Tennis video abstraction from audio and visual cues
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Abstract— We propose a context-based model of video abstrac-
tion exploiting both audio and video features and applied to
tennis TV programs. We can automatically produce different
types of summary of a given video depending on the users’
constraints or preferences. We have first designed an efficient
and accurate temporal segmentation of the video into segments
homogeneous w.r.t. the camera motion. We introduce original
visual descriptors related to the dominant and residual image
motions. The different summary types are obtained by specifying
adapted classification criteria which involve audio features to
select the relevant segments to be included in the video abstract.
The proposed scheme has been validated on 22 hours of tennis
videos.

I. INTRODUCTION AND RELATED WORK

Video abstraction is motivated by the growing need of fast
or selective visualization of TV broadcasts or videos. It may
be an efficient tool to browse a video by picking out the main
points of the program or to preview a video by selecting the
meaningful sequences according to the program theme.

We focus our attention on tennis videos. We aim at automat-
icaly producing different types of summaries by selecting the
relevant sequences according to the user’s preferences. The
summary might be restricted to the highlights of the game
(e.g., best rallies or winning services) or be more comprehen-
sive by including al the rallies for instance. Summaries of
different duration or focus may thus be produced. We extract
appropriate audio and visual features to characterize relevant
events in the video. We define low-level visual descriptors
related to the dominant and residual image motions. The dif-
ferent summary types stem from the formulation of the audio
and visual criteriafor selecting the desired video contents. The
proposed scheme has been tested on seven tennis programs (22
hours).

Papers on sports video summarization often focus on soccer
and especialy on goal detection. Tekalp et al. propose in [2]
an automatic goal detection method based on dominant color
extraction and shot classification. Leonardi et a. introduce in
[4] an audio and visual model exploiting an hidden Markov
models (HMM) to classify each pair of successive shots.
Hanjalic [3] has proposed a deterministic excitement criterion
based on the mean dominant motion magnitude per shot,
the density of cuts, and the audio loudness to detect goals
in soccer video. In [6], Zhong et a. have developed visua
features including color clustering, object segmentation and
line detection for classification of tennis and baseball shots.
However, model learning involved in HMM or in color-based
methods may be a long process since it requires precise and
manual indexation of numerous videos. Although the method

presented below needs also a learning stage, the training set
can be quickly constructed and easily exploited.

Il. GENERAL DESCRIPTION

We have defined a four-step method to create video abs-
tracts. First, we perform a temporal segmentation of the video
based on shot change detection and on the dominant image
motion analysis. Then, we extract the segments which could
be of potential interest for the video abstract. This second step
requires a dedicated off-line learning stage. Independently, we
segment the soundtrack and achieve the audio event detection
(“applause” and “ball hits’ detection). Finaly, we select on
visual and audio criteria the segments to be retained for the
different abstract types.

We specify the temporal video segmentation as the detection
of the camera motion changes combined with a shot change
detection method. This segmentation does not depend on the
video type (sports, movie or documentary).

From each video segment, we extract low-level visua fea-
tures evaluating the spatial distribution of the residual motion.
In an off-line learning stage, a K-means clustering of these
features is performed over a training set formed with the kind
of segments to be involved in the video abstract. Then, we
introduce a statistical decision rule to decide whether each
segment of the video to be processed resembles the prototypes
of the classes of interest, and thus is offering a potential
interest for the abstract or not.

Audio event detection is independently carried out in a two-
step process. First, the soundtrack is segmented into segments
with homogeneous content. Then, the detection of ball hits and
applause is performed based on statistical hypothesis testing.

The video abstract results from the selection of specific
clusters which alow us to determine the candidate segments.
It is finally obtained by retaining clusters of video segments
corresponding to the user’s preferences.

In Section 3, we describe the temporal video segmentation.
Sections 4 and 5 are concerned with the characterization of
the visual and audio content respectively. Section 6 deals with
the abstract creation step. In Section 7, experimental results
are reported and Section 8 contains concluding remarks.

I1l. TEMPORAL VIDEO SEGMENTATION

A. Global motion model

We specify the temporal video segmentation as the detection
of the camera motion changes combined with a shot change
detection method. We represent the camera motion by a 2D
affine motion model [1] (more specifically, this model accounts



for the dominant image motion assumed to be related to the
camera motion):

)

as + asxr + agy

wy(p) = <

a1 + a2x + asy )

where p = (z,y) is an image point whose coordinates are
expressed in the image coordinate system, and 6 = (a;)i=1.6
denotes the motion model parameters. This model can correct-
ly handle different global motions corresponding to camera
panning, zooming and other complex camera motions. The
estimation of 4 is performed by the IRLS (Iterative Reweighted
Least Squares) algorithm minimizing a robust M-estimator
criterion [5].

B. Shot change detection

We have developed an extended version of the method
introduced in [1]. The shot changes are detected from (, the
normalized size of the set of pixels for which the estimated
dominant motion explains the interframe displacement. The
quantity ¢; is derived from the robust estimation of the global
motion model # at each image instant ¢. Its value belongs
to [0,1]. It is close to 1 when there is no independent
moving objects in the scene. When crossing a shot change,
(; undergoes a downward jump followed by an upward jump
which are more or less sharp whether the shot change is a
cut or a progressive transition. These jumps are detected by a
downward and an upward Page-Hinkley tests [1].

We have further added the detection of locally abnormal
values on (;, performed by an on-line mean test at each instant
t: alarm if |¢; — p|/o > g, where g is a Gaussian threshold
setto 3and i and o2 are the unknown mean and variance of (;
estimated on-line. Page-Hinkley and mean tests are performed
in paralel and then combined.

C. Temporal segmentation based on dominant motion changes

Various type of dominant motions as panning, zoom in and
out, can be identified by the (a;);—1..¢ parameters of the affine
model. We focus our attention on the constant parameters
T9(t) = (a1(t),aq(t)) which are involved in most of the
dominant motions. Let v(¢t) and 3(t) be the magnitude and
the orientation of the vector 74(t) respectively. In order to
reduce noise before computing »(t) and §(t), we apply a
temporal median filter of length 9 on a1 (t) and a4(t). We
first proceed to the binary segmentation of v(t). We decide
the shot is locally static at frame ¢ if v(t) < k where k is
a given threshold. This binary segmentation is regularized in
order to suppress isolated points and to favor longer segments.
Within the segments where the dominant motion was stated
as not null, we detect the orientation changes of 7¢(t). This
is achieved by a Page-Hinkley test on 3(t) where we fix the
tolerated variation value to 7 /4. A fast post-processing of the
segmentation is performed to suppress short segments (ten or
less frames) if they are supplied by the camera motion change
detection.

IV. CANDIDATE SEGMENT SELECTION ON VISUAL CUES

A. Visual features

We define several visua features per video segment. We
compute (¢, the mean value over the segment s of the
dominant motion support size (;. It characterizes the ratio of
dominant image motion within the video segment.
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Fig. 1. Valley detection in the outlier map to locate independent moving

objects in the image

Furthermore, we consider the spatial distribution of the
residual motion in the image, associated to the weights map
w(p, t) computed in the global motion estimation stage. w(p, t)
is the weight at pixel p for the frame ¢ supplied by the IRLS
algorithm once convergence is reached. Its value belongs to
[0,1]. It is near 1 when the estimated global motion explains
the observed motion at p and close to zero otherwise.

To get information on the spatia distribution of the residual
motion, we first detect the valleys of w(p,t), a coarse resolu-
tion version of the w(p, t) original map in aratio of eight. The
valley points of a C? continuous surface S can be defined as
the set of points M for which the highest principal curvature
of S at these points is dtrictly positive and the associated
principa direction is in the (z,y) plane. Since this relation
is numerically untractable, we instead compute at each pixel
p where the weight value is lower than a threshold r, the
eigenvector decomposition of the Hessian of w(p,t). Pixel
p is considered as a valley point if it is a loca minimum
of w(p,t) over a discrete segment of length | centered in p
and aligned in the direction of the eigenvector associated to
the highest curvature (provided it is positive). This detector
produces skeletons of the main objects moving in the scene.

In order to remove some temporal noisy detections, we keep
avalley point detected at pixel p at frame ¢ if and only if it is
near an actually detected valley at p in both next frames ¢+ 1
and ¢t + 2 (at most 2 pixels away).

Figure 1 shows an example of this valley detection step. It
includes the original frame (352x288 pixels), the w(p, t) map
and the binary detection of the valleys respectively (44x36
pixels). We fix r to 0.6 and [ to 11 for al our experiments.

We then define h® the 1-D histogram computed over the
segment s of the horizontal cumulative projections of the
valley maps onto the vertical axis. For instance, in segments
corresponding to ralies, the tennis players are the unique
moving subjects. As a consequence, the histogram presents
two peaks corresponding each to a player. The normalized
histogram is computed over 36 bins and is convolved with a
triangle function before subsampling it to 9 bins. From h?,



we compute d° the standard deviation of h* over s and n® the
mean number of valley detections per frame.

To sum up, we have defined two groups of features per video
segment s: A%, the 1-D normalized histogram of the valley
maps, and z* = ({*,d®,n®) which globaly characterizes the
dominant and the residual image motions.

B. Learning stage

In a learning stage, we manualy identify examples of
shots which can be included in the video abstract (serves
and rdlies for instance). These shots used for the training
stage are first automatically segmented as explained above. In
order to estimate the different underlying motion components
contained in the extracted segments of this training set, we
perform a K-means clustering on ~* and z°. We separately
compute clusters on ~* and then on z° in order to preserve
the specificity of each group of features.

C. Segment selection step

We decide that a sequence s of a processed video resembles
the elements of the learning set (the serves and rallies in our
application) if its features z° and h® satisfy the following
conditions: 1) among the clusters estimated as explained in
subsection 1V-B, there exists a cluster ¢ for which each com-
ponent i of z* satisfies the statistical mean test: @ <,
where o¢ is the standard deviation of the i-coordinate ¢ of
the cluster ¢; v is a given Gaussian threshold; 2) the distance
between h® and at least one histogram among the cluster
centroids computed is lower than a predefined threshold .
We use the L? distance as for the K-means algorithm, but this
choice is not crucia here.

V. EXTRACTION OF AUDIO CUES

We want to detect the parts of the soundtrack containing
the information relevant to the targeted video abstract. In
the application we are dealing with here, we have to detect
“applause” and “ball hits’. The soundtrack is first segmented
into spectrally homogeneous chunks to which are eventually
assigned the label “applause” or the label “ball hits’ if the
corresponding audio event is present.

A. Soundtrack segmentation

Segmenting the soundtrack into spectrally homogeneous
units is carried out with the Bayesian information criterion
(BIC) using a cepstral representation of the input signal. The
BIC is defined as the log-likelihood of a segment y given
a model, penalized by the model complexity and the unit
length. Formally, for a segment of length 7" with an associated
model A, the Bayesian information criterion is defined as
Z(A) =In f(y; A) = AEX 10T | where #(A) is the number
of free parameters in the model and A a tunable parameter
theoretically equal to one (but not in practice).

The principle of the segmentation algorithm is to move two
adjacent windows on the audio signal. For each position of
the windows, one can compare whether it is more appropriate,
in terms of BIC, to model the two windows separately with

two different Gaussian distributions, say A; and A», or with a
single one, say Ao. If Z(Ag) —Z(A1) —Z(A2) is negative, then
the two-segment model is chosen and a segment boundary is
placed at the boundary between the two windows.

B. Audio classification

The presence or absence of the considered audio label
has to be stated in every segments extracted from the pre-
vious soundtrack segmentation. This detection problem can
be solved using a two-hypothesis test, where H, (resp., Hi)
is the hypothesis that the event considered is (resp. is not)
present in the segment. Assuming a model for the distribution
of y is available under both hypotheses, the decision on the
presence of an event is taken by comparing the log-likelihood
ratio R(y) = In f(y; Ho) —In f(y; Hy) to athreshold §, where
R(y) > 6 means that the event is detected in segment y.

In practice, f(y;Ho) = f(y; M) where M is a Gaus-
sian mixture model whose parameters were estimated from
training data containing the event of interest (whether alone
or superimposed with other events). Similarly, f(y; Hy) is
approximated using a*“non-event” model M whose parameters
were estimated on training data where the event considered
is not present. The decision threshold § was determined
experimentally on training data.

Using this approach, the rate of correct audio event detection
is around 88%, most of the errors coming from inaccuracies
in the audio segmentation step.

VI. TENNISVIDEO ABSTRACTION

In subsection I V-C, we have explained how to select relevant
segments of a processed video on visua cues. We now
introduce the audio information by computing, for each pre-
selected segment s, b* the percentage of time during which ball
hits are detected in s and a*® the percentage of the applause
duration in the next segment s + 1. We thus define a vector
y® = (log(T?),a®,b%) where T'® is the duration of the segment
s. Other descriptors could be added too as a motion activity
measure for instance. We apply the K-means agorithm on
these data and obtain clusters which represent different shot
types, the number of which has been empirically set to 8.
We have in general two clusters of “applause” and “ball hits’
segments corresponding to short shots and long shots (winning
services and rallies respectively). A third cluster with “ball
hits” without any “applause” segments corresponds to first
serves. The five other clusters correspond to rallies with no
particular interest, false visual detections (warm up shots, false
detection), and missed audio detections.

Different types of abstracts may be obtained by choosing
different decision rules. If one aims at getting the best rallies
and serves of the game, one may only keep into the abstract
the elements of the clusters corresponding to the “ball hits’
with “applause” segments. Thus, we select the segments of the
clusters ¢ for which a¢ and ¢, the “applause and “ball hits’
coordinates of its centroid, are greater than some pre-defined
thresholds (set to 0.8 and 0.6 respectively).



Summaries of fixed duration may aso be produced by
scoring the “ball hits’ segments according to their “applause
level” and selecting the n most applauded segments for the
desired duration. Extensive summary can also be created by
keeping all the relevant segments selected on visual cues. As
one can see, many decision rules can be easily designed.

VI1l. EXPERIMENTAL RESULTS
A. Temporal segmentation

We have successfully tested the temporal segmentation
algorithm on 33 hours of different video typesincluding tennis,
soccer, figure skating, athletics and documentaries. For all our
experiments, we set the Hinkley parameters and the Gaussian
threshold ¢ to the same values. Threshold & on the norm v(t)
is chosen equal to 2 pixels for a 352x288 image. All the cuts
and almost all the camera motion changes were detected. False
cuts may occur when the camera is tracking a moving object
or people. Special transitions (dissolve, fade, wipe) are most
of the time properly detected if no independent moving object
occupies a too large part of the viewed scene, otherwise the
algorithm may detect a cut approximatively in the middle of
the transition.

B. Candidate segment selection on visual cues

To create our learning set, we have extracted the first
fifty rallies of three different videos, each from a different
tournament (one outdoor on hard-packed surface and two
indoors on dlick and hard-packed surfaces, see Fig. 2). It
corresponds to fifteen minutes of rally sequences for one
hour and an half of video. We have performed the K-means
clustering on z* and h® separately. We have empirically fixed
the number of clusters to 15.

We applied the rally detection based on the defined visua
cues on the rest of the three videos. We add four other videos
from the same tournaments but recorded at different years.
Altogether, we have 22 hours of videos. Each video contains
between twenty and forty minutes of studio, interviews and
commercials in addition to the tennis match.

We set h, the histogram distance threshold, to 0.2 and the
Gaussian threshold ~ to 2.25. For the presel ection of candidate
segments on visual cues, we obtain a precision rate which is
the relevant objective evaluation measure when considering
video abstraction, is steady around 95% (93% and 95.7% for
the worst and best score respectively). False alarms correspond
to static shots where some residual motion is present at the
bottom or at the top of the frame (a speaker moving his
head and his hands for instance). The preselected segments
correspond to 12% up to 20% of the video.

Since outdoors matches on hard-packed surface and indoors
matches on dlick surfaces differ in game (long rallies versus
short ralies) and in hall configuration (in small halls, the
camera field of view is reduced and a panning is often
necessary to shoot a rally), performances sightly drop when
processing a video from a tournament no video of which is
included in the learning set.

Fig. 2. Videos of the learning set for rallies and serves

C. Final video abstraction

We focus on the creation of a selective summary containing
the best winning serves and rallies of the match. As described
in Section VI, we perform an on-line clustering of the p-
reselected video segments on visual cues and we retain the
segments belonging to the “applause” and “ball hits’ clusters.
The final summaries corresponds to 6% up to 13% of the
videos. Very few false aarms remain in the abstract as the
audio features increase the precision rate (actualy one false
aarm for seven video summaries). We may produce even
shorter summaries of limited duration by keeping into the
abstract the most applauded segments only.

VIII. CONCLUSION

We have described an efficient method for flexible video
abstraction based on audio and visua features. When applied
to tennis videos, we are able to accurately identify first serves,
winning serves and rallies in order to create summaries of
various duration and focus according to the user’s preferences
or interests. Such a goal can be attained if the video has
been first properly segmented and a relevant pre-selection
of segments based on spatio-temporal visual cues has been
achieved. All our experiments have been carried out with the
same set of parameter values which are not critical to fix.The
computation is amost real time (22.5 Hz instead of 25 Hz).
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