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ABSTRACT

Time-Frequency Principal Component (TFPC) is a speech param-
eterization technique based on a principal component analysis ap-
plied to acoustic feature parameters augmented by their time con-
text. In this paper, we investigate on the performance of TFPC
in the framework of automatic language recognition. In our ex-
periments, identification rate is improved compared to the use of
the conventional cepstral coefficients augmented by their

�
coef-

ficients.

1. INTRODUCTION

Several speech parameterizations have been tested in the past for
language recognition. However, best results are usually achieved
by classical acoustic features, namely cepstral coefficients plus dy-
namic information using approximations of their first derivative
(
�

coefficients).

In this work, we study the benefit of using TFPC (Time-Frequency
Principal Components) [4, 5] for incorporating dynamic informa-
tion in a data-driven manner. The approach can be viewed as a
language-dependent selection of acoustical information both in the
time and frequency dimensions. This selection is done using time-
frequency vector filters, operating on the sequence of acoustic fea-
tures, the coefficients of which are estimated on a training corpus.
The underlying hypothesis is that a filtered utterance is better mod-
eled when the filter is the one corresponding to its language.

After presenting in more details the modeling and recognition sche-
mes, we apply them to a language identification task. In our ex-
periments, we observe an improvement of the identification rate
compared to the one obtained with a reference experiment, using
a cepstral parameterization and the

�
coefficients.

2. PRESENTATION OF THE METHOD

2.1. Classical Approach

Acoustic modeling of a language consists in analysing, capturing,
and modeling the sound structure of this language. In statistical
approaches, this is done by using a great number of training ut-
terances covering a large variety of speakers. In a first step, the
utterances have to be parameterized into acoustic features corre-
sponding to successive speech frames. Then, the speech frame
distribution is modeled by a statistical model, usually a Hidden

Markov Model (HMM).

Figure 1 presents the classical procedure of a training phase. The
set of training utterances �

������	�
� of the language � is transformed
through an acoustical analysis into a sequence of parameter vec-
tors ������

�����
. In training mode, this sequence is used for the esti-

mation of the parameters �
�����

of the model of language � . Once the
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Figure 1: Language recognition : classical training procedure.

parameters of all models have been calculated, � statistical models
are obtained, each of them representing one language. The recog-
nition phase then consists in parameterizing the test utterance (as
was done in the training phase) and calculating a score with each
of the � models. In the case of language identification, a deci-
sion algorithm combines the � scores in order to select the most
probable language.

2.2. TFPC Approach

The method that we present here was originally proposed in [4, 5].
Its goal is to use a language-dependent parametrization of the ut-
terance, with the goal to make it thus more easy to recognize. In-
stead of using a common acoustic feature analysis, the sequence of
cepstral coefficients of the speech utterance is filtered by a time-
frequency filter depending on the language.

The training phase is therefore composed of two steps. The first
one consists in a principal component analysis of the training data,
where the principal component analysis is applied to sequences of
consecutive vectors, so that not only the static information is taken
into consideration but also the dynamic information. A language-
dependent projection matrix is thus obtained (also called filtering
matrix). The second step is the estimation of the statistical mod-
el �

�����
of the language � using the vector-filtered training acoustic

features, with the filter corresponding to the language of the train-
ing utterance.

Figure 2 shows the training phase for the language � . The set
of training utterances �

������	�
� is transformed by an acoustic analysis
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Figure 2: Language recognition : training procedure with TFPC.

(spectral, cepstral, linear prediction, ...) into a sequence �� ���
�����

of� -dimensional vectors. This sequence is then used to compute the
filtering matrix

� �����
. Once the filtering matrix has been calculat-

ed, the sequence ���� �
�����

is filtered by this matrix and it provides
a new sequence of � -dimensional vectors ��� � � ����� used to estimate
the model �

�����
for the language � .

2.3. Construction of the Filter

For a given language and corresponding training data, the TFPC
approach extracts the representation which maximizes the inertia
of the data in a language-characteristic sub-space. The underlying
idea is to enhance static and dynamic language-dependent corre-
lations which may exist between the acoustic features and which
may characterize the language. In order to capture the dynamic
information, we take the time context of each vector into consid-
eration.

The successive steps for the construction of the filter are the fol-
lowing : let ������ be the sequence of � -dimensional acoustic vec-
tors extracted from the training utterances. From this sequence, we
extract the expanded vectors � ���
	���	 :

� ���
	���	��
������
�

������	
...

 ��
...

 �����	

�������
� with  �� ���  ��� ! 

Then we compute the covariance matrix of the expanded vectors
(contextual covariance matrix). This matrix can be calculated by
computing the lagged covariance matrices " 	 :

"
	 �$#% &'
��(
	)�+* � ���� ! � �����	,� � .- with  �$#%/&'

��(+*  �

The number of lagged covariance matrices corresponds to the or-
der of the TFPC analysis. The contextual covariance matrix is then
obtained by combining the lagged covariance matrices in a block-
Toeplitz matrix 021.	)��* .

0 1.	)�+* �
���
�
"�3 "+* 4�454 "61.	"
- * "�3 4�4547"61.	5��*
...

...
. . .
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����
�

The principal component analysis of the contextual covariance ma-
trix is obtained by calculating its eigenvalues and eigenvectors, and
ordering the eigenvalues (and the corresponding eigenvectors) in
decreasing order. The sub-space generated by the eigenvectors cor-
responding to the highest eigenvalues has the highest inertia. By
construction, all the directions of the eigenvectors are orthogonal.
The principal components associated with the smallest eigenvalues
often correspond to noise. Therefore, they are usually removed.
Other strategies can be adopted to select the components [3].

The filtering matrix is finally obtained by transposing the matrix
containing the selected eigenvectors. For instance, if the 5 first
components and the components 10 to 12 are to be kept, the filter-
ing matrix

�
will be :� �98 : * 4;454 :+<+: *=3 4�4;4 : *�1?>�-

The filtering of an utterance is ultimately obtained by calculating
the convolution between the matrix

�
and the expanded vectors

extracted from the utterance. For instance, when only the first �
principal components are kept, we have :� ��8A@ �	B45454 @ 3C454;4 @ 	 >
And the filtered vectors are obtained as :

� � � � 45� ���
	���	 � �
	'D (��	 @ D 4 ����� D
2.4. Recognition Phase

Once the training phase is completed, each language is character-
ized by a filtering matrix and a statistical model. Identifying the
language of a test utterance is carried out by filtering the utterance
using the filtering matrix of each language, and then computing for
each corresponding model a likelihood measure.

This procedure is illustrated on Figure 3. A first acoustic analysis
transforms the test utterance � ��EGF � into a sequence of vectors �� � � .
For each language, this sequence is filtered. Then an estimation
of the conditional probability HJI���� ��� �����;K � �����.L

of observing ������
knowing its language is M �����

is calculated. The language which
gives the maximum likelihood is finally chosen.

With this approach, several parameters can vary:N the initial acoustic analysis of the utterances (filterbank anal-
ysis, LPCC, cepstral coefficients, ...);N the order of the TFPC analysis, that is, the number of frames
taken into account;N the choice of the principal components to keep for the con-
struction of the filtering matrix.

In the next sections, we present some results obtained by varying
some of these parameters. We also present results obtained with a
reference parameterization, the cepstral parameterization, in order
to compare the TFPC approach to a more conventional one.

3. EXPERIMENTS

3.1. Objectives

Our objective is to evaluate the quality of the new parameterization
on a language identification task. We test two language recognition
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Figure 3: Language recognition : test procedure using the TFPC
approach.

approaches which only differ by the parameterization step, one us-
ing the classical cepstral parameterization (reference experiment),
the other using the TFPC parameterization.

3.2. Corpus

The database used for our experiments is a subset of the OGI MLT-
S (Oregon Graduate Institute Multi-language Telephone Speech)
database [6]. We selected four languages: English, French, Japa-
nese, and Spanish. For each language, we use 80 utterances of
15 seconds in average pronounced by 20 speakers for the training
phase. This corresponds approximately to 20 min. of speech for
each language. For the test, we use, for each language, 54 utter-
ances of 15 seconds in average pronounced by 12 (other) speakers.
We use therefore a total of 216 test utterances.

3.3. Characteristics of the Reference Experiment

The acoustic model consists in an Ergodic Hidden Markov Model
(E-HMM) for each language. The characteristics of this model are
as follows :

Structure Ergodic
State number 24
Number of Gaussians by state 2
Covariance matrices Diagonal

For the parameterization of the speech signal, we use the cepstral
coefficients rather than the spectral coefficients according to a pre-
liminary study [1]. The characteristics of this analysis are the fol-
lowing :

Type of parameterization MFCC 1

Frequency scale Mel scale
Number of coefficients 12 (optionally + 12

�
s)

Size of the analysis window 30 ms
Shift between two windows 10 ms
Type of window Hamming
Cepstral mean subtraction Yes

Some experiments with TFPCs take into account the temporal con-
text. In order to make the experiments comparable, we did simi-
larly for the reference experiments by using, in this case, the

�
parameters, calculated as follows [2] :

��� �� �  	 D (�*"! � � ���� D � � ���� D  # 4  	 D (+*$! 1 avec � � #&% # 454�4 % �
where ' is half the size of the temporal context.

3.4. Experiments with TFPC

The acoustic model used for these experiments is exactly the same
as for the reference experiment (Ergodic HMM). We also use, as
initial acoustic analysis, the cepstral parameterization as described
above.

Then, we apply the TFPC analysis to the cepstral vectors for vari-
ous sizes of context and, in each case, we vary the number of prin-
cipal components which are kept. We present in the next sections
the most significant results for the order 0, which corresponds to no
context, and for the order ' �)( , which provides the best results.
The order 4 corresponds to a time context of 9 frames (110 ms).

3.4.1. Order 0

The TFPC analysis at order ' �+* does not use any time contex-
t. The contextual covariance matrix is therefore the usual covari-
ance matrix "�3 , with dimension

# (-, # ( . The filtering matrix has
the same dimension or is smaller, and the filtered vectors are 24-
dimensional or smaller. In that case, the reference experiment uses
24-dimensional MFCCs and no

�
parameters. It yields an identi-

fication rate of 53.1 %.

The table below shows the average identification score in percent-
age for various numbers of TFPC components. The last row shows
the relative gain compared to the reference experiment. It can be
noticed that the system with the TFPC analysis performs better
than the reference experiment, and that 16 is the optimal number
of components to keep in this case. The TFPC approach seem-
s therefore to capture language-dependent information in the first
principal components, whereas the last components seem to be less
meaningful for the task.

TFPC components kept 12 16 20 24
Identification rate (in %) 54.3 58.0 55.8 53.5
Relative gain to ref. (in %) 2.3 9.3 5.1 0.7

3.4.2. Order 4

The order ' �.( corresponds to a context of 9 frames (110 m-
s). The dimension of the contextual covariance matrix 00/ is now



# # � , # # �
. The reference experiment includes 12 MFCC plus 12�

MFCC calculated with ' � ( . The corresponding identification
rate is 60.3 %. The table below shows the results for the TFPC
experiment. Here too, a noticeable improvement is observed as
compared to the reference experiment, and the optimal number of
components in that case is 24.

TFPC components kept 20 24 28 32
Identification rate (in %) 58.6 63.5 53.6 60.8
Relative gain to ref. (in %) -3.0 5.2 -11.2 0.7

3.5. Results using a Voice Activity Detector

We carried out the same experiments after implementing a voice
activity detector as a pre-processing. The detector is based on a
bi-Gaussian modeling of the energy, and on a dynamic threshold
calculation. A post-processing is added to penalize the detection in
silence or noise areas and to reinforce the detection in the speech
areas. The results are presented in the next sections.

3.5.1. Order 0

For the order ' � * , the identification rate for the reference exper-
iment increases to 59.1 %. For the TFPC experiments, we obtain:

TFPC components kept 16 20 24
Identification rate (in %) 59.1 62.6 63.6
Relative gain to ref. (in %) 0.0 6.0 7.7

As could be expected, the results are globally better when we use
a voice activity detector. It is also interesting to note that, in that
case, all the coefficients seem to contain useful information, al-
though the first 16 coefficients seem to contain already a great part
of this information. Finally, we note that the system with the TFPC
analysis performs again better than the reference system.

3.5.2. Order 4

With a time context of 9 frames, the reference experiment reaches
an identification rate of 69.2 %. The results of the TFPC experi-
ments are given in the following table:

Composantes 24 36 44 50
Identification rate (in %) 65.7 69.7 75.3 74.8
Relative gain to ref. (in %) -5.1 0.7 8.8 8.0

This time, we need to take more components (namely 44) to achieve
the best performance. If we take only 24 components as previous-
ly, the score is significantly worse than the reference (using also 24
coefficients). The system using the TFPC analysis with 44 compo-
nents yields an identification score of 75.3 %, which is better than
the reference system, but at the expense of a higher dimensional-
ity. However, an additional experiment using 24 MFCC + 24

�
-

MFCC (i.e 48 coefficients in total) gives an identification rate of
68.7 % only, which shows that the performance improvement ob-
served with 44 TFPCs is not owed to the higher dimensionality,
but to the acoustic features themselves.

4. SUMMARY AND PERSPECTIVES

In this paper, we have presented the use of the Time-Frequency
Principal Component (TFPC) analysis, for performing a language-
dependent vector-filtering on acoustic feature parameters. The Prin-
cipal Component Analysis is applied to the contextual covariance
matrix which is the covariance matrix of a sequence of vectors
augmented by their time context.

The filters can be interpreted as projection matrices on language-
characteristic sub-spaces. When we apply the TFPC parameteriza-
tion to language identification, the best configuration of our system
gives an identification score of 75.3 %, outperforming by approxi-
mately 9 % a reference system using 12 cepstral and 12

�
-cepstral

coefficients.

We now intend to study the influence of such a parameterization
on the statistics of the state sequences in the Hidden Markov Mod-
els. This is particularly important in the perspective of identifying
languages via typical regularities of acoustic events.
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