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Abstract— A key question in video indexing is the effective use
of all the possible sources of information. Hidden Markov models
(HMM) and segment models (SM) provide powerful frameworks
for audiovisual integration and structure knowledge encoding.
However, incorporating punctual symbolic information, such as
inlaid score labels, with these models is not straightforward.
We demonstrate that using the score labels as an additional
feature is not efficient and propose a novel algorithm to efficiently
incorporate the score information in the Viterbi decoding process.
This score oriented Viterbi search guarantees an optimal solution
consistent with the available score information. Experimental
results demonstrate the effectiveness of the method and its
robustness to inlaid score detection errors.

I. INTRODUCTION

Since video documents are inherently multimodal, it is
clear that all the modalities should be taken into account
in order to achieve efficient indexing algorithm. Numerous
approaches to multimodal fusion, reviewed in [5], have been
proposed over the past few years. In particular, Hidden Markov
models (HMM) provide a powerful framework for the joint
modeling of low-level video features such as image histograms
or audio descriptors. One of the advantages of HMMs is
that prior knowledge on the video structure can be easily
incorporated in this framework using an appropriate topology.
In a previous study [1], we experimented segment models
(SM), a generalization of the HMM framework for video
structuring. While multimodal HMMs require synchronized
feature extraction for each modality, SMs loosen the synchrony
constraints to scene boundaries. However, incorporating punc-
tual semantic information, such as the inlaid score labels in
sport broadcasts, into the HMM or SM framework is not
straightforward. The score labels occasionally displayed on
screen provide important high-level information on the game
events and evolution, but are not efficiently exploited if used as
an extra feature as shown in this paper. We propose instead a
novel search strategy that uses score labels to guide the Viterbi
search algorithm, in order to provide a solution consistent with
the available information. Since score labels are not strongly
synchronized with the image and audio streams, we believe
that this information can be more efficiently handled with SMs
than with HMMs.

The paper is organized as follows. In the first section,
we review the HMM and SM formalism for tennis video
structuring. We then discuss how score labels can be used

in section III before presenting some experimental results in
section IV.

II. AUDIOVISUAL CONTENT MODELING

In the targeted application, our aim is to decode a tennis
game according to some preidentified scenes, namely first
missed serve plus exchange (FMS+E), exchange (E), replay
(R) and break (B). Each scene is a sequence of shots with
well-defined start and end times. For example, an exchange
scene is a sequence of shots where the first shot contains the
exchange itself and the remaining shots are fillers up to the
beginning of a new scene.

In this section, we briefly recall the results previously
published in [1] and show how scenes can be modeled with
HMMs and SMs respectively. We also show how these models
can be used with a hierarchical topology to take into account
structural knowledge about a tennis game. For all the models
discussed here, the same visual and audio features were used.
First, hard cuts and dissolve transitions were detected on the
video track. Each shot is then characterized by three visual
descriptors indicating the shot length, the presence/absence of
dissolve transition and a color-based distance to a reference
tennis court view. The soundtrack is characterized by its
content in terms of presence of music, applause and ball hits.

A. Hidden Markov Models

In the HMM framework, each scene is modeled with a
HMM where the states correspond to shots. A study of
broadcasting rules for tennis show that all the scenes can
be modeled with a grand total of 12 states, as depicted
in figure 1. Typically, some states represent court views
corresponding to exchanges while other are used to catch
dissolve transitions due to rediffusions or close-ups between
two exchanges [2]. The feature vectors associated with shots
include the three visual descriptors and three binary audio
features characterizing the audio content of the shot in terms
of music, applause and ball hits. All these features are assumed
to be independent. Finally, scenes are connected assuming an
ergodic scene structure. Given models whose parameters have
been estimated, an unlabeled sequence of shots is decoded
using the Viterbi algorithm [4] to find the most likely scene
segmentation.
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Fig. 1. The 12 states of the HMM we used, grouped into four scenes. ‘CV’
stands for ‘court view’ and ‘DT’ for ‘dissolve transition’.

B. Segment Models

Segment models [3] provide a generalization of HMMs
where a state models a whole sequence of shots, called seg-
ment, rather than a single shot. Each state therefore defines a
duration model to account for the segment length and a model
of the observation sequence to compute the state conditional
probability for a sequence of feature vectors. As for HMMs,
scenes are connected assuming an ergodic structure. In the
multimodal framework, distinct state conditional probability
models are provided for each stream of information (video
and audio). The use of segmental features, as opposed to
shot-based ones, can be beneficial for multimodal integration.
Indeed, the audiovisual synchrony is now extended to the scene
boundaries, allowing the use of separate and suitably adapted
models for the audio content. In this study, the conditional
probability of the audio features of a segment is given by a
bigram model. The video features conditional probability is
modeled by a HMM whose purpose is to give the probability
of a sequence. Decoding in the SM framework aims at finding
out not only the most likely segment labels, but also the most
likely segmentation or, in other words, the most likely duration
of each segment. This problem is solved via a straightforward
extension of the Viterbi algorithm for HMMs with explicit
state duration [4].

C. Hierarchical Scene Transitions

Tennis games exhibit a highly hierarchical structure with
transitions between points, games and sets. Such a structure
can easily be encoded in the HMM and SM frameworks
using an adequate topology as depicted in figure 2, where the
hierarchical structure encodes the game structure and serves
as a source of constraints. Internal hidden states are thus
introduced to guide the hierarchical structure of the Markovian
process. At the top level, the root state of the model represents
the complete tennis match. It is in turn modeled as a sequence
of sets, occasionally interrupted by breaks. Each set is further
analyzed as a succession of games and breaks, with specific
interlacing rules. Each game is then analyzed as a succession
of points with a minimum of 4 points. Finally, each point is
either due to a first miss serve plus exchange scene or an
exchange scene, optionally followed by a replay. In the SM
framework, the states in white in Fig. 2 are the emitting states
for which a segment is produced. In the HMM framework,
these states are further expanded into the corresponding HMM.

III. INTEGRATION OF SCORE INFORMATION

In tennis games, as in other sports, the score is usually
inlaid on the screen after some game event has occurred,
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Fig. 2. The internal states of the hierarchical topology.

e.g. when a point is scored. In this section, we present two
strategies to exploit this information. In this study, score labels
were manually detected and extracted, although automatic
techniques could have been used (see e.g., [6]). We discuss
the problem of detection errors in the last part of this section
and experimentally show in the next section that our method
is robust to detection errors.

A. Score Label as a Feature

A straightforward approach to integrate score information is
to perform a fusion at the feature level by adding a descriptor
indicating whether a score label is present or not. In this case,
the labels are used essentially to spot the relative game events.
In the HMM approach, a score presence/absence descriptor is
associated to each shot, thus implicitly assuming a synchrony
between the display of the score label and the corresponding
scoring event. Limited asynchrony can be easily handled with
SMs, where we use a descriptor at the scene level.

However, there are two main drawbacks to the feature fusion
approach. Firstly, we use the information that a score has been
displayed but we do not use the information of what the score
is. Secondly, this approach is efficient under the unrealistic
assumption that the score is displayed after each scoring event.
In practice, this is not the case and we observed up to four
consecutive points not acknowledged by a score label.

B. Score-Oriented Viterbi Search

An effective use of the score labels should not make any as-
sumptions on the producer’s style and should tolerate extensive
asynchrony and undisplayed labels. To that extent, we propose
a search strategy that will choose among all the possible
paths, the most likely one that is consistent with the score
indications available. An obvious solution for this problem
would be an N-best search where we choose a posteriori the
most consistent path among the N best candidates. However,
to ensure an optimal solution, the number of best candidates
to compute must be prohibitive, thus making this approach
inefficient in practice. We therefore propose a score oriented
search algorithm guaranteed to find out the best path consistent
with the score labels.

Before proceeding to the description of the algorithm, let
us note that a score label is displayed after the corresponding
game event occurred. Hence, the scene to which a label refers
generally starts before, and might end after, the actual display
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Fig. 3. Illustration of the local search.

of the score label. This means that the scene boundaries lie in
time somewhere between the previous and next score labels
instance time as depicted in Fig. 3, where the scene related to
the score label displayed at t2 should lie between t1 and t3.
The idea of our approach is to perform a local search through
all the paths between t1 and t3 and penalize those paths
inconsistent with the score indication, before recombining the
local search results. In the example of Fig. 3, only paths
that results in exactly one point (i.e., containing only one of
the scenes ‘first missed serve and exchange’ or ‘exchange’)
are allowed. The local searches operate in a pipeline where
remaining paths are further developed until the end of the
video.

To this end, we use two queues Qt,i and Q′t,i, each of size S,
per state i and time instant t, where S is the maximum number
of points allowed between two score labels. These queues hold
the best paths obtained for each number of scored points, i.e.
Qt,i(s) is the best local path ending at t in state i that contains
s points. The first queue holds the paths of the current local
search, while the second one stores results from the previous
local search. The queues store the path likelihood δt,s(i), for
each time instant t, state i and number of points scored s, as
well as backtracking information. Let us denote by nij a 0/1
indicator if the state transition i to j gives a new point (for
example n45 = 1 in Fig. 1). In the case of HMMs, the local
search for the current label is defined as:

δt,s(i) = max
j,σ,s=σ(Q)+nji

δt−1,σ(j)ajibi(Ot)

for the time steps t ∈ [t1, t3], where σ ∈ Qt,j ∪ Q′t,j for
t ∈ [t1, t2] and σ ∈ Qt,j for t ∈ [t2, t3], and σ(Q) = σ
iff σ ∈ Q and 0 otherwise. Finally, aji and bi(Ot) denote
the transition and observation probabilities respectively. After
the local search is performed, we penalize all the paths in all
queues Qt,i not consistent with the required number of scored
points s∗, i.e. δt,s(i) = δt,s(i) + P (s, s∗), where P (s, s∗) is
a large negative value if s 6= s∗ and zero otherwise. Finally,
for time t ∈ [t2, t3], we transfer the contents of Qt,i to Q′t,i
and then proceed to the next local search in the pipeline.
Inductively, the best complete path thus obtained will agree
with all the score indications and is guaranteed to be the most
likely given the score constraints.

C. Taking errors into account

Due to undisplayed score labels, the number of points
actually scored between two labels is not always known
exactly. For example, between two labels ’advantage’, the
number of points can be 2, 4, etc. In addition, automatic
score label detection and recognition might introduce some
errors, even though we believe that this task could be carried

out reliably as score labels usually appear framed at fixed
position and clearly distinct from the background. To tackle
these two problems, we use, instead of P (s, s∗), a smooth
penalty function P (s, l1, l2) that captures the certainty we
have on the number of points scored between two labels. The
penalty P (s, l1, l2) that s points are scored between the two
labels l1 and l2 is defined as

P (s, l1, l2) = A
(
1− N(s, l1, l2)∑

s N(s, l1, l2)

)
(1)

where A is a large negative value and N(s, l1, l2) is the
number of times s points were scored between the two labels l1
and l2 on the training corpus. Therefore, the penalty depends
on an estimation of the probability that s points are scored
between two specific labels. When using automatically de-
tected score labels, the counts N(s, l1, l2) must be determined
using the automatic detector in order to take detection errors
into account in the penalty function. In this way, the penalties
will tend to be more uniform between the various values of
s when many errors occur and the algorithm will tend toward
the standard Viterbi algorithm.

D. Score oriented search with a hierarchical topology

The score-oriented search can provide further benefits when
used with a hierarchical topology. Indeed, the hierarchical
topology ensures a solution consistent with the tennis rules,
but not necessarily with the number of sets or games per
set actually scored. The score oriented search can be easily
extended to the hierarchical topology by adding two more
variables in the queues Q and Q′ to keep track of the sets
and games traversed. According to the transitions of the
hierarchical topology we update these two variables at each
time instant. When information on the game evolution is
provided by a score label (they usually appear at the end of
each game), the inconsistent paths can safely be pruned. In
this way we can obtain a solution that not only agrees on the
number of points scored, but also on the actual game structure.

IV. EXPERIMENTAL RESULTS

Experiments were carried out on a corpus of 6 tennis videos
with a total duration of 15 hours. The first three videos were
used as a training set to estimate the model parameters. The
last three videos were used as the test set. All the video
were manually annotated based on the automatic video track
segmentation and therefore, errors of the hard cut and dissolve
detection are not taken into account in this analysis. The
estimation of the parameters for the ergodic HMMs and SMs
is straightforward [1]. In the hierarchical approach, estimating
the transition probabilities between the hidden states is not
possible given the limited size of our training corpus. Hence,
these probabilities were arbitrarily set to 1 in the experiments
reported here. Performances are measured in terms of the
average percentage C of shots assigned with the correct scene
label as well as in terms of recall R and precision P rates
on the scene boundaries. To make the comparison easier
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TABLE I
RESULTS SUMMARY

HMM SM
C P R F C P R F

Standard Viterbi search
Ergodic 80.2 84.7 79.7 66.4 81.8 84.1 79.4 66.8

Hierarchic 79.3 84.9 77.9 65.0 81.2 85.6 77.2 66.0
w. scores 80.8 85.7 80.4 67.6 82.0 84.2 79.7 67.1

Score-oriented search
Ergodic 82.2 83.4 82.4 68.3 86.0 84.9 83.4 71.8

Hierarchic 82.7 84.3 80.5 68.0 85.8 85.1 82.9 71.6
With simulated detection errors

90% 81.6 83.9 82.2 68.2 85.6 85.5 82.7 71.6
50% 81.1 84.4 80.7 67.3 84.1 87.0 80.2 70.1

than comparing all the above three quantities we devised a
combined measurement, defined as F=3CPR/(C+P+R).

Results are summarized in table I for the HMM and SM
approaches. The first three rows of results give the perfor-
mance for the baseline systems, with an ergodic structure
(row 1), with the hierarchical structure (row 2) and with
score labels used as features in the ergodic structure (row
3). The comparison of the HMM and SM systems show a
marginal improvement using segment models when the score
labels are not used. Using the hierarchical topology, we notice
a light degradation of the overall performance measure F,
mostly due to a decrease of the recall rate (i.e. an increased
number of scene boundaries detected). This degradation is
most probably due to the manual setting of the transition
probabilities to 1 in the hierarchical approach, while the scene
transition probabilities were estimated on the training data for
the ergodic model. Finally, the introduction of the score label
indicator as a new feature yields a marginal improvement in
the HMM case. This improvement is mainly due to the spotting
of some hidden states where a score label is likely to appear.
We observe more or less the same performance in the SM case
where score features are integrated at the scene level rather
than at the shot level. The score feature is distributed more
uniformly between the four scenes and thus cannot contribute
as much if used that way.

The next two rows of results detail the performance obtained
with the proposed score-oriented Viterbi search. Clearly, in all
the cases, performance improve significantly when constraints
on the score are used. This improvement is mainly due to
a higher recall rate, and therefore classification rate. The
score-oriented search seems to perform a better segmentation
than the standard Viterbi algorithm, with less false alarms in
boundary detection. As a consequence, the classification rate is
also improved. As previously, the overall performance with the
hierarchical topology is still lower than with the ergodic topol-
ogy, due to an decreased recall rate. However, the performance
gap between hierarchical and ergodic models is clearly reduced
thus suggesting that the hierarchical models benefit more from
the score-oriented search than the ergodic ones. Finally, one
interesting result is that SMs perform significantly better than
HMMs with a increase of the combined performance measure
F of 5.03% for the former and 1.89% for the latter. This may
be explained by the fact that the positions themselves of the
score labels provide some rough approximations of the scene

boundaries, giving some extra valuable information for the
Viterbi decoding in SMs.

We observed that the structure recovered with the score-
oriented search agree almost completely with the score indi-
cations while the game structure is perfectly recovered. Most
errors are due to confusions between the two scenes ‘first
missed serve and exchange’ and ‘exchange’ which cannot be
disambiguated by score information since both results in a
score change.

Finally, the last two rows of Tab. I report results for the
score-oriented search with ergodic models when errors on
the score labels are artificially introduced. Plausible errors
were simulated both on the training and test corpora. The
counts used in the computation of the penalty (see Eq. (1))
were then reestimated on the training corpus with artificial
label recognition errors and applied on the corresponding test
corpus. This experiment was repeated with two different label
recognition error rates, 10% and 50% . The results clearly
demonstrate the robustness of the score-oriented search to
inlaid label recognition errors, with only a marginal decrease
of the overall performance, even when half of the labels are
misrecognized. High label recognition error rates seems to
induce more boundary detection thus resulting in a better
precision rate and a lower recall rate, only marginally lowering
the scene classification rate.

V. CONCLUSIONS

We proposed a score-oriented Viterbi search to efficiently
integrate into the HMM and SM frameworks punctual prior
semantic information. We experimented this method on tennis
video structuring using inlaid score labels to guide the search
algorithm. This approach resulted in a significant improvement
of the segmentation and classification performance of both
the HMM and SM systems, the latter benefiting more from
knowledge of the score label. We also demonstrated the
robustness of our approach to recognition errors. Future work
includes the use of an OCR system for score label recognition
and the integration of other sources of semantic information,
such as the player position.
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