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ABSTRACT

In this paper, we investigate on the role of dynamic in-
formation on the performances of AR-vector models for
speaker recognition. To this purpose, we design an experi-
mental protocol that destroys the time structure of speech
frame sequences, which we compare to a more conventional
one, i.e. keeping the natural time order. These results are
also compared with those obtained with a (single) Gaussian
model. Several measures are systematically investigated in
the three cases, and di�erent ways of symmetrisation are
tested. We observe that the destruction of the time order
can be a factor of improvement for the AR-vector mod-
els, and that results obtained with the Gaussian model are
merely always better. In most cases, symmetrisation is ben-
e�cial.

1. INTRODUCTION

Auto-Regressive (AR) Vector Models have been a signi�-
cant subject of interest in the �eld of Speaker Recognition
[1] [2] [3] [4] [5] [6] [7]. Whereas the idea of modeling a
speaker by an AR-vector model estimated on sequences of
speech frames is common to these works, the way to mea-
sure the similarity between two speaker models is addressed
very di�erently. Secondly, the use of AR-vector model is
often motivated by the belief that such an approach is an
e�cient way to extract dynamic speaker characteristics, as
opposed to static characteristics such as the distribution of
speech frame parameters.
In this paper we report on a systematic investigation on
similarity measures between AR-vector speaker models ob-
tained as simple combinations of canonical quantities. We
also design a protocol in order to examine the role of dy-
namic information on the performance of the AR-vector ap-
proach : we destroy the natural time order of speech frames
by shu�ing them randomly, and we evaluate the AR-vector
approach on these temporally disorganised data. We �nally
compare both previous approaches to a (single) Gaussian
Model [8] [9] [10] [11].

2. DEFINITIONS AND NOTATION

Let fxtg1�t�M be a sequence of p-dimensional vectors. Let
us de�ne the centered vectors x�t = xt � �x where �x is the
mean vector of fxtg .
Let us denote X0 the covariance matrix of fxtg :

X0 =
1

M

MX
t=1

(xt � �x) � (xt � �x)
T
=

1

M

MX
t=1

x
�
t � x

�T
t

We also de�ne as Xk the lagged covariance matrices :

Xk =
1

M

MX
t=k+1

x
�
t � x

�T
t�k with k = 1; :::; q

and the Toeplitz matrix X :

X =

2
664

X0 X1 ::: Xq
X T
1 X0 ::: Xq�1
...

...
...

X T
q X T

q�1 ::: X0

3
775

A q-th order AR-vector model of sequence fx�t g is classically
written as :

qX
i=0

Ai � x
�
t�i = et with A0 = Ip

where fAig is a set of q + 1 matrix prediction coe�cients,
and et is the prediction error vector. fA1; :::; Aqg are ob-
tained by solving the vector Yule-Walker equation [12].
With A = [A0 ::: Aq], the covariance matrix of the resid-
ual of fx�t g �ltered by A is :

E
(A)

X = AXA
T

Similarily, for a signal fytg1�t�N with model B, we will
denote :

E
(B)

Y
= BYB

T

If we now consider :

E
(B)

X
= BXB

T

E
(A)

Y = AYA
T

these matrices can be interpreted as the covariance ma-
trix of the �ltering of fx�t g by B, and vice-versa. As A

is obtained by minimising tr(E
(A)

X
) and B by minimising

tr(E
(B)

Y ), we have tr(E
(B)

X ) � tr(E
(A)

X ) and tr(E
(A)

Y ) �

tr(E
(B)

Y
).

Let us �nally de�ne �
(B=A)

X
and �

(A)

Y=X
as :
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function f a log a g log g a� log g � 1 log (a=g) a� g

AR-vector model - spectral frames in their natural time order

f
(B=A)

X j f
(A=B)

Y 16.8 j 8.6 16.8 j 8.6 16.2 j 7.6 16.2 j 7.6 19.1 j 10.8 23.8 j 19.4 22.2 j 17.5

symmetrised 3.5 � 4.1 � 4.1 � 4.1 � 3.2 � 7.9 � 7.3 �

f
(A)

Y=X
j f

(B)

X=Y
75.6 j 51.4 75.6 j 51.4 88.3 j 73.0 88.3 j 73.0 15.2 j 34.3 7.6 j 18.7 15.2 j 14.6

symmetrised 6.0 ? 4.8 ? 12.4 ? 4.8 ? 5.4 � 7.0 � 6.0 �

AR-vector model - spectral frames in a random time order

f
(B0=A0)

X0 j f
(A0=B0)

Y 0 2.5 j 56.5 2.5 j 56.5 4.1 j 58.1 4.1 j 58.1 2.5 j 56.2 4.1 j 55.9 3.5 j 54.6

symmetrised 3.5 � 3.5 � 5.7 � 5.7 � 2.5 � 4.1 � 4.1 �

f
(A0)

Y 0=X0 j f
(B0)

X0=Y 0 42.5 j 45.4 42.5 j 45.4 98.1 j 82.9 98.1 j 82.9 1.3 j 22.9 1.0 j 6.7 3.2 j 8.9

symmetrised 4.8 ? 2.2 ? 46.7 ? 12.7 ? 2.9 � 1.0 � 1.6 �

Gaussian model

f
(I)

Yo=Xo
j f

(I)

Xo=Yo
37.5 j 47.0 37.5 j 47.0 98.4 j 98.4 98.4 j 98.4 0.6 j 7.9 0.6 j 3.2 2.9 j 6.4

symmetrised 3.8 ? 1.3 ? 97.1 ? 99.4 ? 1.0 � 0.6 � 1.0 �

Table 1. TIMIT - Speaker identi�cation error rates

where E
1

2 is the symmetric square root matrix of E.
The �rst matrix can be interpreted as the covariance matrix
of fx�t g �ltered by B relative to the one of fx�t g �ltered by
A, and the second one as the covariance matrix of fy�t g
�ltered by A relative to the one of fx�t g �ltered by A.

3. SPEAKER MODELS

The purpose of this paper is to investigate on di�erent ways
of using an AR-vector model for speaker identi�cation. A
speaker is characterised by a second-order AR-vector model
(q = 2) estimated on some speech material training. The
matrix prediction coe�cients fA1; A2g are obtained by solv-
ing the vector Yule-Walker equation in the case q = 2 :

[A1 A2] �

�
X0 X1

X T
1 X0

�
= �

�
X T
1 X T

2

�

� A �rst model is a 2nd-order AR-vector model trained
on speech frames presented in their natural time order.
Therefore, the model of X is fA;Xg.

� A second model is a 2nd-order AR-vector model trained
on the same speech frames as previously, but presented
in a random time order. Each speaker X is charac-
terised by fA0

; X
0g which are obtained in the same

way as fA;Xg, after speech frames have been randomly
shu�ed.

Gaussian speaker model is also tested as a reference model.
In this second framework, a speaker X is represented by
the covariance matrix X0. It is equivalent to a 0th-order
AR-vector model, i.e. A = [A0] = Ip and X = [X0], which
we will denote as fI;X0g.

4. SIMILARITY MEASURES

We consider now 2 speakers X and Y, and we present a gen-
eral formalism for expressing similarity measures between
their AR-vector models.

Two families of similarity measures are investigated :

f
(B=A)

X (X ;Y) = f

�
�
(B=A)

X

�
f
(A)

Y=X
(X ;Y) = f

�
�
(A)

Y=X

�

The �rst family can be interpreted as a measure between
two models (A and B), via their inuence on the same vec-
tor signal (X). This family of measures (which we will refer
to as VI), generalises the Itakura measure to the vector
case [13]. Examples of such measures are proposed in [4]
and [6]. On the opposite, the second family can be viewed
as a measure between two signals (X and Y ) �ltered by a
common model (A). Some of the IS measures proposed in
[3] [5] belong to this family. Note also that setting fA;Xg
= fI;X0g allows to construct a similar family of measures
for the Gaussian model.
The function f is chosen equal to a combination of the fol-
lowing canonical quantities :

a(�) = 1
p
tr(�)

g(�) = [det(�)]
1

p

It can be shown that a and g are positive and that a � g.
Moreover these quantities can be computed very e�ciently
[11]. The composed functions a � log g � 1 and log (a=g)
are respectively the Maximum-Likelihood measure [9] and
the Arithmetic-Geometric Sphericity measure [8].
As these measures are not symmetric, di�erent symmetrisa-

tions can be applied on the original measures. Given f
(B=A)

X

and f
(A=B)

Y
, we de�ne :

f
(B=A)?

X
=

1

2
f
(B=A)

X
+

1

2
f
(A=B)

Y

f
(B=A)�

X
=

�M
�M + �N

f
(B=A)

X
+

�N
�M + �N

f
(A=B)

Y

f
(B=A)�

X =
�N

�M + �N
f
(B=A)

X +
�M

�M + �N
f
(A=B)

Y
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function f a log a g log g a� log g � 1 log (a=g) a� g

AR-vector model - spectral frames in their natural time order

f
(B=A)

X j f
(A=B)

Y 38.7 j 30.2 38.7 j 30.2 37.1 j 29.5 37.1 j 29.5 42.5 j 35.2 51.1 j 50.8 49.5 j 49.5

symmetrised 24.8 � 25.1 � 24.8 � 24.4 � 26.3 � 35.6 � 33.3 �

f
(A)

Y=X
j f

(B)

X=Y
93.3 j 86.0 93.3 j 86.0 96.5 j 94.6 96.5 j 94.6 44.1 j 69.8 41.6 j 39.1 49.2 j 39.1

symmetrised 23.5 ? 21.3 ? 32.4 ? 25.4 ? 24.4 � 34.6 � 33.0 �

AR-vector model - spectral frames in a random time order

f
(B0=A0)

X0 j f
(A0=B0)

Y 0 35.9 j 82.2 35.9 j 82.2 36.8 j 81.3 36.8 j 81.3 32.4 j 83.5 34.6 j 82.2 34.3 j 81.6

symmetrised 39.1 � 39.1 � 40.0 � 40.0 � 34.3 � 33.3 � 33.3 �

f
(A0)

Y 0=X0 j f
(B0)

X0=Y 0 78.7 j 71.4 78.7 j 71.4 98.4 j 93.7 98.4 j 93.7 15.9 j 43.8 13.3 j 21.6 20.3 j 27.3

symmetrisation 21.9 ? 14.6 ? 69.8 ? 52.4 ? 14.0 � 13.3 � 14.3 �

Gaussian model

f
(I)

Yo=Xo
j f

(I)

Xo=Yo
77.1 j 71.8 77.1 j 71.8 98.4 j 98.4 98.4 j 98.4 14.6 j 27.3 12.7 j 17.1 20.3 j 21.3

symmetrised 15.6 ? 11.8 ? 97.8 ? 98.4 ? 12.7 � 12.4 � 14.3 �

Table 2. FTIMIT - Speaker identi�cation error rates

�M is the average number of frames for the training sen-
tences across all speakers, and �N is the average number of
frames for the test sentences. The same symmetrisations

are applied to f
(A)

Y=X
and f

(B)

X=Y
.

5. DATABASE AND SIGNAL ANALYSIS

We use the �rst 63 speakers of TIMIT [14] and NTIMIT

[15] for our experiments (19 females and 44 males)1. Each
of them has read 10 sentences. The signal is sampled at 16
kHz, on 16 bits, on a linear amplitude scale. NTIMIT is a
telephone-channel version of TIMIT.

Each sentence is analysed as follows : for each speech to-
ken, the speech signal is kept in its integrality; it is de-
composed into frames of 31.5 ms at a frame rate of 10 ms,
with no pre-emphasis. A Hamming window is applied to
each frame. Then the module of a 504 point Fourier Trans-
form is computed, from which 24 Mel-scale triangular �lter
bank coe�cients are extracted. The spectral vectors fxtg
(of dimension p = 24) are formed from the logarithm of
each �lter output. These analysis conditions are identical
to those used in [11].

For the TIMIT database, all 24 coe�cients of fxtg are kept.
For NTIMIT, 24-dimensional vectors are also extracted, but
we keep only the �rst 17 coe�cients, which corresponds to
the telephone bandwidth. Experiments are also made on
\FTIMIT", obtained by taking the 17 �rst coe�cients of
the vectors fxtg extracted from TIMIT.

6. EXPERIMENTS

A common training/test protocol is used for all the exper-
iments. It is described in detail in [11] (as protocol \long-
short"). Training material consists of 5 sentences (i.e �

1More precisely, we have kept all female and male speak-
ers of \train/dr1" and \test/dr1", the �rst female speaker of
\train/dr2", and the �rst 13 male speakers of \train/dr2".

14.4 s) which are concatenated into a single reference per
speaker. Tests are carried out on 5 � 1 sentence per speaker
(i.e � 3.2 s per sentence) which are tested separately. The
total number of independent tests is therefore 63 � 5 = 315.
The decision rule is the 1-nearest neighbour.

Results of the experiments are given by database (Tables 1
2 and 3). Performances are reported in terms of closed-
set speaker identi�cation error rates on the test set for the
canonical measures and various combined measures in their
asymmetric and their best symmetric form. For the sym-
metrised measures, a superscript indicates to which sym-
metrisation (?, � or �) does the result correspond.

7. DISCUSSION

The following observations can be made :

� Symmetrisation is generally a factor of improvement.
However, the appropriate symmetrisation is di�cult to
predict. It depends on the type of asymmetric measure,
and whether the data are in a natural or in a random
time order.

� For each database (TIMIT, FTIMIT and NTIMIT), we
have underlined the best 10 (or 11) measures. They are
(almost) the same ones for all 3 databases. The best
one is always obtained with the Gaussian Model.

� With spectral frames in their natural order, VI mea-
sures globally outperform IS measures in canonical
forms, but the trend is inverted with composed forms.

� With spectral frames in a random order, symmetric
composed IS measures outperform all other AR-vector
measures, in spite of the loss of the dynamic spectral
characteristics.

8. CONCLUSION

In our experiments, we did not succeed in obtaining bet-
ter speaker identi�cation results with an AR-vector model
based measure than with a single Gaussian model classi�er.
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function f a log a g log g a� log g � 1 log (a=g) a� g

AR-vector model - spectral frames in their natural time order

f
(B=A)

X j f
(A=B)

Y 71.8 j 54.6 71.8 j 54.6 67.3 j 54.3 67.3 j 54.3 78.1 j 58.4 83.8 j 69.5 82.9 j 67.9

symmetrised 51.8 � 52.1 � 50.5 � 50.2 � 57.5 � 66.0 � 65.1 �

f
(A)

Y=X
j f

(B)

X=Y
96.8 j 92.4 96.8 j 92.4 97.1 j 95.6 97.1 j 95.6 67.3 j 88.9 66.0 j 78.7 75.2 j 76.8

symmetrised 61.9 ? 56.5 ? 68.3 ? 53.0 ? 59.7 � 63.2 � 66.4 �

AR-vector model - spectral frames in a random time order

f
(B0=A0)

X0 j f
(A0=B0)

Y 0 64.4 j 92.1 64.1 j 92.1 65.4 j 91.8 65.4 j 91.8 61.9 j 92.4 64.8 j 93.3 64.4 j 93.0

symmetrised 65.4 � 65.1 � 67.9 � 68.3 � 62.2 � 64.4 � 64.1 �

f
(A0)

Y 0=X0 j f
(B0)

X0=Y 0 94.0 j 94.3 94.0 j 94.3 98.4 j 97.5 98.4 j 97.5 47.0 j 86.4 46.0 j 63.2 56.8 j 77.1

symmetrisation 61.9 ? 52.4 ? 88.3 ? 72.4 ? 50.2 � 44.1 � 48.6 �

Gaussian model

f
(I)

Yo=Xo
j f

(I)

Xo=Yo
93.0 j 94.6 93.0 j 94.6 98.4 j 98.4 98.4 j 98.4 44.1 j 75.9 42.5 j 59.7 56.2 j 73.3

symmetrised 58.1 ? 49.8 ? 97.8 ? 98.4 ? 47.6 � 44.1 � 49.2 �

Table 3. NTIMIT - Speaker identi�cation error rates

This observation is in contradiction with results reported
in [7], but this divergence may be due to di�erent signal
pre-processing and analysis.
Moreover, we globally obtained better performances with
the AR-vector model on spectral frames in a random time
order rather than when we kept the natural time order.
Therefore, the role of dynamic speaker characteristics in
the success of the AR-vector model can be questioned, as
our results suggest that AR-vector models tend to extract
indirectly speaker characteristics of a static nature.
Finally, the inuence of symmetrisation can be crucial, but
its theoretical basis remains to be understood.
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