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Abstract— Blind Source Separation (BSS) problem has been
extensively studied for signals composed by statistical indepen-
dent components. As it is well known, the applied methods
usually fail when sources exhibit some degree of dependence. Our
work points to solve the BBS problem removing the condition
of statistical independence looking for sources estimates that
maximize a measure of non-Gaussianity. We present a measure of
non-gaussianity based on the L2- Euclidean distance using a non-
parametric technique for the estimation of probability densities.
These mathematical tools have allowed us to build new algorithms
for BSS which may have good performance for dependent as well
as independent non-Gaussian real-world sources.

I. MATHEMATICAL TREATMENT OF BSS

The mathematical framework is the following: assuming the
existence of M non-Gaussian input signals So, Si,.., Spr—1
with zero mean (E(s;) = 0) and unitary variance (F (522) =
1), a set of M linear mixtures x, *1,.., Tp/—1 are generated
instantaneously, i.e. z;(t) = Z;wol a;;s;(t), for which the
matrix representation is: x(t) = As(t)0 where s(t) = [so $1
sy—1)T and x(t) = |2 21 xar—1]7 are M x 1 column
vectors and A is the M x M invertible mixing matrix.

Hence, the purpose of any BSS algorithm is to obtain a
separating matrix D such that if we define y(¢) = Dx(t), then
y(t) is composed by permuted and/or sign changed versions
of s(t) entries.

If we assume to have non-Gaussian, dependent, and cor-
related sources (F[ss?] = Rgs not diagonal) it appears
to be natural to propose the following two main strategies
for searching the appropriate separation matrix: 1) Minimize
Mutual Information (MinMI) of vector y (like most of ICA
algorithms use) or 2) Maximize Non-Gaussianity (MaxNG)
of y entries. We propose in this work to use MaxNG strategy
concentrating our search for those source estimates that are
more non-Gaussian in a certain sense.

II. OUR MEASURE OF NON-GAUSSIANITY BASED ON THE
L?- EUCLIDEAN DISTANCE

Considering a continuous random variable y for which
Ely] = 0 (zero mean) and E [y*] = 1 (unitary vari-
ance), we define our non-Gaussianity measure of a prob-
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ability density function p, denoted by I'(p,), as following:

T(p,) = /[«p (v) — py ()] dy. where ® () = N(0,1) =
\/127 exp (—3y?) is the Gauss probability density function.

Based on N samples of the random variable y, it means,
time samples of the stochastic process y(t): y(0), y(1), y(2),
etc., using the Parzen windows non-parametric density estima-
tion technique with a Gaussian kernel ([1]) we obtain:

f0) = 57z Nm—]vzl‘b( =)

N2h\/— Z ( (i)) (1

where h is a parameter which affects the width and height
of the Parzen windows.

ITI. THE MAXNG ALGORITHM

Given the vector x which contains the linear mixtures of
sources s according to equation x = As, we first we apply
a whitening filter using the Karhunen-Loeve transformation:
x = Wx. Then we derive a new criteria that we called MaxNG
(Maximum Non-Gaussianity), which means to search for the
appropriate separating matrix D such that entries of vector:
§ = y = Dx are as more non-Gaussian as possible. Each
entry of y is obtained as a linear combination of whitened
mixtures so we need to obtain M local maxima of the non-
Gaussianity measure of a linear combination of mixtures.

Is easy to see that, in case of having independent sources
(ICA), after the data is whitened, the task to be performed by
ICA algorithms is to find an orthogonal matrix (DDT = I)
to achieve the separation. When sources are not independent,
orthogonality is not still valid, but the structure of separating
matrix is conditioned by the covariance structure of sources
by the equation: Rz = F[ss”] = DDT. If source covariance
matrix is known, this a priori information can be used to
restrict the search to a valid subset matrices D.



IV. EXAMPLES OF REAL WORLD SIGNALS SEPARATION
AND CONCLUSIONS

In this section we present two additional examples of real
world signals separation. We have compared the results of
our MaxNG algorithm against the results obtained through
the application of some classical BSS/ICA methods like:
AMUSE, EVD2, SOBI, JADE-opt, FPICA, Pearson-opt (all
these methods are fully reviewed in the book [2]). For the
application of these algorithms we have used the ICALAB
Mathlab software package [3]. Our MaxNG algorithm was
implemented in IDL 6.1 language. The following cases were
analyse, where a mixing matrix A was arbitrarly selected:

Example 1: Speech signals. Two speakers say the same
sentence. These signals were extracted from the ICALAB
benchmark example named halo10.mat ([3]). These signals
exhibit a slight level of correlation, in our case was: p =
E[sps1] = —0.05. The number of used data samples was
N = 6000.

Example 2: Satellite signals. Two pixel columns were
extracted from an optical satellite image. These two columns
were 2 pixels apart one from the other in the original image,
therefore they are highly correlated, the coefficient correlation
was: p = Fl[sgs1] = 0.81 which is a very high value. The
number of used data samples was N = 5960.

In order to measure the performance of separation the SIR
Signal To Interference Ratio was used ([4]). In general a SIR
value above 12dB is indicative of a successful signal estimate
and SIR values over 20dB means an excellent estimation. In
Table 1, corresponding values of SIR for sources estimates, are
shown for both examples. Note that for the Example 1 (speech
signals), our MaxNG algorithm gives excellent results (Mean
SIR=41.24dB) which is comparable with some other classical
methods. On the other hand, for the Example 2 (satellite
signals), our MaxNG is the only able to perfectly recover
both source signals. In Figure 1, a comparison of sources and
their estimates using Pearson and MaxNG algorithms is shown
(we have choose a subset of 200 samples). Note that for the
Pearson case, only one signal was successfully estimated.

We have shown that, when original sources are dependent,
traditional BSS/ICA algorithms may fail in separating signals
and a better strategy is the MaxNG which search for sources
which are more non-Gaussian. We have provided a new way
to measure non-Gaussianity and we used it to build a new BSS
algorithm, the MaxNG, for non-Gaussian sources (dependent
or independent) like speech signals, remote sensed image
signals and others.
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Figure 1: A comparison between original sources estimates for
Pearson and MaxNG algorithm results

Example 1: speech signals
BSS/ICA Algorithms | SIR signal 0| SIR signal 1| MeanSIR
AMUSE 39.59 28.36 33.97
EVD2 49.45 32.27 40.86
SOBI 63.97 31.34 47.66
JADE 11.41 10.57 10.99
FPICA Gauss 3142 61.11 46.27
Pearson 25.83 22.07 23.95
| MaxNG | 25.20| 5727  41.24]

Table 1: Separation performance in Example 1 (speech signals) for
some classical BSS/ICA methods and MaxNG algorithm (the best
result is in bold text).



Example 2: satellite signals

BSS/ICA Algorithms | SIR signal 0 | SIR signal 1 | MeanSIR
AMUSE 9.80 10.42 10.11

EVD2 9.92 10.30 10.11

SOBI 0.11 0.11 0.11

JADE 9.83 10.39 10.11

FPICA Gauss 9.57 10.68 10.12
Pearson 2.95 19.92 11.43
| MaxNG | 20.29| 20.40[  20.34|

Table 2: Separation performance in Example 2 (satellite signals) for
some classical BSS/ICA methods and MaxNG algorithm (the best
result is in bold text).
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