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Abstract
In this paper, we investigate the use of a distance between Gaus-
sian mixture models for speaker detection. The proposed dis-
tance is derived from the KL divergences and is defined as an
Euclidean distance in a particular model space. This distance
is simply computable directly from the model parameters thus
leading to a very efficient scoring process. This new framework
for scoring is compared to the classical log likelihood ratio s-
core approach on a speaker verification task of the NIST 2004
evaluation and on the speaker tracking task of the ESTER french
evaluation. Results shows that the proposed approach is com-
petitive and leads to computation times divided by a factor of
more than 3.

1. Introduction
Speaker detection consists in deciding if a given speaker is
present in a test material. If the test material is supposed to
be from a single speaker, the task is called speaker verification.
Speaker detection can be associated to an audio segmentation
process in a speaker tracking system. In that case, the task con-
sists in detecting which of the target speakers are present in each
audio segment.

Currently, most of the speaker detection systems rely on the
UBM-GMM approach [1], which is now sometimes associated
to other classifiers like support vector machines. In the UBM-
GMM framework, target speaker Gaussian mixture models (G-
MM) are derived from a universal background model (UBM)
with maximum a posteriori (MAP) adaptation, usually limited
to mean re-estimation. Given a training utterance, prior and
posterior means for each Gaussian in the mixture are linearly
combined to get the MAP estimated means. The balance be-
tween prior and posterior parameters is controlled by the occu-
pation rate of each Gaussian and by a relevance factor � which
controls the adaptation. This maximization problem is itera-
tively achieved via the EM algorithm using the following re-
estimation formulae for mean ��� in Gaussian

�
:
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In this equation, � � is the occupation rate of Gaussian
�

, and � �
and  � are respectively the posterior and prior mean for Gaus-
sian

�
.

The decision stage is based on a log-likelihood ratio (LLR)
detector in which the UBM is used as a common impostor mod-
el
����

for all target speakers. Given a test material � (an utter-
ance or a speech segment) and a target model

����
, the detection

score � ��� ��� is compared to a fixed threshold, eventually after
applying a score normalization. If the score is greater than the

threshold � the target speaker is detected, either it is assumed
not present in the test material :
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This approach has shown good performance, as illustrated
in the NIST speaker recognition evaluations (SRE)1, in partic-
ular when normalization techniques are applied at the feature
and score levels to improve system robustness. However, like-
lihood computations are costly and may lead to unacceptable
testing time if the number of target speaker is large or in the
case of a low capacity hardware architecture. Moreover, “on-
line” score normalization like T-norm [2] significantly increase
computation time during test, even when the N-best technique
[1] is used to estimate LLRs.

To allow fast and “light” scoring, we investigate the use of
a simple distance between models to compute detection scores,
instead of the classical LLRs. We propose to use an Euclidean
distance between mean-adapted GMMs, which is derived from
the Kullback-Leibler divergence, and which only depends on
the model parameters.

We motivate our choice in section 2 where we first show
that LLR scores are linked to KL divergences. We then define
a similarity measure between speaker models using an upper
bound of the KL divergence in the case of mean only adapted
GMMs. This similarity measure, which is homogeneous to a
squared Euclidean distance in a particular model space, can be
used to efficiently compute scores, thus defining a new frame-
work for speaker detection. Experimental application of this
model space framework is given in section 3 in the context of
the NIST 2004 SRE and in the ESTER [5] phase 2 speaker
tracking task. Results show that the new framework for score
computation is competitive with the classical LLR approach and
significantly decrease computation time during test. The con-
clusion is given in section 4 where we also point the numerous
perspectives of this work.

2. Model space speaker characterization
2.1. Motivations : link between LLRs and KL divergences

Classically, the average frame LLR over the whole test material�3�54 �7698 �!�:� 8;�#<>= is used as a raw score for speaker detection :
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1http://www.nist.gov/speech/tests/spk



Introducing the “true” model ��� of the test class, this
score is linked to Kullback-Leibler divergences as follows :
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where
�	����� � 
 denotes the expectation calculated under model�� .

In a detection task context, � � is either the “true” target
model � �

, or the “true” impostor model ���� . In the case
of client accesses (i.e. ��� ��� �

), the first divergence in
the above equation relates to the discriminative power of the
(true) client class with respect to the world model. The second
divergence is a penalizing term which pull client scores towards
negative values. It relates to the quality of the estimated
client model

���� � � � . Considering now impostor accesses (i.e.�� ������ ), the first divergence is related to the quality of
the estimated impostor model, represented by the world model���� � � � , and it penalizes the impostor scores towards positive
values. The second divergence relates to the discriminative
power of the (true) impostor class with respect to the estimated
client model.

This interpretation of the expected verification scores shows
that they are asymptotically equivalent to differences between t-
wo KL divergences. It suggests that verification scores could be
calculated from similarity measures between models, instead
of the classical LLR scores. In a task involving a large num-
ber of score calculations for each test, for example in the case
of speaker identification, tracking or verification with T-norm
scores, a simply computable distance between models should
lead to an important gain in testing time. However, in the case
of GMMs, KL divergences must be estimated with a Monte-
Carlo method, which is computationally expensive. In the next
section we show how a simple Euclidean distance derived from
the KL divergence can be used instead, leading to the definition
of a new framework for speaker detection in a model space.

2.2. An Euclidean distance between mean-adapted GMMs

Considering mean-only adapted GMMs, it can be shown (see
[3] and [4]) that the KL symmetric divergence ����� between
the two models
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where �
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�'& $ are the . components of the mean vectors

of Gaussian
�
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respectively, ( � is the weight
of Gaussian

�
in both models and - +�'& $ is the .�/�. elements

of their common covariance matrix in Gaussian
�

. The term on
the right hand side of this inequality is a similarity measure be-
tween two mean-only adapted GMMs, which is simply defined
by the model parameters and which is homogeneous to a KL
divergence. Moreover, defining the space of parameters
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Figure 1: Representations of GMMs in the model space with
the corresponding Euclidean distances

� �"!
. We will denote 576 � � �� 8 � �"! � + this squared Euclidean

distance. In the space defined by the 410 �2& $ = parameters, the
world model corresponds to the origin (see figure 1).

One advantage of this Euclidean distance is that it can be
computed directly from the parameters of the GMMs, with
a low computational cost (no �! #" or exponential calculation).
Moreover it is highly related to KL divergences according to re-
lation (5). In practice, it has been observed that 576�+ and �����
are strongly correlated (with a correlation coefficient of 0.99
obtained with the speaker set of NIST’04 SRE), indicating that
they bring equivalent information about model similarity.

In the next section we show how we use the 576 + metric to
compute detection scores.

2.3. Detection scores in the model space

In a similar way as in equation (4), we define a detection score
as the difference between two similarity measures, replacing the
KL divergences by the 5 6 + metric and using a model

�� � esti-
mated on the test material :
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This score can be efficiently computed and is linked to the
LLR score via relations (5) and (4). Note however that it is nec-
essary to train a model on the test material before being able
to compute a score in the model space, which could seem not
advantageous with respect to an LLR computation. But if a
large number

A
of models has to be compared to the test mate-

rial (which can be the case for speaker tracking or when using
T-norm), one has only to first train the test model and then com-
pute

A
scores as given in equation (6). This should be much

more efficient than computing
A

LLR scores, even when the
N-best technique is used.

In section 3 we experimentally validate this model space
framework on the NIST 2004 speaker verification task, and in
the speaker tracking task of the ESTER phase 2 evaluation.

3. Application to speaker verification and
tracking

3.1. Experiments on the NIST 2004 SRE

3.1.1. Evaluation conditions

We present here experimental application of the model space
framework on the 1side/1side speaker verification task of the



NIST 2004 SRE. In this task, the speech of a single speaker and
extracted from a 5 minute conversation is available for training
and for testing. The data is part of the FISHER corpus collected
by the LDC. It is mainly composed of telephone conversations
in English language but a small part of the tests are concerned
with other languages. Landline and cellular phones are used in
this data set.

3.1.2. System descriptions

Baseline system
The baseline system is a classical GMM-UBM system as de-
scribed in the introduction.

Feature vectors are composed of 16 cepstral coefficients a-
long with their 16

4
coefficients and the

4 �2�! #" energy. A
frame selection process is applied based on a bi-Gaussian mod-
eling of the frame energy distribution and an ML classification
of each frame into speech or silence class. The remaining fea-
ture vectors are normalized to a zero-mean, unit-variance distri-
bution on a 3 second sliding window.

Two gender dependent background models are used, es-
timated using about 4h30 of speech for each one, from the
NIST’01 and NIST’02 corpora (mixed cellular and landline da-
ta). These models are 256 component GMMs with diagonal
covariance matrices. Target speaker models are adapted from
the background models using a MAP criterion. Only the mean
vectors are adapted with a single EM iteration.

The raw verification scores are computed using the 10 best
Gaussians in the background model and then normalized with
T-norm using impostor models from the NIST’01 and NIST’02
training sets (50 male and 50 female speakers with cellular
data, plus 50 male and 50 female speakers with landline data).

Model space system
The model space (MS) system mainly differs from the baseline
by its scoring procedure which is described in section 2.
Models of the test utterances are estimated with the same
procedure as for the target speaker models (mean-only MAP
adaptation with one iteration of EM), and verification scores
are evaluated throw the computation of the squared Euclidean
distances 576 + (see equation 6). However, in practice, it has
appeared that a model normalization process is necessary to
make the MS system work. This is due to the fact that, as
speaker and test models are adapted from a background model�

, the distance between a given model � and the origin in the
model space (which corresponds to

�
) highly depends on the

amount of data used to train the model � . As a consequence,
scores in the model space may be very heterogeneous and lead
to poor performances.

To make the scores more homogeneous we apply a very
simple normalization in the model space, that we called M-
norm (“Model normalization”). It consists in projecting points
representing the models on a unit hyper-sphere (see figure 2).
After normalization, all models are at the same distance 5 6
(here 5765� ? ) from the background model. This model nor-
malization relies on the hypothesis that the main speaker specif-
ic information is given by the direction that takes a model in the
model space and that the original distance between the model
and the origin is a pertubating information for the reasons given
above. The detection scores are then computed with normalized
target speaker models according to equation (6) and the T-norm
scores are computed with normalized impostor models. Note
that this model normalization does not require any additional
normalization data.

λ 2,1

Ω

X1

X2

X2

X1

(norm)

(norm)

1

1
1,1λ

Figure 2: Illustration of the model normalization procedure

3.1.3. Results

The results obtained by the baseline LLR system and the MS
system with T-norm are illustrated by the detection error trade-
off (DET) curves on figure 3, representing the evolution of the
false alarm and miss rates of the systems when the decision
threshold varies. As mentioned previously, a large performance
lost is observed for the MS system when no model normaliza-
tion is applied, even if the scores are T-normalized. However
when the M-norm is used in addition to T-norm, the MS sys-
tem gives performances as good as the baseline system. A s-
light gain in performance is observed for the MS system in the
low miss rate region. These results validates the proposed ap-
proach for scoring in a model space. Moreover computation
time during testing2 was reduced by about 75% when using the
MS system, with respect to the baseline LLR/N-best system.
This shows that the model space framework proposed in section
2 leads to a very efficient scoring process for speaker verifica-
tion with T-norm, without lost of performance.
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Figure 3: DET curves : performance of the MS system with T-
norm and with M-norm+T-norm (MT-norm), and performance
of the baseline LLR system with T-norm

2all experiments were performed on a Pentium 4 processor at 2.4
GHz (4700 bogomips), with 1Gb of RAM and linux OS



3.2. Experiments on the ESTER speaker tracking task

In this section we present results obtained on a speaker tracking
task in the framework of the French speaking evaluation cam-
paign of broadcast news rich transcription systems ESTER [5].

3.3. Task conditions and systems

The data used in the the ESTER phase 2 evaluation consists
of broadcast news documents in French language from several
radios (refer to [5] for details about the corpus).

For the tracking task, a list of 279 target speakers with
at least 2 minutes of speech in the training set was provided.
The amount of training speech available for a target speaker
varies from 2 minutes to more than an hour. For some speakers,
information on the radio(s) in which they appear was also
provided. For the evaluation campaign, performance were
measured using the F-measure. In this paper, we will report
performances using DET curves.

In our system, speaker tracking is achieved in two sequen-
tial steps. An automatic segmentation of the audio stream is
first performed, using a speech detector followed by a BIC
(Bayesian Information Criterion) based algorithm to detect s-
peaker changes. Then, speaker detection is performed individ-
ually for each target speaker referenced in the radio (or with no
radio specified), on each identified speech segment. The speak-
er detection baseline system is derived from the speaker verifi-
cation system described in section 3.1.2, with specific tunings
on the ESTER corpus. The UBM is a gender-independent 512
component diagonal GMM estimated using 13 hours from the
training corpus. The detection scores were T-normalized using
a cohort of 250 impostor models (117 female speakers and 133
male speakers) taken from the training corpus. Decision thresh-
olds were optimized on the development set so as to maximize
the F-measure.

3.4. Results

The DET curves obtained by the speaker tracking systems based
on model space (MS) detection scores and LLR detection scores
(with T-norm) are plotted on figure 4, for the development (dev)
and evaluation (eva) data sets of the ESTER phase 2 evaluation.
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Figure 4: DET curves : performance of the tracking systems
based on MS scores and LLR scores (with T-norm).

In these experiments, a slight performance lost is observed
for the MS system at the max F-measure point, with respect to
the LLR system, in particular on the evaluation set. Additional
analysis have shown that this could be due to a bad behavior of
the MS system on very short segments. This will be analysed
in more details in a future work. No significant differences ap-
pears between the two systems at the HTER (Half Total Error
Rate) point. Using the MS system for speaker tracking in these
experiments resulted in a gain of 60% in testing time, showing
here again that this scoring approach is very effective when the
test material must be compared to a large number of models.

4. Conclusion and perspectives
We have developed a new framework for efficient scoring in
a model space, in a speaker detection context. The proposed
approach is based on an Euclidean distance between adapted
GMMs which is simply computable from the model parame-
ters. Applied on the NIST 2004 speaker verification task, this
model space scoring resulted in reducing computation time by a
factor of 4 during test, compared to the classical log-likelihood
ratio scoring, without lost of performance. On the ESTER s-
peaker tracking task it resulted in a reduction of 60% of the
testing time but a slight degradation was observed at the max
F-measure point. However no performance lost appeared at the
HTER point in this experiment.

This model space framework offers numerous interesting
perspectives. First, the approach allows fast scoring with good
performance and could be used in extensive speaker recognition
tasks like speaker identification on a very large set or speaker in-
dexing of huge audio databases. Second, the scoring process is
relatively light in itself, if we don’t consider test model estima-
tion. It could be implemented on embedded hardware architec-
ture like smart card. In this case, the test model estimation step
should be performed on a more powerful host terminal.

We also plan to develop compensation techniques in the
model space, like channel or handset normalizations. One pos-
sible way would be to learn transformations from channel de-
pendent models to a channel independent model. An other more
elegant procedure could consist in identifying perturbed direc-
tions in the model space, using data analysis techniques like
PCA, and to directly eliminate them at the scoring level.
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