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ABSTRACT However, selecting from a large dictionary, the smalleftsst of

elements, that will linearly combine to reproduce a givagnal or
image, is a hard combinatorial problem. Nevertheless raka&yo-
rithms have been proposed that can help build very sparserges
sitions [8, 9] and in fact, a number of recent results proa these
algorithms will recover the unique optimal decompositiosnvided
this solution is sparse enough and the dictionary is suffitjiénco-
herent [10, 11].

Morphological Component Analysis (MCA) is a method desedib
in [12] that constructs a sparse representation of a sigreal omage
considering that it is a combination of features which ararsgly
represented in different dictionaries. For instance, imsagpmmonly
1. INTRODUCTION combine contours and textures: the former are well accduoteus-

L . . ing e.g.curvelets while the latter may be well represented usinglloc
A common assumption in signal or image processing is that meg.sine functions [13, 14, 15].

sure_ment§( made tYP‘Cf”‘”V using an array of SEnsors, often C0n5i5t§n searching a sparse decomposition of a signal or imaddCA
of mixtures of contributions from various possibly indedent un- -1~ the specific assumption thds a sum ofK’ componentso;,
derlylng physical process& The simplest mixture model is linear where a possibly overcomplete dictionady, is given for eachk,
and instantaneous and takes the form : in which ¢, admits a sparse representatign, = ®o, while its
X=AS + N 1) sparsgst decomposition over the ot!tIag/¢k i§ es.se.ntially diffuse.
The different®; can be seen as acting as discriminant between the
whereX andS are random vectors of respective sizesx 1 and  different components of the initial signal Ideally, thea;, are the
n x 1andA is anm x n matrix. Multiplying S by A linearly mixes  solutions of:
then sources inton observed processes. In some casesnpan 1 X X
random vectoiN is included to account for instrumental noise.The . .
min Z |lokllo subjectto s = Z Prar.  (2)
k=1 k=1

We present in this paper a new method for blind source separat
which is adapted to the case where the sources have diffieremt
phologies. We show that the morphology diversity concequds$eto a
new and very efficient method, even in the presence of noise aF
gorithm, named Multichannel Morphological Component Amsid
(MMCA) is an extension of the Morphological Component Arsagy
(MCA) method which was proposed for separating a single enag
into texture and piecewise smooth parts or for inpaintingliap-
tions. A range of example illustrates the results.

problem is then to invert the mixing process so as to sepénate {1,y ag}
data back into its constitutive elementary building blodksa blind

approach assuming minimal prior knowledge of the mixingcpss,  However, theLo norm is non-convex and optimizing the above cri-
source separation is merely about devising quantitativesomes of  terion is combinatorial by nature. Substituting Bn sparsity mea-
diversity or contrast. Classical Independent Componerdlysis  sure to theLo norm, as motivated by recent equivalence reseilys
(ICA) methods assume the mixed sources are statisticalgpen-  in [10], and relaxing the equality constraint, the MCA algum

dent; this techniques have proven successful in a wide rahgp-  seeks a solution to the following minimization problem:
plications JADE, FastICA, Infomax (see [1, 2, 3, 4], and refees

therein). Indeed, although statistical independence isang as-

K K
sumption, it is in many cases physically plausible. min Z Aellakll + ||s — Zwll% with ¢ = ®rar (3)
PP k=1

An especially important case is when the mixed sources
highly sparse, meaning that each source is only rarely eetnd
mostly nearly zero. The independence assumption thenenthat
the probability for two sources to be significant simultangyp is
extremely low so that the sources may be treated as havintynea
disjoint supports. This is exploited for instance in Spatsenpo-
nent Analysis [5]. And it is shown in [6] that first moving thatd
into a representation in which the sources are assumed tpaoges 2. MULTICHANNEL MCA
will greatly enhance the quality of the separation. Posdilttionar-
ies include Fourier and related bases, wavelet bases, etckingg ~ We consider the mixing model (1) and make the additionalrmapsu
with combinations of several bases or with very redundasttatiar-  tion that each source is well (i.e. sparsely) represented in a spe-
ies such as undecimated wavelet frames or the more recgptetd,  cific dictionary. Again, assigning a Laplacian prior witlepision\x
curvelets [7], etc. could lead to even more efficient represtons.  to the decomposition coefficients of th& sources;, in dictionary

ar(/i detailed description of MCA is given in [12] along with rétsuof
experiments in contour/texture separation and image mipgi.

The purpose of this contribution is to extend MCA to the cdse o
multi-channel data. This is described in section 2.



d,, is a practical way to implement this property. Hesg,denotes

At each iteration, @oarse(and thus noise free) version of the

the 1 x n array of thek™ source samples. Classically, we assumesources are computed. The mixing matrix is then estimaiemui fr

Gaussian white noise with known covariaricg. This leads to the
following joint estimator of the source proces&s- {s1,..., sn. }
and the mixing matri>A :

(8, A} =Arg pin X ASlr, + 3 ATl (4

where||M|[3 ., = trace(M”T,,'M)). Unfortunately, this min-
imization problem suffers from the lack of scale invariaméghe
objective function. Indeed, combining a scaling of the mgxima-
trix, A — pA, and an inverse scaling of the source matsix— %S,
leaves the quadratic measure of fit unchanged whereas thetea-
suring sparsity is deeply altered by the same inverse saeler%.
Consequently, the minimization will probably drive us teitl solu-

tions,A — oo andS — 0, since the sparsity term can be minimized
ad libitumasp goes to+oo. Nevertheless, scale-invariance can be

artificially recovered by normalizing the column$ of the mixing
matrix A at each iterationd* " — a*” /||a* " ||2) and propagating
the scale factor to the corresponding sourge, — ||a* ™ ||z,
and precision\, T «— ||a* 7 ||2Ax .

Define thek™ multichannel residuaDy, = X — 3, , a*' sy
as corresponding to the part of the data unexplained by He obu-
ples{a’“,, Sk bk 2. Then, the minimization problem (4) is equiva-
lent to jointly minimizing the following set of elementaryiteria:

Vk, {3, a"} = Arg min [[Dy — a*sill3r, + AellskTellr (5)
Sk,

Zeroing the gradient with respect4g anda” of this criterion leads
to the following coupled equations:

ale",Zle — %Sign(ska)Rk)

1
S T Toa—T &
k a,kTI‘nla,k (

k 1
sEsk L

a DkSkT

(6)

Although the above holds for unitary transforms for whigh =

noise-free sources which only contains the most signifiparts of

the original sources and not their mixtures. The overallnoa-

tion leads to refine both the noise-free sources and the gixia-

trix. The use of an iterative thresholding with a set of thads

{0k }k=1,c,40ts,n decreasing slowly guarantees robustness. Indeed,
both alternate projections and iterative thresholdingnéeéi com-
pelled path for the variables to estimate (sources and guixiatrix)
during the optimization. This optimization scheme migradeo

a not so bad estimation according to the MMCA hypothesis lvhic
stipulate that different sources are sparsified in diffebarsis.

The next section will illustrate the efficiency of the MMCA:-al

gorithm when the sources to separate are morphologicdfigreint
enough.

3. EXPERIMENTS

o B
3
i e
o
5
gl
PR PRI
Hrd
f s
%
| |
Ludin

j

&
gl
&

Fig. 1. top left : the two initial source signalstop right : three

T}, we make the same approximation as in the previous sectibn amoisy observedmixtures. bottom left : the two source signals re-

consider that it is still valid for redundant transforms. efh for a
fixed a*, the source process, is estimated by soft-thresholding the
coefficients of the decomposition otcaarse version

§r = (1/a* T ' a")a* T, Dy, with thresholdh,, /(2a* " T a¥).
Considering a fixed, the update on” follows from a simple least
squares linear regression. The MMCA algorithm is givenwelo

1. Set # of iterations Lmax & thresholds Vk, dx = Lmax - Ag/2
2. While 6, > A\./2,
Fork=1,...,ns:
e Renormalize a*, s, and &,
o Update of s assuming all s/, and o’ are fixed:

— Compute the residual D, = X — >,/ ak s

1 kTp-1
akTF_laka T Dy,
n

— Project Dy: 5 =
— Compute o, = 5Ty
— Soft threshold «;, with threshold = §;, gives &y,
— Reconstruct s by s, = a@x Ry
o Update of a* assuming all s/ and a¥'#* are fixed:
[lk = T DkSkT
Sk Sk

Lower the thresholds: §;, = §x — A\ /2.

constructed using MMCAbottom right : the two source signals
reconstructed with Jade.

MMCA is clearly able to efficiently separate the initial soer
signals. Note that denoising is an intrinsic part of the atgm.

Fig. 2 shows a similar experiment with 2D data. From top to
bottom, we see respectively the two initial source images,noisy
mixtures, the two images reconstructed with Jade and thethages
reconstructed using MMCA. In this case, two transforms gisim
MMCA were the isotropic wavelet transform [16] and the cleve
transform [7]. The first one is well suited for representirguSsians
and the second one represents well anisotropic features.

In figure 3, the two left pictures are the sources. The first one
is composed of a set several pointwise singularities whiehwall
represented - according to the sparsity sense - in a wavieté-d
nary. The second one is a kind of "cloud” spatially diffusegicthe
whole picture. The latter is well sparsified using a globadddéte
Cosine Transform. The mixtures are pictured in the secongleo
of images (i.e. second column) . An anisotropic (not the saaise
variance in each channel) Gaussian noise has been added.

For the sake of comparison with standard source separain t



ICA-based estimated mixing matrix are biased and thus telard
methods fails to correctly estimate the sources. Quaivgtagsults
are shown in figure 5. It represents a mixing matrix critedefined
by pa = ||[I — AA~1A||; to assess the mixing matrix estimation
quality as the data noise variance increasdsis the true mixing
matrix, A is the estimated one andis a matrix which zeros the ef-
fect of scaling and permutation on the estimated matrixd ¥ AA
(i.e A is equal toA up to scaling and permutation) then = 0;
thusp 4 measures a deviation from the true estimate.

In opposition to standard ICA methods, MMCA iterativelyigsites
the mixing matrixA from coarse (noise-free) version of the sources
and thus is not penalized by the presence of noise.

Saurce 1 correlation — MMCA, JADE and FASTICA Source 2 correlation — MMCA, JADE and FASTICA
.
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Fig. 4. Two first graphs: Correlation between the true source 1 and
2 (respectively) and the sources estimated by JAD&téd ling,
FASTICA (0) and MMCA.Two last graphs: Correlation between
the true source 1 and 2 (respectively) and the sources estirbg
JADE denoiseddotted ling, FASTICA denoised«) and MMCA.
Abscissa : value ofo such that the data noise variance is equal to
0.80 in the first channel et, 20 in the second oneOrdinate :
correlation coefficient.

Fig. 2. From top to bottom. the two initial source images, two noisy
mixtures, the two images reconstructed with Jade and thetnages
reconstructed using MMCA.

niques, the third couple of pictures shows the sources atgiirby
the well-known JADE. As the genuine JADE algorithm has na&rbe
devised to take into account additive noise, we decided hapeoe
our results with a denoised version of the JADE estimatess the
estimated sources has been denoised using a standardmatbeti
wavelet denoising technique assuming that the noise \@@%aare
known. Note that we could have denoised the data before aepar o ]
ing; the non-linear wavelet denoising erasing the coherémtween ok e E
the channels, an ICA-based method fails to separate sofrawes h ]
denoised data. The fourth couple of pictures illustratés Ittter sk 3
point. Finally the two last images shows the MMCA source-esti ]
mates. Visually the MMCA results are better than those of HAD 0ok : E

and JADE denoised estimates. e

To get convinced by the efficiency of MMCA in a noisy con- oIf E
text, we choose to compare our method (with the latter exampl : ]
with well-known source separation methods such as JADE asd F oo o s os s o
TICA [1] and denoised versions of their estimates. Figurebaws
the correlation between the genuine sources and their &stinas
the data noise variance increases. One can note that botE JADRIg. 5. Mixing matrix criterion assessing the efficiency of the mix
and FASTICA have similar performances. In the low noise caseing matrix estimation with JADEdptted ling, FASTICA (o) and
MMCA performs as well as standard methods. As the data noisMMCA. Abscissa: value ob such that the data noise variance is
variance increases, MMCA clearly achieves better sourtiemas  €qual to0.80 in the first channel et, 20 in the second one. Ordi-
tion. In fact, when the variance of the data noise increaies, nate :pa (see text)

Mixing matrix criterion — MMCA, JADE and FASTICA
T T T T




Fig. 3. From left to right : the original sources, their mixtures (a Gaussian noiseds@do = 0.4 and0.6 for channell and2 respectively
- the mixtures are such that = 0,5s1 — 0, 5s2 andx;1 = 0, 3s1 + 0, 7s2), the sources estimated by JADE, their denoised versiorrand
sources estimated using MMCA.

4. CONCLUSION

The MMCA algorithm described in this paper extends MCA to the

multichannel case. For blind source separation, this sidanis
shown to perform well provided the original sources are rhofp

logically different meaning that the sources are sparslyasented
in different bases. We also demonstrated that MMCA perfdrets

ter than standard ICA-based source separation in noisgxorithe

next step might be an extension of the MCA philosophy to separ
sources which might be morphologically similar.
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