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Abstract

Automatic annotation of video documents is a powerful tool
for managing large video databases. In this work we aim
to describe tennis video broadcasts in a human meaningful
way and thus to construct their table of contents. We present
a generalization of Hidden Markov Models, the Segment
Models, for modeling and extracting high-level information
from a video sequence. Segment Models, even though they
operate in an enhanced search space, were proved experi-
mentally to perform marginally better compared to Hidden
Markov Models.

1. Introduction

The management of the large multimedia databases of
nowadays becomes practically intractable without the use
of human meaningful semantic indexes describing the con-
tent of the documents. The automatic extraction of such
a high level information from documents has attracked the
interest of the research community in the last few years not
only for this practical application, but also as an interesting
machine learning problem. In this work, we aim to describe
a complete video document via automatically extracted se-
mantic indexes, and thus to costruct its table of contents.
We are focused on tennis broadcast videos where the game
rules as well as the work of the producer of it result in an
structured document.

There are numerous approaches in the relative literature
to the extraction of semantic labels of such structured doc-
uments, reviewed in a recently published survey [5]. A
statistical approach that is usually employed for model-
ing and information extraction is the Hidden Markov Mod-
els (HMMs) [3]. Even though HMMs have been applied
with success to speech recognition, the research commu-
nity quickly realized that this type of modeling makes some
rather strong and unrealistic assumptions on the nature of
the speech signal [2]. Ostendorf et al. proposed there a
generalized modeling of a stochastic process, refered to as
Segment Models, where different modeling assumptions can
be easily incorporated. The purpose of this study is to in-

troduce this promising framework into video indexing, pro-
viding extensions to previous work [1] based on HMMs.

The paper is organized as follows. The feature extraction
stage is discussed briefly in section 2. Our baseline HMM-
based system is presented in section 3. A brief introduction
to Segment Models and experimental results are given in
section 4. Section 5 concludes this study.

2. Visual and Audio Features

In order to detect hard cuts of the video track and based
on the simple yet effective color histogram comparison, we
implemented the adaptive threshold selection method of [6].
We also need to detect dissolve transitions between shots as
they are frequently used to signal the start or the end of a
rediffusion. We used a variation of the approach [7] based
on edge features. Having the temporal extend of a dissolve,
we formed a new type of shot labeled as shot corresponding
to a dissolve transition. Finally, our 6 tennis games of 15
hours total duration were segmented into 12,402 shots with
1,392 of them corresponding to a dissolve.

One can notice easily that the shots of exchanges be-
tween the two players are characterized by their homo-
geneity in color space, where dominates the color of the
court. So, in order to detect this type of shots (refered to as
“global view”), we can use a color-based distance of each
shot to a reference frame, representing an ‘ideal’ global
view. Based on the dominant colors of each key frame, we
extracted an initial list of candidates we applied the least
median of squares method [4] to get the wanted prototype
global view frame Kref . To calculate the visual similarity
of each key frame to Kref , we used the simple bin wise
distance of the two LUV histograms. As a final result, we
attached as visual descriptor to each key frame the obser-
vations Ot = [Ovs

t Ol
t Odiss

t ]T , where Ovs
t is the visual

similarity, Ol
t is the length of the associated shot and Odiss

t

indicates if this shot corresponds to a dissolve transition or
not. We descritized homogeneously the values of Ovs

t and
Ol

t into 10 bins each to ease the calculations in sections 3
and 4.

Audio event detection is independently carried out in
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a two-step process. First, the soundtrack is segmented
into segments with homogeneous content. We utilized the
Bayesian information criterion (BIC) using a cepstral repre-
sentation of the input signal. The principle of the segmen-
tation algorithm is to move two adjacent windows on the
soundtrack signal. For each position of the windows, one
can compare whether it is best, in terms of BIC, to model
the two windows separately with two different Gaussian
distributions or with a single one. Then, the detection of
ball hits, applause and music is performed based on statis-
tical hypothesis testing. More precisely, we used a two-
hypothesis test, where H0 (resp., H1) is the hypothesis that
the event considered is (resp., is not) present in the seg-
ment. Assuming a model for the distribution of y is avail-
able under both hypotheses, the decision on the presence
of an event is taken by comparing the log-likelihood ratio
R(y) = ln f(y; H0) − ln f(y;H1) to a threshold δ, where
R(y) > δ means that the event is detected in the segment y.
In practice, H0 (resp., H1) corresponds to a Gaussian mix-
ture model whose parameters were estimated from training
data containing the event (resp., non-event) of interest. Fi-
nally, taking into consideration the video segmentation, we
attached as audio descriptor to each key frame the obser-
vations Ot = [Obh

t Oappl
t Om

t ]T , where Obh
t denotes the

presence or absence of ball hits, Oappl
t of applause, and Om

t

of music in the associated shot. We used half of the games
for parameter estimation and threshold evaluation for both
visual and audio features and reserved the other half for test-
ing.

3. Hidden Markov Modeling

Having carefully examined our tennis data, we observed
the existence of some temporal patterns. For example, in
an exchange we usually see a global view with relatively
long duration. In parallel, the visual content contains ball
hits followed by applauds. So, we can approach the video
data (both visual and audio) as a sequence of observations,
produced by a random process as it evolves through time.
A first possible assumption we can make on this random
process is that it can be modeled as a Hidden Markov
process [3].

After a careful examination of our video sequences,
we have distinguished 12 different states for modeling the
markovian process, each of them having its special physi-
cal meaning. We can see them in fig. 1. We have seperated
them into four groups corresponding to the four basic types
of scenes: first missed serve and exchange, exchange, red-
iffusion and break. The first scene can be modeled as fol-
lows: a first missed serve with a shot of global view (state
1), some shots of non global view follow (state 2), a shot
of global view of the normal exchange (state 3), and finally,
some shots of non global view after the exchange (state 4).
There is also the possibility to transit from state 2 back to

1 2 3 4

GV GV

5 6

GV

7 8 9

GVDT

10 11 12

DT GV

First Missed Serve and Exchange Exchange

Rediffusion Break

Figure 1: The 12 states of the HMM we used, grouped into
four scenes. ‘GV’ stands for ‘global view’ and ‘DT’ for ‘dis-
solve transition’. To make the presentation simpler, arcs in-
terconnecting the four scenes are not shown.

state 1 in cases of repeated missed serves. The states for the
remaining scenes can be explained in a similar manner.

We manually labeled all the shots with the respective
state label for computing the ground truth of the video files.
Having this ground truth, it was straightforward to estimate
the parameters of the model by simply using relative fre-
quencies. Regarding the emission probabilities bj(Ot) of
state j, we supposed independecy between all the compo-
nents of the observation vector Ot. We used half of the
games for the estimation and reserved the other half for test-
ing. The arcs between the states we see in fig. 1 give us
the resulted dominant transition probabilities after training.
Having estimated the parameters of the model, we can then
decode an observation sequence to the corresponding most
likely hidden state sequence, given by:

S∗ = arg max
sT
1

p(OT
1 |sT

1 )p(sT
1 ),

where sT
1 is the hidden state sequence, OT

1 is the observa-
tion sequence and T is the sequence length. The uncovered
state sequence S∗ gives us the wanted human meaningful
class labels of each video shot. This optimization problem
is solved efficiently and fast using the Viterbi algorithm. We
achieved 71.67% correct classification rate on the test files,
while the perorformance decreases to 66.25% when not us-
ing audio features.

4. Segmental-Based Modeling
4.1. Segment Models
In this new type of modeling, the notion of the segment gen-
eralizes the notion of the state of HMMs in that it allows
its extension to arbritary durations. In this way a segment
can emmit several observations before the transition into an-
other segment. The situation is depicted in fig. 2. On the left
we see what happens conceptually in the case of HMMs:
at a given time instant the process is in a given state and
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Figure 2: The generation of the observation sequence ac-
cording to Hidden Markov Models (left) and to Segment
Models (right).

emmits one observation symbol and then transits to another
state. On the right we see the difference of Segment Models.
At a given time instant the stochastic process enters into a
segment and remains there according to a probability given
by the segment duration modeling. The segment emits a
train of observations, instead of a single one, according to
a distribution conditioned on the segment label. Then the
process transits to a new segment with a transition proba-
bility, as in HMMs, and so on until the complete sequence
of observations is generated.

In our tennis video case, we can think of a scene (i.e.,
an ensemble of shots), as a segment. Indeed, we can ob-
serve that the complete sets of observations emmited by
each scene of fig. 1 share a lot of common elements. For
example, a scene of a break is an ensemble of observations
of very small shots (commercials) or of long duration (sta-
tistics). Regarding the audio content and at the scene level,
the audio observations of an exhange, for example, contain
usually some ball hits followed by applause.

The parameters to be estimated for the segment models
are the transition probability p(i|j) from segment j to seg-
ment i, the duration modeling p(l|a) of segment a, and the
segment-level observation probability ba(O1, O2, . . . , Ol),
conditioned on the segment label a (in their general formal-
ism of [2], it was also conditioned on the segment duration
l). The first two probabilities were computed via the ground
truth (easily adapted from shot-based labels to scene-based
ones), as in the case of HMMs. On the contary, Segment
Models offer a lot of possibilities of different modeling re-
garding the observation probabilities, which will be exam-
ined in detail later in section 4.2.

During our Viterbi search, we have now to find not only
the most likely segment labels, but also the most likely seg-
mentation or, in other words, the most likely duration of
each segment. This new enhanced maximization problem
can be formulated as:

(L,A)∗ = arg max
lN1 ,aN

1

p(OT
1 |aN

1 )p(lN1 |aN
1 )p(aN

1 ),

where T is again the observation sequence length, N is the
number of segments found, aN

1 is the segment labels and lN1
is the segment durations. For avoiding unnecessary compu-
tation we restricted our search for possible segmentations

into a window of 70 time steps (or shots), as it is difficult
to have scenes containing more than 70 shots. This gives,
roughly speaking, a computation cost of 70 times higher
than that of the HMM-based Viterbi alghorithm. But this
computation cost is still of order of few seconds, which is
clearly negligible compared to the computational cost of the
feature extraction.

4.2. Feature Modeling
As we mentioned above, there are various ways to approach
feature modeling in Segment Models. Starting from the
simplest case, we will make the assumption of the indepen-
dence of the observations:

ba(O1O2 . . . Ot) =
t∏

k=1

P (Ok|a),

where Ot = [Ovs
t Ol

t Odiss
t Obh

t Oappl
t Om

t ]T and a is the
segment label. We will refer to this approach as ‘AVprod’
from now on. We can relax the independence assumption
by using an HMM to model the sequence of observations of
a segment:

ba(O1O2 . . . Ot) ≡ P (O|λa) =
∑

Q

P (O, Q|λa),

where λa represents the HMM charged to model the obser-
vations of segment a and Q is a hidden state sequence of
it. The calculation of the probability of the right term can
be done easily by the forward pass of the forward-backward
procedure [3]. We will call this approach ‘AVhmm’. When
not using audio observation, we will refer to the ‘Vhmm’
approach.

As we can now model ensembles of observations at the
scene level, we can describe the audio content using its na-
tive audio-based segmentation. So, instead of collecting a
number of descriptors for each shot, we can use features like
‘presence of applause in the scene’, etc. We will call this ap-
proach ‘VhmmA1gram’ (which implies the use of HMMs
for the video content). Another possibility is to use as fea-
tures the succession of audio events in the segment, which
can be done simply by a 2-gram modeling:

ba(Oa
1O

a
2 . . . Oa

t ) =
t∏

k=2

P (Oa
k|Oa

k−1, a),

where Oa
t is a symbol indicating the detection of applause,

ball hits or music in the segment (silence or other audio sig-
nals were discarded as irrelevant). We also used the special
symbols ‘start’ and ‘end’ of the observation sequence. We
will call this approach ‘VhmmA2gram’.

4.3. Experimental Results
For estimating the probability products of the ‘AVprod’ ap-
proach, we used again relative frequencies thanks to the
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Table 1: Experimental results for various approaches on test
sets regarding percentage of correct classification (%), pre-
cision (P), and recall (R) rates.

% P R
HMMs-V 70.72 68.90 80.51

HMMs-AV 74.57 73.69 82.51
AVprod 60.19 6.05 33.56
Vhmm 76.37 70.97 80.82

AVhmm 77.81 72.39 83.69
VhmmA1gram 76.95 72.28 72.47
VhmmA2gram 79.17 75.11 80.13
p(lN1 |aN

1 ) = 1 72.88 71.07 86.73
p(aN

1 ) = 1 77.60 70.55 83.39
p(sT

1 ) = 1 47.98 18.58 71.58

available ground truth. We initialized the topologies of the
HMMs according to fig. 1 (i.e., same number of states and
the allowed transitions were identical to the dominant tran-
sitions of the figure), with the exception of the last scene
where we employed a 2-state HMM with an unconstrained
topology. We used the standard Baum-Welch algorithm [3]
to estimate the parameters. Regarding the bi-grams distribu-
tions, we noticed a light improvement in performance when
using a simple back-patching scheme. We used half of the
games for parameter estimation, and the other half for test-
ing, as in sections 2 and 3. As performance measurements,
we considered the percentage of shots assigned with the cor-
rect segment label and the precision and recall rates regard-
ing the detection of the segment boundaries.

The average performance on the test sets is shown in ta-
ble 1. We firstly see the performance of the HMM of sec-
tion 3 without (HMMs-V) or with (HMMs-AV) audio ob-
servations, after transforming the shot labels to segment la-
bels and detecting the points of scene boundaries. We see
in the next five rows of table 1 the performance of Seg-
ment Models under various observation modeling alterna-
tives. Firstly, it is clear that the observation independence
assumption gives very poor results (approach AVprod). On
the contrary, it is clear that the performance increases sig-
nificantly when modeling the observation distributions via
an HMM (cases Vhmm and AVhmm). Comparing the per-
formance of Vhmm to that of AVhmm, we see that the au-
dio observations are again usefull for Segment Models (or
more precisely, for the HMMs that model the observation
sequences). This is not clear when comparing Vhmm with
VhmmA1gram, where we used audio observations based on
their native segmentation. But the performance does im-
prove when modeling the audio observations via 2-grams
models (VhmmA2gram). Overall, it is clear that Segment
Models give results of the same performance compared to
HMMs, if not better.

In the following rows we see the performance of Seg-
ment Models (VhmmA2gram) when removing from the
Viterbi decoding the duration modeling (p(lN1 |aN

1 ) = 1) or
the segment transition probabilities (p(aN

1 ) = 1). We no-
tice that the performance of the system decreases very lit-
tle, especially for the case of transitions probabilities. This
should be contrasted to the corresponding performance of
HMMs (HMMs-AV) when setting the transition probabil-
ities equiprobable (p(sT

1 ) = 1), where the performance
cleary deteriorates as we see in the last row of table 1. Gen-
erally, we see clearly that Segment Models rely basically to
the observations and not to the content (transition probabil-
ities), as HMMs do.

5. Conclusions
In this study, we proposed an alternative modeling of a
video sequence based on Segment Models, where the prob-
lem of finding semantic labels is coupled with that of find-
ing their extend in time. The experimental results demon-
strated that Segment Models with some straightforward so-
lutions regarding the feature modeling can perform margn-
inally better compared to HMMs. In addition, Segment
Models do not require fine tuning of the state labels accord-
ing to the producer’s style, a time consuming and erroneous
preliminary step for the HMMs of section 3. Encouraged
by their generalized nature, we plan to extend this work to
other domains of sport video.
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