISP-units based transcription
of spoken utterances.

5 Speaker Recognition

5.1 Introduction

The generic term of speaker recognition comprises all of the many different tasks
of distinguishing people on the basis of their voices. There are speaker identifi-
cation tasks which consists in telling who, among a set of possible candidates,
pronounced the available test speech sequence. On the other hand, there are
speaker verification tasks for which one must say whether a specified candidate
pronounced the available test speech sequence or not. In this section, we focus
on speaker verification, which is actually a decision problem between the two fol-
lowing classes: the true speaker (also denominated as client, claimant or target
speaker) and the other speakers (usually noted as impostors speakers).

As far as the speech mode is concerned, speaker recognition systems are
usually classified as text-dependent or text-independent. In text-dependent ex-
periments, the text transcription of the speech sequence is known a priori, and is
constrained to be the same for training and testing. The knowledge of what was
said can be exploited to align the speech signal into discriminant classes (words
or sub-word speech units). The main advantage is fair recognition performances
with small amount of speech signal needed for training and testing. The major



drawbacks of such systems are the poor security level (the system can easily be
fooled using pre-recorded speech) and their repetitious nature.

In text-independent tasks, enrollment and test speech are completely uncon-
strained. Such scenarios offer more flexibility and enable higher security against
pre-recorded speech if random text-prompting is used. Nevertheless, as the fore-
knowledge of what the speaker said is not available, less precise models are
generally used and larger quantities of speech signal are needed to achieve ac-
ceptable performances.

In between text-dependent and text-independent lie intermediate systems
such as customized-password systems. In this case, enrollment speech is uncon-
strained since the user is prompted to chose himself one (or more) password
while the test speech is constrained to be the same from session to session. This
approach offers user-friendliness and relatively high security against recording
attacks if more than one passwords is used. As well, the accuracy is generally
better than text-independent tasks since modeling can be more precise. Similar
to the customized-password technique is the knowledge-based approach in which
the systems prompts the user for his name, birth-date, or other personal data.
Again, the enrollment speech is not predictable while the test speech is the same
from session to session.

5.2 Segmental Speaker Verification Based on ALISP Units

As speech recognition technology is developing fast, there is an increasing amount
of opportunities for using speaker recognitions techniques. In this framework,
text-dependent systems have limited potential applications, specially wherever
user convenience and security against pre-recorded speech is an issue. The flexi-
bility of text-independent and customized-password approaches make them bet-
ter candidates for direct applications into IVS, but their performances are not
yet satisfactory for real applications. The reason is that current text-independent
systems are usually based on modeling globally the probability density func-
tion (pdf) of the speaker feature vectors. Such global models have poor discrim-
inant capabilities because the temporal information of the speech sequence is
not taken into account and also because all the phonetic classes are represented
using a unique model. One way to overcome this problem is to combine the text-
independent approach with speech recognition. In such a way, the speech signal
is segmented into sub-word classes (phonemes or other related speech units)
and speaker modeling can be more precise. Such systems are designed here as
segmental text-independent systems to contrast with the usual global approach.

The segmental approach recovers some text-dependent advantages since the
speech signal is aligned into classes but the implementation is different since we
have no clue about what is said. Several studies, such as [15], [30],[32] and [19],
have demonstrated that some phones are more speaker discriminant than others
suggesting that a fusion of individual class decisions should be performed when
computing the global decision. Two potential advantages can be pointed out:
firstly, if the speech units are relevant, then speaker modeling is more precise,
thus allowing better performances than the global approach; secondly, if speech



units present different discriminative power, then better recombination of the
decisions per class can be done. The disadvantage of this method is that accurate
recognition of speech segments is required. Two alternatives are possible.

— The first possibility is to use Large Vocabulary Continuous Speech Recogni-
tion (LVCSR) systems that provide the hypothesized contents of the speech
signal on which classic techniques can be applied. LVCSR uses previously
trained phone models and a language model, generally a bigram or trigram
stochastic grammar.

— The second possibility is to use Automatic Language Independent Speech
Processing (ALISP) tools that provide a general framework for creating sets
of acoustically coherent units with little or no supervision.

LVCSR systems although very promising for segmental approaches, require
huge phonetically annotated databases, which are either costly or not available
and are often dependent on the speech signal characteristics (language, speech
quality, etc.). These arguments make them difficult to adapt to new tasks. ALISP
offers an alternative when no annotated training data are available and could
potentially boost up the performances. These are the reasons that led us to inves-
tigate a text-independent segmental approach based on ALISP techniques. Tem-
poral decomposition followed by vector quantization is used to obtain classes of
sounds. The speaker verification part is based on multi-layer perceptrons (MLP)
trained to discriminate between the client speaker and world speakers [2].

We compare the performances of the segmental speaker verification versus
a similar global system on the NIST 1998 corpus including 250 male and 250
female speakers. Classical text-independent Gaussian Mixture Model (GMM)
based systems are used as the baseline system [34].

5.3 System Description.

Global Speaker Modeling. The classical way to do pattern classification in
text-independent systems is to assign a unique probability density function (pdf)
to the whole vector sequence. One way to build the pdf is to use Gaussian Mixture
Models in which the multivariate distribution is modeled with a weighted sum
of Gaussian distributions.

Another way to perform classification is to use Artificial Neural Nets [20].
Multi-layer perceptrons are often used. They include discriminant capabilities
and weaker hypotheses on the acoustic vector distributions. The main drawback
is that their optimal architecture must be selected by a trial and error procedure.
The Multi-layer Perceptrons, one per client speaker, are discriminatively trained
to distinguish between the client speaker and a background world model. Two
outputs are generally used, one for the client and the other for the world class. If
each output unit & of the MLP is associated to class categories CY, it is possible to
train the Artificial Neural Net to generate a posteriori probabilities p(Cy|z,,) [6].
During training, the parameters are iteratively updated via a gradient descent
procedure in order to minimize the difference between the actual and desired
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Fig. 6. Global and segmental speaker verification systems

outputs. Training is said to be discriminant because it minimizes the likelihood
of incorrect models and maximizes the likelihood of the correct model.

For GMM as well as for MLP, the sequence of feature vectors is fed into a
unique classifier that outputs a score for the client model and the world model,
i.e. respectively S, and Sy, (see Fig. 6, top part), and the decision (reject/accept
the speaker) is performed comparing the ratio of the client and world scores to
a threshold according to :

log(S.) —log(Sy) > T — accept , (9)
log(S.) —log(Sw) < T — reject . (10)

Segmental Speaker Modeling. In the segmental text-independent speaker
modeling approach (see Fig. 6, bottom part) the first step is to segment and
label the speech into categories. Segmentation is achieved using temporal de-
composition and the classification step is performed with vector quantization,
as introduced in Sect. 3.3. In such a way each vector of the acoustic sequence
is classified as a member of a category C; determined through the segmentation
and the labeling. In the modeling step, the same technique as for global modeling
is used. L MLPs are trained for each client, where L is the number of codebook
centroids. At test time, the test speech is also segmented into L categories and
each category is tested against the corresponding MLP. In such a way the MLP
associated with category Cj provides a segmental score as follows :

Sa = [ P(Malz)/P(Ma), (11)

zeC)



Swl = H P(Mwl|'r)/P(M’wl) ) (12)
zeC

where the products involve vectors being previously labeled as members of cate-
gory Cj. Subscripts ¢l and wl denote respectively the client model for segmental
category C; and world model for segmental category Cj.

5.4 Speaker Verification Experiments

Task Description. Segmental and global systems are tested on the NIST’98
database, part of the SWITCHBOARD II Phase II corpus, recorded over tele-
phone lines. The speech is spontaneous and no transcriptions, neither ortho-
graphic nor phonetic, are available. The database consists of 250 male and 250 fe-
male speakers representing the clients and the impostors of the system. The sex
mismatch is not studied, so that all experiences are strictly sex-dependent. Sex-
dependent results are merged in a unique curve, for sake of simplicity. Only one
training and testing configuration is considered: 2 min or more for the train-
ing and 30 s of speech for the test duration. To evaluate the robustness of the
new proposed segmental method, some of the tests are evaluated separately for
matched and mismatched conditions (of the training and testing material). They
are noted respectively as SN (same number) and DT (different microphone type).
An independent set of 100 female and 100 male speakers with mixed carbon and
electret microphones was selected from the NIST’97 database for modeling the
world speakers. The experimental results are described as follows. First the global
MLP performances are compared with the state of the art GMM based system.
The influence of the mismatched training and testing conditions is pointed out.
In the next section the influence of the length of the acoustic window is discussed.
These experiments provide the necessary comparison points for the segmental
system results described afterwards, where the performances per class are de-
tailed. Finally, results with a simple recombination technique are given.

Experimental Setup. LPC-cepstral parameters are used for the feature ex-
traction. A 30 ms Hamming window is applied every 10 ms in order to extract 12
LPC-cepstral coeflicients. The order of the LPC analysis is set to 10. A liftering
procedure is applied to the cepstral vectors followed by cepstral mean subtrac-
tion in order to reduce the effects of the channel. The structure of the MLPs used
for the global systems is a three layer MLP, and with 120 neurons in the hidden
layer. For the segmental MLPs, the number of neurons in the hidden layer is
reduced to 20 and 5 contiguous frames are used as the input for the MLPs. The
temporal decomposition is set to detect 15 events per second in average and the
vector quantization is trained on the 1997 data with codebook size of L = 8.
Coherence of the acoustic labeling among speakers is verified through informal
listening tests. Z-norm is applied for each system [35].

ROC and DET Curves. Performances of speaker verification systems are
usually given in terms of False Alarms and Miss Probability, often represented as
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Receiver Operating Curves (ROC). When similar systems need to be compared,
it is more practical to use a Detection Error Tradeoff (DET) [26] in which the x
and y scales are normal deviate scales.

Global System Results. Actually better results for speaker verification are
achieved with GMMs. We use them here as the state of the art comparison point.
The comparisons of the performances of the global MLP and GMM systems
are shown in Fig. 7. The importance of the mismatched training and testing
conditions, as far as the microphone differences are considered, are also visible
on this figure. When the test segments come from a different handset type than
the training speech material (DT curves), the error rates are increased roughly
by a factor of four. Global GMM and MLP have comparable results. Taking
into account the further discriminant possibilities we can have with MLP, we
adopted them for the segmental experiments. It is known that one important
factor for speaker verification is the amount of training data. For the MLP based
experiments, one part of the training data (usually 10) is used for the cross-
validation during the MLP training procedure. So the different performance of
these two systems is perhaps due to the smaller train data of the MLPs.

Influence of the Input Window Length. Our previous studies [32] and [19]
showed the importance of the acoustical window length used as the input of the
MLP for speaker verification experiments. Fig. 8 demonstrates the behavior of
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the MLP with different input window lengths. The number of input frames spans
from one (noted as C00, corresponding to 30 ms) to 11 input frames (noted as
C55, equivalent to 130 ms). Using more contiguous input frames improves the
performances of the global MLP systems, however a saturation appears when
eleven frames are used as input.

Segmental System Results. Performances on a per-class basis for the seg-
mental system (SN conditions) are depicted in Fig. 9. Only five classes having
dissimilar performances are chosen for illustration. Classes perform differently
and convey more or less informations about the speakers. One important factor is
the amount of training material available per class. It is well known that the more
training material we have, the better the models are. In the case when the auto-
matically determined speech units are supposed to correspond to phonemes, the
number of classes should approximately be equal to the number of phonemes.
However two minutes of training material might not be sufficient to ensure a
proper training of all the classes. This is the reason why the number of classes is
set to eight, so that broad phonetic classes are detected. When using fusion tech-
niques to recombine the scores of all these classes, one should use the information
that certain classes perform better than others.

In Fig. 10 we compare the best global MLP system and the segmental MLP
system. The segmental results are obtained through simple recombination of
the eight classes (noted as MLP SegC22 RLin). With this simple recombination
technique we observe a slight degradation for the same number conditions. For
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the more difficult (different type) condition, the segmental system outperforms
the global MLP system, and even the GMM results. This opens the way to fusion
techniques, where individual tuning of parameters corresponding to each class
can be done.

The proposed segmental system (automatic segmentation performed by tem-
poral decomposition and vector quantization is, coupled with artificial neural
network scoring) reaches similar performances as the global MLP system, and
even outperforms it in mismatched training/test conditions. We show that AL-
ISP techniques are potentially useful also in speaker verification because they
are automatic and unsupervised, limiting the human interaction necessary, and
hence the number of errors introduced by human operators. Two issues are still
open regarding the segmental approach. First, per-class individual tuning of the
parameters should be investigated (thresholding, normalization, ...). Second,
better merging of the class-dependent results to obtain the global scores, taking
into account the discriminant performances of the classes should be analyzed.

6 Conclusion and perspectives

The rapid development of interactive voice servers in a multi-lingual environment
calls for an intensive use of data-driven techniques to specify the acoustic units
and models to be used by the recognizer and to train a dialogue manager. This
chapter has proposed a set of tools which could be used for these purposes. The
acoustic units have been evaluated in the context of a very low bit rate coder.
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Such a coder could be either language independent or specific to a given lan-
guage and a given speaker. Language dependent coders would help for language
identification.

Many of the voice servers may perform better with some knowledge about
the identity of the speaker. The recognizer could adapt to that speaker in the
first place. Furthermore, for security purposes, it may be necessary to verify the
identity of the user. This chapter reviews the state of the art in text depen-
dent, text prompted and text independent speaker verification and proposes an
ALISP-based approach to the verification problem.
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