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ABSTRACT 

 
Recently, we presented a rapid speaker adaptation technique, 

reference model interpolation (RMI), which is based on the linear 

interpolation of speaker-dependent models and the a posteriori 

selection of reference models. The approach uses the a priori 

knowledge provided by a set of representative speakers to guide 

the estimation of a new speaker model in the speaker space. RMI 

achieved rapid supervised adaptation in phoneme decoding tasks. 

In this paper, we present two new results of RMI: firstly, we apply 

the RMI technique in a practical large vocabulary continuous 

speech recognition (LVCSR) system with unsupervised 

instantaneous adaptation. Secondly, we propose an evolutional 

subspace scenario which integrates the slow update of reference 

models with RMI rapid adaptation to achieve incremental 

adaptation. The unsupervised adaptation experiments carried out 

on broadcast news transcription task show encouraging results for 

both instantaneous and incremental adaptation. 

 

Index Terms— speaker adaptation, reference models, LVCSR 

 

1. INTRODUCTION 
 

In a recent paper [1], we showed that most of rapid acoustic model 

adaptation techniques can be seen as a linear interpolation of some 

reference models. These reference models can be eigen-vectors 

issued from PCA [2], or centroid vectors of Gaussian mixtures [3], 

or directly a set of speaker dependent (SD) models. We also 

showed experimentally that for a particular speaker, there is a great 

variance in performance with randomly selected reference models. 

This implies that when reference models are fixed, these 

interpolation-based adaptation techniques are limited such that 

they cannot provide robust improvements for a particular 

adaptation target. 

We present in this paper the notion of variable reference model 

subspace to address this limitation. Considering an acoustic model 

space in which each acoustic model is represented as a point, the 

reference models can be viewed as some “anchor models” in this 

space, and a reference model subspace can be formed by these 

anchors. The interpolation-based adaptation techniques define the 

adapted model within this subspace by a linear combination. When 

the dimension of the subspace is limited, the target model may not 

be found within the subspace. This can be improved by increasing 

the number of reference models used for the linear combination. 

However, it is often the case that we do not have enough data to 

build large numbers of SD models. Another solution is to make the 

reference model subspace variable at runtime during the 

adaptation. It is motivated by our experimental finding: the target 

model of a new acoustic condition is more likely to be found in the 

space formed by those reference models which have characteristics 

more similar to the target. In [1], we proposed a posteriori 

selection of reference models, which makes the subspace variable 

by dynamically selecting the pertinent reference models with 

respect to the test/adaptation data. In this paper, we present the 

evolutional reference model subspace to improve RMI for different 

speakers and acoustic conditions. The idea of evolutional subspace 

is to move each reference model within the acoustic model space to 

try to form more pertinent subspaces for different adaptation 

targets. This can be easily implemented by combining RMI rapid 

adaptation with the slow update of reference models in an 

incremental adaptation scenario. 

In this paper, we first review the RMI rapid adaptation 

technique, applied to a large vocabulary ASR system for automatic 

broadcast news transcriptions. We also analyze in details the RMI 

combination coefficients and propose a dominant model selection 

method. Then, we present the notion of evolutional subspace 

which extends RMI to carry out incremental adaptation. Finally, 

experimental results are reported. 

 

2. REFERENCE MODEL INTERPOLATION 

 

2.1. Introduction 
The basic idea behind the RMI adaptation technique is that an 

adapted model for a new speaker or acoustic condition is defined 

as a linear interpolation of a set of SD models with an optional 

translation by a bias vector. Assuming a combination of K SD 

reference models, a Gaussian mean vector of the adapted model 

has the form 
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where 
kµ  is the mean vector of the kth reference model, 

kw  is the 

kth combination coefficient and [ ]Dbbb L1=  is the global bias 

vector (where D is the dimension of acoustic feature vectors). The 

matrix of the mean vectors of the K SD models [ ]T

K

T µµ L1
 forms 

a reference model subspace (RMS) in the acoustic model space, 

and the combination coefficients [ ]Kww L1
 are the coordinates of 

the adapted model in this subspace. The global bias vector, which 

acts as a compacted bias model, performs a translation of the 

adapted model. We use the EM algorithm to estimate the 

combination coefficients and the bias vector by maximizing the 

likelihood of adaptation data 
to . 



 

2.2. A posteriori selection of reference models 
RMI enables the a posteriori selection of reference models due to 

the simple form of the adaptation scheme. We use the coordinates 

(estimates of the combination coefficients) as selection indices to 

dynamically select a pertinent subset of reference models for each 

test speaker or utterance, because these coordinates directly 

represent the importance of each reference model in the adapted 

model. One iteration is firstly performed to estimate all the K 

combination coefficients [ ]Kww L1
 using the current test data. 

Then the N (N < K) reference models with the largest combination 

coefficients (in absolute values) are selected to form the reference 

model subspace for RMI adaptation. 

 

2.3. Relation to model selection adaptation 
Model selection is commonly used in today’s LVCSR systems 

(e.g. system with gender-dependent models). The idea is to select, 

at runtime, one of the pre-prepared acoustic models according to 

some criteria (e.g. maximum likelihood), and to decode with the 

selected model. However, the major drawback is that if none of the 

pre-prepared acoustic models fits well the test data, performance 

cannot be improved, or can even be degraded. 

We can see that model selection is a special case of the a 

posteriori selection of reference models where only one model is 

selected. We have observed that when a test utterance fits well one 

of the reference models, the combination coefficient associated 

with this reference model becomes dominant among all the 

combination coefficients, as shown in Figure 1. It is thus very easy 

to identify the dominant reference model using a threshold. By 

selecting a dominant reference model, the selection of reference 

models falls into the framework of model selection. However, 

contrary to model selection, performance can still be improved if 

no dominant speaker is found. 
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Figure 1 Magnitudes of the combination coefficients for all the 

reference models: (left) none of reference models fits well the test 

data (no dominant speaker); (right) one model fits well the data 

 

This automatic switch between dominant model selection and 

model combination is in particular useful for automatic broadcast 

news transcription applications in which a significant amount of 

speech is uttered by journalists whose voices can be known to the 

system. We report the performance of the dominant selection on 

ESTER in Section 4. In the next section, we present another 

method of variable subspaces by updating rather than selecting 

reference models. 

 

3. EVOLUTIONAL REFERENCE MODEL 

SUBSPACE 
 

The idea behind the evolutional reference model subspace is to 

slowly update the reference models using the increasing amount of 

adaptation data, and then to regularly apply RMI adaptation using 

the updated subspaces. We posit that the target model is more 

likely to be found in the subspace which is “close” to the 

adaptation data. As illustrated in Figure 2, the reference models 

which are used to form the subspace can evolve into the so-called 

evolutional subspace. The resulting subspaces are updated towards 

the region of the model space which is close to the adaptation data; 

RMI adaptation is then applied to locate the target model in the 

updated subspaces.  

In this way, the evolutional subspace combines rapid 

adaptation using RMI with slow adaptation. This allows us to 

achieve incremental adaptation to improve adaptation performance 

with the increase in the amount of data. The implementation of the 

evolutional subspace scenario is described in Figure 3. The input 

speech utterance is firstly decoded using speaker independent 

models. The speech utterance, together with the recognized 

transcription, is then used to update the reference models by MAP 

or MLLR [4]. Once the reference models are updated, RMI uses 

the updated mean vectors of the reference models and the speech 

data together with the recognized transcriptions to perform 

adaptation on the current test utterance.  
 

 
Figure 2  Illustration of the evolutional reference model subspace 

 

Note that RMI relies on the correspondence among the Gaussian 

components from the different reference models. In order to keep 

this correspondence with MLLR update of reference models, we 

should use a one-class MLLR adaptation or apply the RMI 

adaptation separately for each MLLR class. We use one-class 

MLLR in this work to simplify the implementation of the 

algorithm. 
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Figure 3 Incremental adaptation system using RMI with the 

evolutional reference model subspace 

 

4. EXPERIMENTS 
 

4.1. Experimental setup and reference models creation 
Experiments are carried out using the IRENE automatic 

transcription system initially developed by IRISA and ENST for 

the ESTER automatic transcription evaluations [5]. IRENE is a 

multi-pass system in which an input broadcast news show is firstly 

divided into segments of a few seconds of speech. Speaker 

clustering is then applied to group speech segments into speaker 

clusters, which can be used for speaker adaptation purposes. The 

speech segments are then decoded using context-independent 

acoustic models and a trigram language model. This first pass 

generates a word graph on which rescoring is performed using a 

quadrigram language model and context-dependent tied-state 

triphones. 

The experiments were conducted on the ESTER I phase 2 

corpus, which includes material broadcasted by different French 

radio stations in 2003. A large part of the speech was uttered by a 

few journalists who were reporting headlines, brief news or short 

stories. Nevertheless, there are also some interviewed people with 

more spontaneous speaking styles. The 50 speakers with the largest 

amount of training speech data are selected to create reference 

models. Each speaker has between ten minutes and one hour and a 

half of speech. The 50 reference models are generated using MAP 

adaptation of SI models, adapting only the mean vectors. 

According to the adaptation scenarios (instantaneous or 

incremental), the use of the test data can be different. We thus 

describe the profiles of the test and adaptation data in each 

subsection. 

 

4.2. Instantaneous adaptation 
In the instantaneous adaptation scenario, we perform RMI 

adaptation utterance by utterance on about 5 hours of materials. 

Unsupervised adaptation is performed respectively on the first and 

second pass to adapt context-independent phoneme (monophone) 

and context-dependent phoneme (triphone) models.  

As presented above, the ESTER corpus contains a large part of 

speech uttered by a number of principal speakers (journalists). 

Thus, the test speech data also contains some principal speakers 

whose data have been used to create the reference models. Hence, 

results are reported for two groups of speakers. Table 1 shows the 

percentage of these principal speakers who are known to the 

system. 

MLLR adaptation is carried out for comparison. We use MLLR 

with three block-diagonal transformations and a bias vector in the 

experiments because it gave the best performance level compared 

to other MLLR variations in our experiments. 
 

 Num. of 

speakers 

Num. of 

words 

Word 

percentage 

Principal speakers 20 21,062 46.23% 

Other speakers 141 24,502 53.77% 
 

Table 1  Percentage of principal speakers in the evaluation data 

 

4.2.1. Performance on the first pass 
Table 2 lists the performance of the utterance-level adaptation on 

monophone models. RMI with dominant selection is also 

performed by applying a high threshold (0.9) on the estimated 

combination coefficients to select dominant reference models for 

current test utterance. 
 

 Principal 

speakers 

Other 

speakers 

Overall 

SI 23.6% 37.1% 30.9% 

MLLR (3bd) 23.5% 36.7% 30.6% 

RMI 20.0% 35.2% 28.2% 

RMI (dominant selection) 19.8% 35.2% 28.1% 
 

Table 2  Adaptation performance in word error rate on monophone 

model at the 1st pass 

 

These results show that significant improvements can be achieved 

by the RMI methods at the end of the first pass. The RMI utterance 

adaptation gives improvements for both groups. For principal 

speakers, it has a 3.6% absolute improvement. More importantly, 

for the others speakers who are unknown to the system, RMI can 

still achieve an absolute improvement of 1.9%. 

Usually, the performance on the first pass is measured by lattice 

word error rate which stands for the minimum word error count of 

any path through a word graph. Table 3 lists the lattice word error 

rates along with the sizes of word graphs. 
 

Size of word graph  
Lattice word 

error rate avg. # nodes / 

frame 

avg. # arcs / 

frame 

SI 11.0% 8.41 56.25 

MLLR (3bd) 12.0% 6.45 38.77 

RMI 10.8% 5.74 34.34 
 

Table 3  Lattice word error rates at the end of the 1st pass against 

sizes of word graphs 

 

We can see that the quality of the word graphs is improved after 

RMI adaptation: lattice word errors are reduced even though the 

graphs are much smaller. 

 

4.2.2. Performance on the second pass 
Table 4 shows the performance of RMI adaptation applied on both 

monophone and triphone models. The final performance has a 

1.3% absolute improvement in word error rate compared to the SI 

system. This is better than the improvement of 0.6% obtained by 

performing adaptation solely at the second pass. MLLR adaptation 

on both passes degrades the performance. It may be due to the fact 

that the lattice word error rates at the end of the first pass are 



degraded. It is not very surprising because the classic MLLR 

technique is not designed for instantaneous utterance adaptation.  
 

 Principal speakers Other speakers Overall 

SI 16.8% 29.4% 23.6% 

MLLR (3bd) 17.5% 29.6% 24.0% 

RMI 15.5% 28.2% 22.3% 
 

Table 4 Adaptation performance on both monophone and triphone 

model (word error rates at the end of the 2nd pass) 

 

4.3. Incremental adaptation 
Incremental adaptation is applied on the first pass. In order to 

gather enough test utterances for each test speaker, we have 

selected the speakers who uttered the most utterances. The 7 

speakers, other than the 50 speakers used for creating reference 

models, with more than 60 utterances are selected for the test. Each 

test speaker has an average of 68 utterances. 

During the adaptation for each test speaker, RMI adaptation is 

performed on each test utterance using incremental speech data. In 

the meantime, the MLLR adaptation is triggered each ten 

utterances to update the reference models. 

 MLLR speaker adaptation and RMI instantaneous adaptation 

are performed for comparison. For MLLR adaptation, one global 

transformation with bias is used. For RMI instantaneous 

adaptation, utterance level rather than speaker level adaptation is 

performed on each of the test utterances. 

 

4.3.1. Adaptation performance 
Figure 4 reports the incremental adaptation performance. Note that 

the SI performance in Figure 4 is much better than the one in Table 

2. This is because only 7 selected speakers are used in this test. 

The performance of RMI performed with accumulated adaptation 

data but without the regular update of reference models (RMI 

incr.) is also shown for comparison.  
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Figure 4 Incremental adaptation performance 

 
At first glance, all the adaptation strategies outperform the SI 

performance. Instantaneous RMI adaptation already achieves an 

absolute improvement of 3% in word error rate. Incremental RMI 

without updating the reference models exhibits a slightly worse 

performance level than instantaneous RMI adaptation at the 

beginning, when only 10 adaptation utterances are used. With the 

increase in the number of test utterances, incremental RMI 

outperforms instantaneous RMI adaptation. However, performance 

is not much improved after 20 utterances. There is only a 0.1% 

improvement between 20 utterances (22.3%) and 60 utterances 

(22.2%). Updating the reference models further improves 

incremental RMI adaptation. By updating the reference models, the 

performance of the incremental RMI is 22.3% when 10 utterances 

are used. From 20 utterances to 60 utterances, RMI incr.+updating 

RMS has a 0.2% improvement, which is actually the same amount 

of improvement achieved by MLLR adaptation. 

 

5. CONCLUSION 
 

We have applied RMI adaptation in a practical LVCSR system, 

and have illustrated instantaneous and incremental adaptation 

implemented by RMI. The experimental results show that RMI can 

achieve utterance by utterance instantaneous adaptation in a large 

vocabulary task. This is useful when the grouping of speech 

segments is difficult, e.g. in streaming mode, or when speakers are 

unknown to the system such as online telephone services. In 

addition, the dominant model selection method based on the a 

posteriori selection in RMI is shown to be useful for the 

applications in which there are some principal speakers who can be 

known to systems, e.g. journalists in broadcast news. We have also 

presented the idea of evolving subspaces by updating at runtime 

the reference models. The incremental adaptation system 

implemented using RMI with the update of reference models is 

presented and evaluated. Experiments show that incremental RMI 

with the update of reference models outperforms instantaneous 

RMI adaptation and can further improve the performance with the 

increase of adaptation data. Besides, we have observed recently 

that the bias model of RMI has an important effect on adaptation 

performance. The RMI incremental adaptation may also be 

achieved by using an evolutional bias model. This point will be 

studied in future works. 
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