
1

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Why and how to make a product-line software-intensive

system effective in industrial settings ?

Jean Jourdan

Architectures & System Technologies Lab.
Corporate Research Center

Thomson-CSF

November 6th 1998

2

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

OutlineOutline

• The realities we face

• The architecture centric product line approach

• Product-line process

• Software architecture

• Reference architectures

• Ongoing experiments and projects

• Conclusion

3

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

The realities we faceThe realities we face

4

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Current situationCurrent situation

Most organizations developing software-intensive systems have :

• competitive markets :

� decrease development costs

� increase quality

� reduce time-to-market

� allow predictable market delivery

� increase products diversity

• long product cycles :

� improve maintenance

� allow new technology integration

• more and more complex systems

5

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

• Ensure an explicit separation between product and technology life-cycles :

– long life cycles (5 - 15 years): architectures and development technologies

– short life cycles (1 - 3 years): Hardware and COTS (Components Of The Shelves)

Development technologies

Hardware and plate form
Architecture

COTS Fast evolution

Slow evolution

Software

Intensive

Product

Life-cycle mismatchLife-cycle mismatch

• Make product-line effective in industrial settings:

– Build applications by assembling reusable components

– Preserve the possibility to take into account their evolutions and replacement within the

complete (specification, design and maintenance) product life-cycle

6

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

From stovepipe applications to evolvable application familiesFrom stovepipe applications to evolvable application families

Past

• Requirements are fixed

• Applications are isolated

• No shared substrate

Future

• Requirements change

• Applications in families

• Evolving substrate

• Architecture and code separation

• Implicit architecture

• Design info and trade-off discarded

• Design is followed by maintenance

• Architecture and code integrated and evolve together

• Explicit architecture

• Design info and trade-off preserved to guide evolution

• Design and maintenance are a single activity

• Premature and irreversible optimization

• Static implementation compiles in design

 decisions to save resources

• Tools emphasize "front-end system's analysis"

• Late binding

• Implementation and environment use resources to

 support evolution

• Tools support whole system lifetime

7

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

The Architecture Centric Product-line ApproachThe Architecture Centric Product-line Approach

8

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Our goalOur goal

Change traditional development cycle in order to build systems by assembling

reusable components, while :

• Allowing the improvement/replacement of components over time

• Ensuring independence from COTS (software, middleware, OS, …)

• Gaining early insight into system qualities

9

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Our strategyOur strategy

Enable widespread product-line practices :

� domain specific (family of applications)

� process driven

� architecture centric

The product-line approach allows organizations to reuse numerous software

assets (requirements, designs, source codes, test cases) when building new

systems.

10

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Domain specificDomain specific

A family of applications is a group of products sharing a common set of

features that satisfy specific needs of a selected market.

The purpose of the product-line approach is to provide a set of packaged

reference elements (domain model, architecture, components) and to use

them to build new applications.

Architecture

Domain

Components

application

Belong to

Share an

Are built from

11

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Contributions of product-linesContributions of product-lines

Product-lines amortize the investment in :

• Requirements analysis and modeling

• Domain modeling

• Software architecture design and validation

• Documentation

• Test cases

• Implementation

� Product-lines = strategic reuse

12

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Prerequisites to build a product-linePrerequisites to build a product-line

• Extensive domain experience

• Existing legacy systems

• Coming systems

• Domain technology is relatively stable

• Operating environment is relatively stable

• Variability can be expressed

• Components are available

• Corporate necessity to migrate to product-line

13

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Non prohibitive factorsNon prohibitive factors

• Software size

• Domains

• Business goals

• Complexity or demanding requirements

14

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Product-line processProduct-line process

15

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Product-line processProduct-line process

Legacy code
Domain expertise

New

requirements

Feedback/adaptations

Application

Requirements
Application

design

Domain

Analysis

Application

coding

: Domain Engineering : Application Engineering

Domain terminology

Reference requirements
... Reference architecture

Reusable components

ComponentsRequirements
traceability traceability

Domain

Implementation

Domain

Design

16

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Domain engineeringDomain engineering

• Domain analysis :

– requirements description

– domain definition (entities, attributes, relations, constraints, …)

– system analysis

– legacy code description (architecture and traceability with requirements)

• Reference architecture design :

– reference requirements

– reference architecture

– traceability

• Development :

– library of reusable components

– Exploitation environment

17

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Application engineeringApplication engineering

The goal is to reuse the work-products of domain engineering in order to

produce a new application satisfying specific requirements.

It entails the following activities :

• Identify specific requirements

• Identify architectural modifications

• Modify/adapt/generate components

• Build the global application

� Depends strongly on the environment produced by DE

18

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Software ArchitectureSoftware Architecture

19

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

What is software architecture ?What is software architecture ?

Machine language

Formula translator

Structured programming

Classes & relations

Components & connectors

The software architecture of a computing system is an abstract description of
components and their connections, through multiple and complementary views.

20

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

DefinitionsDefinitions

Hayes-Roth, 1994 : DSSA

An abstract system specification consisting primarily of functional components described

 in terms of their behaviors and interfaces and component-component interconnections.

Architecture are usually associated with a rational that document and justifies constraints

 on component and interconnection or explains assumptions about the technologies which will be

 available for implementing applications consistent with the architecture.

David Garlan and Perry, 1995 : CMU

The structure of the components of a system, their interrelationships, and principles and

 guidelines governing their design and evolution over time.

Bass Clements and Rick Kazman, 1998 : SEI
The software architecture is the structure or structures of a system, which comprise software

components, the externally visible properties of those components, and the relationships among them.

21

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Architectural viewsArchitectural views

A software architecture incorporates different views, including :

• Structural view : components and their connections

• Dynamic view : data flow and control flow in the architecture

• Computing view : hardware and software hosting the architecture

• more specific views ...

� Complementary views

22

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Architectural designArchitectural design

Lack of guidance for architectural design :

• Software processes and design notations are fine for defining/ordering

 activities, but that is not enough

• Language-specific mechanisms (classes, inheritance, …) are not enough

 either (too low level).

Good designers rely a lot on experience to build elegant, flexible architectures.

There is a need of high level design description to capture this experience.

� Study of architectural styles to support the design process.

23

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Architectural styleArchitectural style

An architectural style :

• Defines a family of architectures constrained by :

– Component/connector vocabulary

– Topology

– Data and control flows

– Semantic constraints

• Encapsulates rationale about architectural elements

• Emphasizes constraints on the elements and their relationships

24

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Some architectural stylesSome architectural styles

Identified styles (Garlan and Shaw) :

• Pipes and Filters

• Layered organizations

• Distributed processes

• Repositories

• Event-based, implicit invocation

• Object-oriented

• Main program/Subroutine, explicit invocation

� Lack of homogeneity

� No quality attributes

25

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Reference ArchitectureReference Architecture

26

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Reference architectureReference architecture

� Control flow is stable

A reference architecture is a generic, adaptable software architecture that specifies

software components and their relationships through multiple views.

It is an abstract structure that captures common aspects of a product family and

encapsulates variable features:

Adaptations can affect :

– the components

– the connections

– the topology

– the constraints

27

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Requirements

Design trade-off

• different alternatives

• key attributes

• decision techniques

• implementation constraints

Components

Functional

• common

• variable

Non functional

(global properties,

performances)

• common

• variable

Architecture

Implementation

Middleware

Hardware platform

Product-line goal

• cost estimation

• code generation

Explicit architecture description

• component diagrams

• component dependencies

• component activity diagrams

• deployment diagrams

Reference architectureReference architecture

28

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Evolution techniquesEvolution techniques

• AOP

• framework OO

• Properties

• trade-off

• resources

• performances

• implementation constraints

• components configurations

Explicit architectural views enhanced with specific evolution techniques

• structuration techniques (layer pattern, micro kernel pattern, delegation, …)

• decision / propagation techniques

Structuration techniques

Decision techniques

Propagation techniques

• decision tree

• optimization

• reuse contracts

• hypertext/XML

29

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Ongoing Experiments and ProjectsOngoing Experiments and Projects

30

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Esprit Project PRAISE
http:/www.esi.es/Projects/Reuse/Praise/

Esprit Project PRAISE
http:/www.esi.es/Projects/Reuse/Praise/

• PRAISE : Product-line Realization and Assessment in Industrial SEttings

• Partners :
- Thomson-CSF / LCR (prime)

- Bosch

- Ericsson

- ESI (European Software Institute)

• Duration : 18 months (Kickoff : September 1998)

Alcatel/Thomson-CSF Common Research LabAlcatel/Thomson-CSF Common Research Lab

• LCAT : Product-line Realization and Assessment in Industrial SEttings

• Research topics :
- Technology for the development of architecture-centric software product lines (4 domains)

- Multi-target execution support for real-time, distributed systems

• Kickoff : September 1998

31

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

ConclusionsConclusions

32

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Conclusion : Advantages of product-linesConclusion : Advantages of product-lines

Reduction of development and maintenance costs

• analysis/design/code reuse

Acceleration of application generation

Quality improvement

• architecture has been tested and validated on previous applications

• code can be highly optimized (in terms of efficiency, safety,…)

33

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Conclusion : weaknesses of product-linesConclusion : weaknesses of product-lines

Product-lines are costly:

• involve highly qualified people and a large adherence

• several applications are needed to amortize the cost

• steep learning curve

Reference architectures are hard to design:

• lack of guidelines and techniques

• generalize from concrete examples

• think architecture and look for patterns

Lack of tools to represent/validate reference architectures

Lack of integrated tools to develop and exploit product-lines

34

Laboratoire CommunLaboratoire Commun
"Architectures Logiciel""Architectures Logiciel"

THOMSON-CSF

Research directions (reminder)Research directions (reminder)

• Defining an adapted software process

• Architecture design using styles

• Architecture evaluation using quality attributes

• Extensions of UML for architectural representation

• Design of reference architectures and variability and decision representation

• Integrated tools to support product-line

• Assessment model

