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ABSTRACT

We investigate the use of a particular type of multi-stream
HMM, known as the product HMM, for the automatic recog-
nition of audio-visual speech. Such a model allows the mod-
eling of asynchrony between the audio and visual state se-
quences at a variety of levels (phone, syllable, word, etc).
In this paper, we investigate a product model that is syn-
chronized at the phone boundary level, allowing limited de-
gree of state sequence asynchrony. Furthermore, we investi-
gate joint training of all product HMM parameters at once,
instead of composing the model from separately trained
audio- and visual-only HMMs. We demonstrate that the re-
sulting product HMM reduces WER on a multi-subject con-
nected digit recognition task by up to 32% relative over the
separately trained product HMM. Compared to the audio-
only performance at 10 dB SNR, the new model achieves
an effective SNR gain of 9 dB, about 1.5 dB more than
the separately trained model. We also demonstrate that it
outperforms a number of common audio-visual combination
techniques both in high-noise and relatively clean environ-
ments (19.5 dB SNR). Partial results are also presented for
a speaker-independent LVCSR task, to be completed in the
final paper.

1. INTRODUCTION

‘We have made significant progress in automatic speech recog-
nition (ASR) for well-defined applications like dictation and
medium vocabulary transaction processing tasks in rela-
tively controlled environments. However, ASR performance
has yet to reach the level required for speech to become
a truly pervasive user interface. Indeed, even in “clean”
acoustic environments, and for a variety of tasks, state of
the art ASR system performance lags human speech percep-
tion by up to an order of magnitude [1]. In addition, cur-
rent systems are quite sensitive to channel, environment,
and style of speech variations, as a number of techniques
for improving ASR robustness have met limited success
in severely degraded environments, mismatched to system
training [2]-[4]. Clearly, novel, non-traditional approaches,
that use orthogonal sources of information to the acoustic
input, are needed to achieve ASR performance closer to the
human speech perception level, and robust enough to be
deployable in field applications. Visual speech constitutes a
promising such source, obviously much less affected by the
acoustic environment and noise.

Both human speech production and perception are bi-
modal in nature [5]. This fact has recently motivated sig-
nificant interest in automatic recognition of visual speech,
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Fig. 1. Left: Two feature fusion methods versus multi-
stream HMM based decision fusion. Right: Phone-
synchronous (state-asynchronous) multi-stream HMM with
three states per phone and modality, and its equivalent
product HMM; audio stream emission probabilities are tied
along rows, visual ones along columns.

formally known as automatic lipreading, or speechreading.
Work in this field aims at improving ASR by exploring the
visual modality of the speaker’s mouth region, in addition
to the traditional audio modality, thus giving rise to audio-
visual automatic speech recognition (AVASR) systems [6]-
[13]. There are two main problems in achieving this goal:
First, the design of the visual front end, i.e. how to obtain
informative visual features given the video of the speaker’s
face, and, second, the combination of such features with the
traditional audio features. In this paper, we concentrate on
the latter issue.

A number of audio-visual integration strategies appear
in the literature that can be grouped into two categories
(see Fig 1): Feature fusion methods, which combine sin-
gle modality features into audio-visual features and use a
classical classifier to recognize the joined audio-visual fea-
tures [10, 11, 14], and decision fusion methods that instead
combine single-modality (audio-only and visual-only) clas-
sifier decisions [8]-[13]. Typically, decision fusion methods
linearly combine the log-likelihoods of the audio and vi-
sual stream observations, employing the multi-stream hid-
den Markov model (MSHMM) framework, a popular model
for multi-band ASR [15]. In most cases, such combination
occurs at the HMM state level, thus forcing synchrony be-
tween the audio and visual sub-phonetic classes. It is well
known, however, that visual speech activity precedes the
audio signal by as much as 120 ms [6]. To model this phe-
nomenon, many researchers have proposed combining the
single-modality log-likelihoods at a coarser level, such as
the phone (or, word) level [8, 9, 10, 12], giving rise to the
composite, or product HMM [16] (see also Fig 1). How-
ever, in all these works, the product HMM has either been
composed by audio-only and visual-only HMMs that have
been independently trained for each stream [8, 9, 12], or
has been jointly trained without the appropriate stream ty-
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Fig. 2. Feature extraction for audio-visual ASR.

ing [10]. As a result, to date, comparisons between state-
and phone-synchronous multi-stream HMMs have been in-
conclusive and incomplete.

In this paper, we proceed to jointly estimate all the
product HMM parameters in a single step, using the appro-
priate stream density tying across states, by employing the
standard EM HMM parameter estimation algorithm. Such
a scheme ensures that the audio-visual state asynchrony
within each phone is modeled at training, whereas stream
tying guarantees that the new model has the same num-
ber of HMM density parameters as the state-synchronous
MSHMM. We demonstrate that the new training scheme
significantly outperforms the product HMM composed from
independently trained single-stream HMMSs, by conducting
audio-visual recognition experiments on a 50-subject con-
nected digits database, over a range of acoustic signal-to-
noise ratios (SNR). We also show that it improves ASR over
alternative decision and feature fusion techniques, thus pro-
viding a comprehensive study on the relative performance of
a number of audio-visual integration algorithms. Results on
a speaker-independent large-vocabulary continuous speech
recognition (LVCSR) task are also reported, using some of
the fusion techniques mentioned above. State-asynchronous
HMM results for LVCSR, will be reported in the final paper.

2. FEATURE EXTRACTION AND STATISTICAL
MODELING FOR AUDIO-VISUAL ASR

Given an audio-visual utterance, let us denote its extracted
audio- and visual-only features by {0}’ }, where s = A, V,
respectively. Fig. 1 summarizes the feature extraction pro-
cess. From the audio signal, 24 mel-frequency cepstral co-
efficients are retained as audio features, after feature mean
normalization. At every frame, 9 consecutive audio features
are concatenated, subsequently projected to a lower dimen-
sional space using linear discriminant analysis (LDA), and
rotated by a maximum likelihood linear transform (MLLT).
The audio features are extracted with a 100 Hz frame rate
and the final dimension is Da = 60.

Given the video of the speaker’s face, sampled at 60
Hz, a normalized mouth region-of-interest is first extracted,
and subsequently compressed using a discrete cosine trans-
form (DCT). The 24 highest energy DCT coefficients are
retained, and after linear interpolation sub-sampling from
60 to 100 Hz and mean normalization, they result to static
visual features. As for the audio features, dynamic infor-
mation is obtained by concatenating consecutive static fea-

tures over 15 frames, and by applying the LDA and MLLT
transforms. The final visual feature dimension is Dy = 41.

Classical single-stream HMMs are used to model se-
quences of audio-only or visual-only features, where the
state conditional density function is a Gaussian mixture
defined as
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In audio-visual feature fusion, single stream HMMs are also
used to model sequences of concatenated audio-visual fea-
tures

(AV) [O(A) T, ogv) T ]T e R D (2)
of dimension D = Ds+ Dv (concatenative feature fusion:
AV-Concat), or any transformation of (2), such as the hier-
archical discriminant (AV-HiLDA) feature fusion [14]. Such
features are obtained after a second LDA-MLLT transform
is applied on 0*"” (see also Figs.1 and 2).

In multi-stream HMM based decision fusion, the most
likely speech class or word sequence is obtained by linearly
combining the log-likelihoods of the audio- and visual-only
single-stream HMDMSs using appropriate weights. This is
equivalent to an HMM with emission “score” given by
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for audio state ix and visual state iv. For the state-synch-
ronous multi-stream HMM, ca = cv  c holds, i.e., the
HMM states are the same as the ones of the single-stream
HMDMs. In the case of the product HMM however, (3) gives
rise to composite states where ca and cv are restricted
to belong to the same phone (see also Fig.1). Note that
although the number of states in the product HMM in-
creases, the number of emission density parameters do not
increase compared to the state synchronous model, due to
the stream parameter tying, inherent in (3).

With the exception of exponents A, maximum-likeli-
hood estimates of all other HMM parameters in (3) can
be obtained using the EM algorithm, either separately per-
stream, or at once, using joint training. Subsequently, ex-
ponent values can be obtained using discriminative train-
ing [12, 13], or by minimizing the word error rate (WER)) on
a held-out set [9, 10], as in this paper. For state-synchronous
HMDMs, both separate [9, 10], and joint training schemes [10,
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Fig. 3. Test set audio-only and audio-visual WERs using various fusion methods, depicted vs. audio channel SNR, for
connected digit recognition (left) and LVCSR, (right). Plots on the top row show the full-scale results while plots on the
bottom row focus on the AV method performances.

13] have been previously considered. For state-asynchronous it results to a 0.29% WER compared to 0.40% of the latter,

HMDMs only separate training has been considered [8, 9, 10, a 32% relative WER reduction, whereas at -2 dB SNR, it
12], whereas in [10], appropriate stream tying has not been reaches 4.12% compared to 5.23%, a 27% relative reduction.
employed. Proper joint product HMM training is employed Note that the audio-only performance is respectively 0.75%
for the first time in this paper. and 18.4% for these two conditions, therefore pointing out

that the visual modality benefit to ASR is dramatic. This
benefit translates to a 9 dB effective SNR gain compared

3. RESULTS to the audio-only performance at 10 dB SNR (see Fig. 2).
It is also worth mentioning that the product HMM outper-
We close this extended abstract with a brief presentation forms all other fusion techniques considered in the previous
of our experimental results on audio-visual ASR. We re- section, and that multi-stream HMMSs in general outper-
port a comparison of the jointly trained state-asynchronous form both feature fusion methods. Joint stream training is
MSHMM to the separately trained one, as well as to the two also superior to separate training in the case of the state-
feature fusion techniques mentioned above and both jointly synchronous multi-stream HMM. Similar observations hold
and separately trained state-synchronous multi-stream HMMs. in the case of the speaker-independent LVCSR task based
Results are given first for a 50-subject connected digit recog- on the IBM ViaVoice database [10] (see also Fig. 2). Prod-
nition task corresponding to a 10-hour audio-visual database uct HMM results on LVCSR will be reported in the final
collected similarly to the IBM ViaVoice dataset [10]. Test paper.

set audio-only and audio-visual WERs on this task are de-
picted in Fig. 2 for various SNR values of the audio channel.
Clearly, the jointly trained product HMM outperforms the
separately trained one at all SNRs. For example, at 19 dB,
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