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Abstract

In this paper, we present an approach for speaker diarization
based on segmentation followed by bottom-up clustering, where
clusters are modeled using adapted Gaussian mixture models.
We propose a novel inter-cluster distance in the model param-
eter space which is easily computable and which can both be
used as the dissimilarity measure in the clustering scheme and
as a stop criterion. Using adapted Gaussian mixture models en-
ables a good description of the feature vector distribution with-
in a cluster while adaptation prevents over-training for clusters
with few data. Experiments carried out on broadcast news data
in French demonstrate the potential of the proposed approach
which exhibits performance similar to BIC clustering. How-
ever, our clustering method appeared to be more sensitive to
segmentation errors than the BIC approach.

1. Introduction
In the context of spoken document indexing, speaker diariza-
tion is the process of determining speaker turns and of grouping
together turns uttered by the same speaker. It results in a struc-
ture of the audio document according to speakers, and there-
fore provide information useful to the structuring and indexing
of the document. Diarization is also an important step in the
speech transcription process as it provides valuable information
for unsupervised acoustic model adaptation.

As opposed to speaker tracking, another speaker indexing
related task, for which the speakers to track are known before-
hand and training data are provided for those speakers, speak-
er diarization assumes no prior knowledge of the speakers and
therefore no training data. The actual number of speakers is not
known either and has to be determined automatically.

Diarization is typically carried out as a three step process.
The first step consists in segmenting the document into speech
segments which hopefully contain speech from a single speak-
er – with the exception of segments containing overlapping
speech. The second and third steps consist in determining the
actual number of speakers and in grouping together segments
from the same speaker. In most systems, the grouping step is
achieved by a hierarchical clustering algorithm in a bottom-up
or top-down manner. In the hierarchical clustering approach,
determining the number of speakers is carried out using a stop
criterion in the clustering algorithm in order to determine the
optimal number of clusters. The Bayesian information criterion
(BIC) is probably the most popular one [1].

In the clustering step, most approaches rely on a bottom-
up clustering algorithm in which clusters are built iteratively by
finding out the two closest clusters and by merging them if this
results in a better clustering according to some criterion. Find-

ing out the two closest clusters requires to define a distance be-
tween two clusters. The various inter-cluster distance measures
proposed in the literature can be separated into two main fami-
lies depending on whether the underlying model corresponds to
a single Gaussian or to a mixture of Gaussians. Classical single
Gaussian based distance measures are the symmetric Kullback-
Leibler distance and the � BIC distance. In Gaussian mixture
model (GMM) based approaches, the cross likelihood ratio dis-
tance is often considered [2].

This work focuses on a bottom-up clustering scheme with
adapted GMMs [2] for a speaker diarization task. Based on the
principles of Maximum A Posteriori (MAP) adaptation of G-
MMs, we define a novel inter-cluster distance which is directly
computable from the model parameters. We use this distance as
the dissimilarity measure for the clustering process and as a stop
criterion for the algorithm. We compare the performance of the
proposed approach to that of a classical BIC-based approach.

The rest of the paper is organized as follows. In section 2,
the segmentation and clustering principle using the Bayesian in-
formation criterion is recalled. The proposed GMM-based ap-
proach is then detailed in section 3 and experimental evaluation
is carried out in section 4.

2. Segmentation and clustering with BIC
Segmentation and clustering via the Bayesian information cri-
terion was initially proposed in [1] and we recall here the basic
principle of this approach.

In a very general way, given a segment � and a model � for
the segment, the Bayesian information criterion is defined as

BIC �����
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where � � ����� denotes the segment likelihood given the model,� � the number of free parameters in the model and �  the
observation length. This criterion can be used both for segmen-
tation and for clustering.

2.1. Segmentation

Detecting an abrupt change using the BIC is carried out by look-
ing at the difference between the criterion under the assumption
that there is a change in the sequence and the criterion under
the dual assumption. Assuming an underlying Gaussian model,
a change is detected between the two segments $%	 � �'&)(�(�( �+*-,.&/�
and 0�	 � � * (�(�( �+12� if
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is negative, where
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In the above equation, F � denotes the length of segment $ and� � the maximum likelihood estimate of the covariance matrix
for segment $ .

2.2. Clustering

Initially, each segment is a cluster by itself and the clusters are
modeled by a single Gaussian. At each step of the clustering
algorithm, a similarity measure is calculated for each pair of
clusters. The two closest clusters are merged if the correspond-
ing BIC variation, given by Eq. (2), is negative. If the difference
is positive, the algorithm is stopped.

Various distances between clusters based on single Gaus-
sian modeling have been proposed, such as the arithmetic-
harmonic sphericity measure or the symmetric Kullback-
Leibler distance. However, in the BIC framework, the likeli-
hood ratio measure given by Eq. (3) is well suited and has given
good results. Note that the smallest inter-cluster distance can
also be used as a criterion to stop the algorithm, in addition to
the BIC decrease.

3. Clustering using MAP adapted GMMs
At the end of the clustering, when clusters contain a large
amount of speech, the single Gaussian model might be too sim-
ple to approximate the complex distribution of acoustic fea-
tures. To be able to take account for more complex distribu-
tions, Gaussian mixture cluster models can be used. However,
such models have more parameters and maximum likelihood
estimation can be unreliable at the beginning of the clustering,
when clusters have few data. To prevent this parameter esti-
mation problem, we adapt the cluster GMM parameters from a
cluster-independent background model. Based on the very prin-
ciple of the adaptation, a similarity measure between clusters is
defined in the model space.

We first discuss GMM adaptation before detailing the pro-
posed similarity measure in the model space and the corre-
sponding stop criterion.

3.1. Cluster GMM adaptation

The probability density function (pdf) of a � -component GMM
for a

=
-dimensional random variable � is defined as
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where

�	� ��� � is the Gaussian density function and � 	� �
� "�� � "�� � � is the set of parameters, i.e. respectively the
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) the
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mean vectors and the
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covariance matrices.

In the MAP approach, the GMM for a cluster is adapt-
ed from a cluster-independent background model whose pa-
rameters are used as prior values in the adaptation process.
This background model parameters can be estimated on a large
amount of data as in speaker recognition. Alternately, the back-
ground model parameters can be estimated on the whole speech
portions of the document on which clustering is performed.
Such a model will be referred to as a Document Speech Back-
ground Model (DSBM).

In this work, cluster models are obtained by adapting the
mean vectors of a DSBM with diagonal covariance matrices.
Component weights and covariance matrices are not adapted
and are therefore left unchanged. Adaptation of cluster model is
performed via the EM algorithm [3] using all the feature vectors
for the cluster considered. Re-estimation is done according to �
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�
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where !
�

is the total occupation rate of Gaussian

���
, � � is the

posterior mean calculated under

���
and

% �
is the prior mean of�

�
(see [3] for details).
In the above equation,

" �
is a relevance factor which con-

trols the amount of adaptation for mean vector �
�
. As can

be seen from equation (5), the new estimate
 �
�

is a weighted
sum of the posterior and prior means, the balance between the
two being controlled by the relevance factor

" �
and by the oc-

cupation rate !
�
. This means that if

� �
receives few data, the

estimate
 �
�

is closed to its prior value
% �

, while if it receives
a large amount of data,

 �
�

is dominated by the posterior mean� � (i.e. the maximum likelihood estimate). On the one hand,
this mechanism prevents over-adaptation when clusters contain
only a small amount of data. On the other hand, when clusters
become larger, more Gaussians can be adapted leading to more
representative models.

3.2. Similarity measure between mixture models

The clustering process relies on the definition of a similarity
measure between cluster models obtained by adaptation. A
well known dissimilarity between two general pdf’s  and '
is the Kullback-Leibler symmetric divergence �)( � �  "*' � , de-
fined as the sum of the two dual oriented divergence �)( �  �+�,' �
and �)( ��' �+�  � ,
�)( � �  "*' ��	-�)( �  �+�.' � ? �)( ��' �/�  �
	-02143 ��� �  '65 ? 0�7183 ��� � ' �5 (
In this equation 0�1439� 5 and 0�71439� 5 denote the expectations calcu-
lated under the pdf’s  and ' respectively. For GMMs, there is
no analytic form for the divergence which can be approximated
using a Monte-Carlo method as in [4]. However, the Monte-
Carlo approximation is computationally expensive.

Using the properties of MAP adaptation, we explored a new
similarity measure derived from the KL symmetric divergence.
For two K-component GMMs  and ' defined as in (4), it can be
shown [5] that the KL divergence from  to ' is upper bounded
by

�)( �  �+�.' ��:;�)( � w �+� 'w � ? ��� � & �
� ( �)( � �	� �+� '�	� � (6)

where �)( � w �+� 'w � is the KL divergence between the probability
mass functions w 	 � � &)" (�(�(�" � � � and 'w 	 �<'� & ")(�(�(�"='� � � and�)( � �	� �/� '�	� � is the KL divergence between Gaussian > in  and
Gaussian > in ' . In the context of this paper, the set of weights
and covariance matrices are common to all GMMs as only mean
vectors were adapted. This implies that the first term in the
right hand side of equation (6) is null. Furthermore, considering
diagonal covariance matrices, this leads to the following upper
bound for the KL symmetric divergence:
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Figure 1: Representations of GMMs: from the acoustic space
to the composed-parameter space
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side of this inequality is homogeneous to a squared Euclidean
distance between two points in the parameter space,
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bias of the mean with respect to the DSBM one. In this space, a
cluster GMM is represented with a single point and the DSBM
corresponds to the origin (see figure 1). We will denote this
Euclidean distance �����  " ' � :
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The advantage of this metric is that it can be computed
directly from the parameters of the GMMs, with a low com-
putational cost. In this paper, the squared distance ��� C �  " ' �
is used as the similarity measure between two cluster GMMs.
Moreover, we observed experimentally that this distance mea-
sure is highly correlated with the Kullback-Leibler divergence
estimated with a Monte Carlo method, which indicates that both
distance should lead to very similar clustering results.

3.3. Stopping criterion

During the clustering process, at each iteration the two clusters
for which the squared Euclidean distance ��� C �  " ' � is mini-
mum are selected and merged if the distance is below a thresh-
old. If the minimal inter-cluster distance is above the threshold,
then the agglomerative clustering is stopped. The threshold is
optimized on development data and used on the test set to de-
termine the expected number of clusters in each document.

4. Experiments
The proposed clustering algorithm was evaluated on the speaker
diarization task of the French ESTER Broadcast News evalua-
tion campaign [6]. We recall here briefly the data before giving
results.

4.1. Evaluation corpus

The corpus used for this experiment is a corpus of radio broad-
cast news in the French language. The corpus is divided into a
development set and a test set, according to the ESTER phase 1
specifications (see [6] for details). Each set contains a total of

six broadcasts corresponding to 2h40 of France-Inter (Inter, 4
broadcasts) and 2h of Radio France International (RFI, 2 broad-
casts). The diarization task is performed independently for each
file and grouping of similar speakers across broadcasts is not
considered.

Diarization performance is evaluated primarily in terms of
classification error rate according to the performance measure
defined by NIST for the Rich Transcription 2003 evaluation [7].
The classification error rate is calculated on the time basis, after
determining the best mapping between speaker names and arbi-
trary cluster names. To help diagnose the strengths and weak-
nesses of the proposed method, the clustering is also evaluated
in terms of average speaker and cluster purities as defined in [8].
The former is related to the number of clusters to which a speak-
er is associated while the latter relates to the number of speakers
in the cluster. Clearly, as clusters build, speaker purity is bound
to increase while cluster purity is bound to decrease.

In the experiments detailed below, performance are given
for each individual broadcast as well as averaged over all the
broadcasts.

4.2. Results

In all the experiments, Mel-frequency cepstral coefficients were
used, along with the first derivatives for GMM-based clustering.
Low energy frames are also removed for GMM-based cluster-
ing.

Results on the development set are summarized in table 1.
The top table shows error rates obtained with a manual refer-
ence segmentation while error rates in the middle table were
obtained with the automatic segmentation. These figures cor-
respond to the optimal global threshold determined a posteriori
and reported in column 8. For both the manual and automat-
ic segmentations, GMM-based clustering yield significant im-
provements over BIC clustering with few Gaussians and best
results are obtained with 16 component models. However, de-
tailed results on each broadcasts show that this improvemen-
t mainly comes from two broadcasts (Inter 2 and RFI 2) while
other broadcasts exhibit comparable performance, sometimes to
the advantage of the BIC clustering. Moreover, the performance
gap between manual and automatic segmentations is greater for
the proposed approach than for the BIC. This is probably due
to the fact that initial segments are quite short which advan-
tages the BIC algorithm. However, it suggests that our method
is more sensitive to segmentation than the BIC one.

Results on the test set show a slight advantage to BIC clus-
tering. This result can be explained by two factors. First, as
mentioned previously, the GMM approach seems to be more
sensitive to automatic segmentation. As the segmentation pro-
cess was optimized on the development set, more segmentation
errors on the test set penalize more the GMM approach than the
BIC one. This is confirmed by posterior experiments made on
the test corpus reference for which the GMM approach gives
better results (with 9% error rate) than the BIC approach (11%
error rate). Second, a study of the posterior optimal threshold on
each broadcast of the test set show that the optimal value varies
greatly from one broadcast to another in the GMM approach.
This was also the case on the development set but to a lesser
extent. Experiments where also made using BIC as stop criteri-
on in the GMM approach instead of the proposed distance, but
it yielded approximately 2% more errors on both development
and test corpora.

Figure 2 shows the evolution of cluster purity and speaker
purity across clustering iterations for one file of the develop-



dev / ref Inter 1 Inter 2 Inter 3 Inter 4 RFI 1 RFI 2 � All
MAP-8GMM 8.44 3.87 9.07 6.97 5.88 7.76 1.1 6.19

MAP-16GMM 5.04 2.45 12.59 9.47 5.72 7.37 1.4 6.07
MAP-32GMM 8.26 3.64 8.68 9.47 5.24 10.76 1.5 6.94
MAP-64GMM 8.65 8.73 7.07 11.04 12.25 18.45 1.5 11.84

BIC 6.90 13.94 6.33 7.12 3.85 19.25 3300 10.27

dev / bic Inter 1 Inter 2 Inter 3 Inter 4 RFI 1 RFI 2 � All
MAP-8GMM 10.67 10.71 9.7 10.26 12.53 13.70 1.3 11.64

MAP-16GMM 9.45 9.75 11.46 12.99 10.18 12.44 1.7 10.50
MAP-32GMM 10.49 11.41 13.85 18.19 8.07 10.99 1.6 11.12
MAP-64GMM 14.07 10.82 8.32 11.65 14.83 20.79 1.7 13.58

BIC 8.77 16.29 8.76 8.76 8.10 26.16 2700 13.69

test / bic Inter 1 Inter 2 Inter 3 Inter 4 RFI 1 RFI 2 � All
MAP-16GMM 14.54 13.03 17.76 10.65 16.80 24.36 1.7 16.4

BIC 9.77 16.29 8.35 8.76 9.56 26.16 2700 15.10

Table 1: Classification error rates for each broadcasts (columns 2 through 7), stop threshold and global classification rate across all
broadcasts on the dev. set for the manual (above) and automatic (middle) segmentation and on the test set (below).
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Figure 2: Speaker and cluster purity across iterations for GMM
(solid) and BIC (dashed) clustering algorithms.

ment set, both for the GMM and BIC methods. Evolution of
cluster purity is quite similar for the two approaches while s-
peaker purity has a different behavior. Speaker purity regularly
increases for the GMM/MAP approach while the BIC approach
leads to a slow increase at the beginning of the clustering and a
sudden fast increase when reaching the optimal clustering point.
This results in a larger threshold range in the GMM approach
for which both speaker and cluster purity are high.

5. Conclusions
We presented an approach based on adapted Gaussian mixture
models for speech segment clustering using a novel inter-cluster
distance in a diarization task. The proposed distance is direct-
ly derived from the model parameters and can easily be deter-
mined with a very low computational cost.

The method was evaluated on a broadcast news corpus
in French. Comparison with a baseline method based on the
Bayesian information criterion showed the potential advantage
of the proposed approach which yielded promising results on
the development set. However, this approach turned out to be
sensitive to segmentation errors which resulted in a slight ad-

vantage of the BIC method on the test set.
In the future, we will focus our research efforts on improv-

ing the segmentation step in order to make the proposed ap-
proach more robust and competitive. Work should also be fo-
cused on the stop criterion which has been observed to be un-
stable from one file to another.
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