
MULTICHANNEL MORPHOLOGICAL COMPONENT ANALYSIS

J. Bobina, Y. Mouddena, J-L. Starcka,b and M. Eladc

a DAPNIA/SEDI-SAP b Laboratoire APC c The Computer Science Department
Service d’Astrophysique 11 place Marcelin Berthelot The Technion , Israel Institute of

91191 Gif-sur-Yvette France 75231 Paris Cedex 05 Technology, Haifa 32000, Israel

ABSTRACT

We present in this paper a new method for blind source separation
which is adapted to the case where the sources have differentmor-
phologies. We show that the morphology diversity concept leads to a
new and very efficient method, even in the presence of noise. The al-
gorithm, named Multichannel Morphological Component Analysis
(MMCA) is an extension of the Morphological Component Analysis
(MCA) method which was proposed for separating a single image
into texture and piecewise smooth parts or for inpainting applica-
tions. A range of example illustrates the results.

1. INTRODUCTION

A common assumption in signal or image processing is that mea-
surementsX made typically using an array of sensors, often consists
of mixtures of contributions from various possibly independent un-
derlying physical processesS. The simplest mixture model is linear
and instantaneous and takes the form :

X = AS + N (1)

whereX andS are random vectors of respective sizesm × 1 and
n×1 andA is anm×n matrix. MultiplyingS by A linearly mixes
then sources intom observed processes. In some cases, anm × 1
random vectorN is included to account for instrumental noise.The
problem is then to invert the mixing process so as to separatethe
data back into its constitutive elementary building blocks. In a blind
approach assuming minimal prior knowledge of the mixing process,
source separation is merely about devising quantitative measures of
diversity or contrast. Classical Independent Component Analysis
(ICA) methods assume the mixed sources are statistically indepen-
dent; this techniques have proven successful in a wide rangeof ap-
plications JADE, FastICA, Infomax (see [1, 2, 3, 4], and references
therein). Indeed, although statistical independence is a strong as-
sumption, it is in many cases physically plausible.

An especially important case is when the mixed sources are
highly sparse, meaning that each source is only rarely active and
mostly nearly zero. The independence assumption then ensures that
the probability for two sources to be significant simultaneously is
extremely low so that the sources may be treated as having nearly
disjoint supports. This is exploited for instance in SparseCompo-
nent Analysis [5]. And it is shown in [6] that first moving the data
into a representation in which the sources are assumed to be sparse
will greatly enhance the quality of the separation. Possible dictionar-
ies include Fourier and related bases, wavelet bases, etc. Working
with combinations of several bases or with very redundant dictionar-
ies such as undecimated wavelet frames or the more recent ridgelets,
curvelets [7], etc. could lead to even more efficient representations.

However, selecting from a large dictionary, the smallest subset of
elements, that will linearly combine to reproduce a given signal or
image, is a hard combinatorial problem. Nevertheless, several algo-
rithms have been proposed that can help build very sparse decompo-
sitions [8, 9] and in fact, a number of recent results prove that these
algorithms will recover the unique optimal decomposition provided
this solution is sparse enough and the dictionary is sufficiently inco-
herent [10, 11].
Morphological Component Analysis (MCA) is a method described
in [12] that constructs a sparse representation of a signal or an image
considering that it is a combination of features which are sparsely
represented in different dictionaries. For instance, images commonly
combine contours and textures: the former are well accounted for us-
ing e.g.curvelets while the latter may be well represented using local
cosine functions [13, 14, 15].
In searching a sparse decomposition of a signal or images, MCA
makes the specific assumption thats is a sum ofK componentsϕk

where a possibly overcomplete dictionaryΦk is given for eachk,
in which ϕk admits a sparse representation,ϕk = Φkαk while its
sparsest decomposition over the otherΦk′ 6=k is essentially diffuse.
The differentΦk can be seen as acting as discriminant between the
different components of the initial signals. Ideally, theαk are the
solutions of:

min
{α1,..., αK}

KX

k=1

‖αk‖0 subject to s =

KX

k=1

Φkαk. (2)

However, theL0 norm is non-convex and optimizing the above cri-
terion is combinatorial by nature. Substituting anL1 sparsity mea-
sure to theL0 norm, as motivated by recent equivalence resultse.g.
in [10], and relaxing the equality constraint, the MCA algorithm
seeks a solution to the following minimization problem:

min
ϕ1,...,ϕK

KX

k=1

λk‖αk‖1 + ‖s−

KX

k=1

ϕk‖
2
2 with ϕk = Φkαk (3)

A detailed description of MCA is given in [12] along with results of
experiments in contour/texture separation and image inpainting.

The purpose of this contribution is to extend MCA to the case of
multi-channel data. This is described in section 2.

2. MULTICHANNEL MCA

We consider the mixing model (1) and make the additional assump-
tion that each sourcesk is well (i.e. sparsely) represented in a spe-
cific dictionary. Again, assigning a Laplacian prior with precisionλk

to the decomposition coefficients of thekth sourcesk in dictionary



Φk is a practical way to implement this property. Here,sk denotes
the1 × n array of thekth source samples. Classically, we assume
Gaussian white noise with known covarianceΓn. This leads to the
following joint estimator of the source processesS = {s1, . . . , sns

}
and the mixing matrixA:

{Ŝ, Â} = Arg min
S,A
‖X−AS‖22,Γn

+
X

k

λk‖skTk‖1 (4)

where‖M‖22,Γn
= trace

`
M

T
Γ

−1
n M)

´
. Unfortunately, this min-

imization problem suffers from the lack of scale invarianceof the
objective function. Indeed, combining a scaling of the mixing ma-
trix, A← ρA, and an inverse scaling of the source matrix,S ← 1

ρ
S,

leaves the quadratic measure of fit unchanged whereas the term mea-
suring sparsity is deeply altered by the same inverse scale factor 1

ρ
.

Consequently, the minimization will probably drive us to trivial solu-
tions,A→∞ andS → 0, since the sparsity term can be minimized
ad libitumasρ goes to+∞. Nevertheless, scale-invariance can be
artificially recovered by normalizing the columnsak of the mixing
matrixA at each iteration (ak+

← ak−
/‖ak−

‖2) and propagating

the scale factor to the corresponding source,sk
+ ← ‖ak−

‖2sk
−,

and precisionλk
+ ← ‖ak−

‖2λk
−.

Define thekth multichannel residualDk = X −
P

k′ 6=k ak′

sk′

as corresponding to the part of the data unexplained by the other cou-
ples{ak′

, sk′}k′ 6=k. Then, the minimization problem (4) is equiva-
lent to jointly minimizing the following set of elementary criteria:

∀k, {ŝk, âk} = Arg min
sk,ak

‖Dk − aksk‖
2
2,Γn

+ λk‖skTk‖1 (5)

Zeroing the gradient with respect tosk andak of this criterion leads
to the following coupled equations:

8
><
>:

sk = 1

akT
Γ
−1

n ak

“
akT

Γ
−1
n Dk −

λk

2
Sign(skTk)Rk

”

ak = 1

sksk
T
Dksk

T

(6)
Although the above holds for unitary transforms for whichRk =
T

T
k , we make the same approximation as in the previous section and

consider that it is still valid for redundant transforms. Then, for a
fixedak, the source processsk is estimated by soft-thresholding the
coefficients of the decomposition of acoarse version

esk = (1/akT
Γ

−1
n ak)akT

Γ
−1
n Dk with thresholdλk/(2akT

Γ
−1
n ak).

Considering a fixedsk, the update onak follows from a simple least
squares linear regression. The MMCA algorithm is given below :

1. Set # of iterations Lmax & thresholds ∀k, δk = Lmax · λk/2

2. While δk > λk/2,
For k = 1, . . . , ns:
• Renormalize ak, sk and δk

• Update of sk assuming all sk′ 6=k and ak′

are fixed:

– Compute the residual Dk = X −
P

k′ 6=k ak′

sk′

– Project Dk : s̃k =
1

akT
Γ
−1
n ak

akT
Γ
−1
n Dk

– Compute αk = s̃kTk

– Soft threshold αk with threshold = δk gives α̂k

– Reconstruct sk by sk = α̂kRk

• Update of ak assuming all sk′ and ak′ 6=k are fixed:
ak

=
1

sksk
T

Dksk
T

Lower the thresholds: δk = δk − λk/2.

At each iteration, acoarse(and thus noise free) version of the
sources are computed. The mixing matrix is then estimated from
noise-free sources which only contains the most significantparts of
the original sources and not their mixtures. The overall optimiza-
tion leads to refine both the noise-free sources and the mixing ma-
trix. The use of an iterative thresholding with a set of thresholds
{δk}k=1,cdots,n decreasing slowly guarantees robustness. Indeed,
both alternate projections and iterative thresholding define a com-
pelled path for the variables to estimate (sources and mixing matrix)
during the optimization. This optimization scheme might lead to
a not so bad estimation according to the MMCA hypothesis which
stipulate that different sources are sparsified in different basis.

The next section will illustrate the efficiency of the MMCA al-
gorithm when the sources to separate are morphologically different
enough.

3. EXPERIMENTS

Fig. 1. top left : the two initial source signals.top right : three
noisy observedmixtures. bottom left : the two source signals re-
constructed using MMCA.bottom right : the two source signals
reconstructed with Jade.

MMCA is clearly able to efficiently separate the initial source
signals. Note that denoising is an intrinsic part of the algorithm.

Fig. 2 shows a similar experiment with 2D data. From top to
bottom, we see respectively the two initial source images, two noisy
mixtures, the two images reconstructed with Jade and the twoimages
reconstructed using MMCA. In this case, two transforms using in
MMCA were the isotropic wavelet transform [16] and the curvelet
transform [7]. The first one is well suited for representing Gaussians
and the second one represents well anisotropic features.

In figure 3, the two left pictures are the sources. The first one
is composed of a set several pointwise singularities which are well
represented - according to the sparsity sense - in a wavelet dictio-
nary. The second one is a kind of ”cloud” spatially diffused over the
whole picture. The latter is well sparsified using a global Discrete
Cosine Transform. The mixtures are pictured in the second couple
of images (i.e. second column) . An anisotropic (not the samenoise
variance in each channel) Gaussian noise has been added.

For the sake of comparison with standard source separation tech-



Fig. 2. From top to bottom. the two initial source images, two noisy
mixtures, the two images reconstructed with Jade and the twoimages
reconstructed using MMCA.

niques, the third couple of pictures shows the sources estimated by
the well-known JADE. As the genuine JADE algorithm has not been
devised to take into account additive noise, we decided to compare
our results with a denoised version of the JADE estimates; thus the
estimated sources has been denoised using a standard undecimated
wavelet denoising technique assuming that the noise variances are
known. Note that we could have denoised the data before separat-
ing; the non-linear wavelet denoising erasing the coherence between
the channels, an ICA-based method fails to separate sourcesfrom
denoised data. The fourth couple of pictures illustrates this latter
point. Finally the two last images shows the MMCA source esti-
mates. Visually the MMCA results are better than those of JADE
and JADE denoised estimates.

To get convinced by the efficiency of MMCA in a noisy con-
text, we choose to compare our method (with the latter example)
with well-known source separation methods such as JADE and FAS-
TICA [1] and denoised versions of their estimates. Figures 4shows
the correlation between the genuine sources and their estimates as
the data noise variance increases. One can note that both JADE
and FASTICA have similar performances. In the low noise case,
MMCA performs as well as standard methods. As the data noise
variance increases, MMCA clearly achieves better source estima-
tion. In fact, when the variance of the data noise increases,the

ICA-based estimated mixing matrix are biased and thus the standard
methods fails to correctly estimate the sources. Quantitative results
are shown in figure 5. It represents a mixing matrix criteriondefined
by ρA = ||I − ΛÃ−1A||1 to assess the mixing matrix estimation
quality as the data noise variance increases.A is the true mixing
matrix, Ã is the estimated one andΛ is a matrix which zeros the ef-
fect of scaling and permutation on the estimated matrix. IfÃ = ΛA
(i.e Ã is equal toA up to scaling and permutation) thenρA = 0;
thusρA measures a deviation from the true estimate.

In opposition to standard ICA methods, MMCA iteratively estimates
the mixing matrixA from coarse (noise-free) version of the sources
and thus is not penalized by the presence of noise.

Fig. 4. Two first graphs: Correlation between the true source 1 and
2 (respectively) and the sources estimated by JADE (dotted line),
FASTICA (�) and MMCA.Two last graphs: Correlation between
the true source 1 and 2 (respectively) and the sources estimated by
JADE denoised (dotted line), FASTICA denoised (�) and MMCA.
Abscissa : value ofσ such that the data noise variance is equal to
0.8σ in the first channel et1, 2σ in the second one.Ordinate :
correlation coefficient.

Fig. 5. Mixing matrix criterion assessing the efficiency of the mix-
ing matrix estimation with JADE (dotted line), FASTICA (�) and
MMCA. Abscissa: value ofσ such that the data noise variance is
equal to0.8σ in the first channel et1, 2σ in the second one. Ordi-
nate :ρA (see text)



Fig. 3. From left to right : the original sources, their mixtures (a Gaussian noise is added :σ = 0.4 and0.6 for channel1 and2 respectively
- the mixtures are such thatx1 = 0, 5s1 − 0, 5s2 andx1 = 0, 3s1 + 0, 7s2), the sources estimated by JADE, their denoised version andthe
sources estimated using MMCA.

4. CONCLUSION

The MMCA algorithm described in this paper extends MCA to the
multichannel case. For blind source separation, this extension is
shown to perform well provided the original sources are morpho-
logically different meaning that the sources are sparsely represented
in different bases. We also demonstrated that MMCA performsbet-
ter than standard ICA-based source separation in noisy context. The
next step might be an extension of the MCA philosophy to separate
sources which might be morphologically similar.
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