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Abstract

We present the Sequential Subspace Optimization
(SESOP) method for large-scale smooth unconstrained
problems. At each iteration we search for a minimum
of the objective function over a subspace spanned by the
current gradient and by directions of few previous steps.
We also include into this subspace the direction from
the starting point to the current point, and a weighted
sum of all previous gradients, following [Nemirovski-
1982]. This safeguard measure provides an optimal
worst case convergence rate of order1/N2 (for convex
problems), whereN is the iteration count. In the case
of quadratic objective, the method is equivalent to the
conjugate gradients method.

We identify an important class of problems, where
subspace optimization can be implemented extremely
fast. This happens when the objective function is a
combination of expensive linear mappings with compu-
tationally cheap non-linear functions. This is a typical
situation in many applications, like tomography, signal
and image denoising with Basis Pursuit, pattern recog-
nition with Support Vector Machine, and many others.
We demonstrate highly competitive numerical results
using examples from the mentioned areas.

1 Introduction

We consider an unconstrained minimization of a
smooth function

min
x∈Rn

f(x). (1)

When the number of variables is very large, sayn =
104 − 107 and more, there is a need for optimization
algorithms, for which storage requirement and compu-
tational cost per iteration grow not more than linearly
in n. An early algorithm of this type is the conjugate
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gradient (CG) method [2]. It is known that CG worst
case convergence rate for quadratic problems isO(k−2)
(in terms of objective function), wherek is the iteration
count. This rate of convergence is independent of the
problem size and is optimal,i.e. it coincides with the
complexity of convex smooth unconstrained optimiza-
tion. The extensions of CG to nonlinear functions by
Fletcher-Reeves and Polak-Ribière are no longer worst-
case optimal. Nemirovski [6] suggested an optimal
method for convex smooth unconstrained optimization.
This method sequentially minimizes the objective func-
tion over subspaces spanned by the three following vec-
tors:

1. The sum of all previous steps,i.e. d1
k = xk − x0.

2. A weighted sum of all previous gradientsd2
k =∑k−1

i=0 wig(xi) with pre-specified weightswi.

3. The current gradientg(xk).

While Nemirovski’s method achieves the optimal com-
plexity in worst case problems, it often behaves poorer
than conventional algorithms like non-linear CG or
Truncated Newton (TN) [2] in non-worst case prob-
lems. In the current work we present a method, which
is equivalent to CG in the quadratic case, and often out-
performs CG and TN in non-quadratic case, while pre-
serving worst-case optimality.

Our crucial observation is that for many important
problems subspace optimization can be implemented
extremely fast. This happens, for example, when the
objective function is a combination of expensive lin-
ear mappings with computationally cheap non-linear
functions. It is a typical situation in many applica-
tions, like tomography, signal and image processing
with Basis Pursuit, pattern recognition with Support
Vector Machine, and many others. Another example is
constrained optimization, where barrier or penalty ag-
gregate may have this property in linear programming,
semidefinite programming. Motivated by this observa-
tion we tend to increase the dimensionality of the search
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subspaces and use quite accurate subspace optimiza-
tion. The first additional vector we include is the last
steppk = xk − xk−1. There is a deep reason to do
so: Iteration of quadratic CG can be defined as an opti-
mization in the subspace of the current gradientg(xk)
and the last steppk. Preserving this property is a nat-
ural way to extend CG to the non-quadratic case. Note
that Fletcher-Reeves and Polak-Ribière nonlinear CG
method lack this property, which could be very help-
ful: every iteration is guaranteed to be at least as good
as steepest descent. On the other hand, by theexpand-
ing manifoldproperty, quadratic CG achieves minimum
over the subspace of the current gradient and all previ-
ous steps and gradients. We can approximate this prop-
erty including several previous steps and gradients into
the optimization subspace.

Let us summarize: Using only 2-d subspace opti-
mizations in directionsg(xk) andpk, we get a method,
which coincides with CG, when the problem becomes
quadratic. This property is favorable in the proxim-
ity of the solution, where the problem has a good
quadratic approximation. Globally (in our experience)
this method behaves better and is more stable then
Polak-Ribìere CG. Using two additional Nemirovski di-
rections: d1

k = xk − x0 and d2
k =

∑k−1
i=0 wig(xi)

with appropriate weightswi, we guarantee the worst-
case optimality of the method. Including more previous
steps and gradients into the optimization subspace helps
to further reduce the number of iterations, while mod-
erately increasing the iteration cost.

We also introduce pre-conditioning into this scheme,
using pre-multiplication of gradients by an approximate
inverse Hessian (in our experiments we have used diag-
onal approximation). This measure quite often signifi-
cantly accelerates convergence.

2 SESOP algorithm

Construction of subspace structure In order to de-
fine the subspace structure, denote the following sets of
directions:

1. Current gradient : g(xk) - the gradient at thek’th
pointxk.

2. Nemirovski directions:

d(1)
k = xk − x0

d(2)
k =

k∑

i=0

wig(xi),
(2)

wherewk is defined by

wk =

{
1 for k = 0
1
2 +

√
1
4 + w2

k−1 for k > 0.
(3)

3. Previous directions:

pk−i = xk−i − xk−i−1, i = 0, . . . , s1. (4)

4. Previous gradients:

gk−i, i = 1, . . . , s2. (5)

The mandatory direction 1 and any subset of direc-
tions 2 - 4 can be used to define the subspace structure.

Algorithm summary Let D be a matrix of the cho-
senM (column) directions described above, andα a
column vector ofM coefficients. On every iteration we
find a new directionDα in the subspace spanned by the
columns ofD. The algorithm is summarized as follows:

1. Initializexk = x0, D = D0 = g(x0).

2. Normalize the columns ofD.

3. Find
α∗ = argmin

α
f
(
xk + Dα

)
. (6)

4. Update current iterate:

xk+1 = xk + Dα∗. (7)

5. Update matrixD according to the chosen subspace
directions.

6. Repeat steps 2 - 5 until convergence.

Reduced computations for subspace minimization
Consider a function of the form

f(x) = ϕ(Ax) + ψ(x). (8)

Such functions are very common in many applications.
The multiplicationsAx andAT y are usually the most
computationally expensive operations for calculating
the functionf and its gradient. Methods based on sub-
space optimization often iterate the multi-dimensional
minimizer incrementally in the form

xk+1 = xk +
M∑

i=1

αiri, (9)
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where the coefficientsαi, the directionsri and the num-
ber of directionsM are determined according to the
specific optimization scheme. Such a framework allows
us to save a large part of the matrix-vector multiplica-
tions originally needed for calculation of the objective
function value (8). The termAxk+1 can be broken into

Axk+1 = Axk + A
M∑

i=1

αiri

= Axk +
M∑

i=1

αiAri

= v0 +
M∑

i=1

viαi,

(10)

wherevi = Ari. For each new directionri we need to
calculate and save one vector (vi). For line search op-
eration along a single direction, or subspace minimiza-
tion along several directions, there is no need to perform
any matrix-vector multiplication, since the function and
its gradient with respect toα are gained using the pre-
calculated set of vectorsvi.

3 Computational Experiments

We compared the performance of several algorithms
with several large-scale optimization problems: Com-
putational Tomography (CT), Basis Pursuit (BP), and
Support Vector Machine (SVM). Details appear in [4],
[5]. We compared CPU runtime and the number of
matrix-vector multiplication between all methods.

Computerized Tomography (CT) We solved the
two dimensional straight-ray transmission tomography
problem, for sparse images of sizes1282, 2562 pixels.
Our objective is minimizing following penalized least
squares function

min
x

1
2
‖Ax− y‖22 + µ‖x‖1, (11)

whereA represents the Radon transform,x is the un-
known original image,y is the observed noisy projec-
tion data andµ is a regularization parameter. In order
to use smooth optimization, we use smooth approxima-
tion of the l1-norm. Figure 1 presents the inaccuracy
in objective function as a function of iteration number.
Iteration numbers and runtime are summarized in Table
1. SESOP method outperforms the CG method by25%
less iterations.

Image Convergence Good results
size Method iter time iter time
1282 SESOP 138 28.4 36 8.21

CG 294 118.6 48 13
TN 2632 355 2053 280

2562 SESOP 182 166 41 39.4
CG 377 627 54 63.2
TN 5050 3208 2729 1728

Table 1: Sparse tomography: Iterations and CPU runtime
[sec] to convergence (‖∇f‖ ≤ 10−4), and to ’good results’
(PSNR reached 0.01dB from the final PSNR).

Basis Pursuit (BP) We bring an example of image
de-noising in BP framework [1] using contourlets dic-
tionary (see for example [3]). We solve the following
problem

min
α

1
2σ2

n

‖Φα− y‖22 +
∑

i

λi|αi|. (12)

wherey = x+n is the observed sum of the original pic-
turex (parsed column-wise) with Gaussian noisen with
varianceσ2

n. We assumex = Φα whereΦ is a ”synthe-
sis” operator (equivalent to a matrix of basis functions
in its columns), and sparsity of the original picture’s co-
efficients. The experiment was conducted on the popu-
lar image ’peppers’ (see [4]). For picture size of2562

pixels, the number of coefficients is87, 296. Inaccu-
racy in objective function is shown in Figure 2. Itera-
tion numbers and runtime are summarized in Table 2.
Subspace method converged faster than CG, although
for identical number of iterations for ’Good results’ the
CG was faster (pictures of sizes2562, 5122).

3.1 Other Numerical Experiments with
SESOP

In [5] we bring more numerical results with SESOP
in the area of pattern recognition using Support Vector
Machines. Just to summarize briefly: we have solved
six problems with103 − 106 variables. SESOP was
consistently faster than Nesterov method, CG and TN,
on average outperforming TN ten times and CG about
two times.

4 Conclusions

SESOP is an efficient tool for large-scale unconstrained
optimization. The main advantages of SESOP are op-

3



Sequential Subspace Optimization Narkiss & Zibulevsky

500 1000 1500 2000 2500

10
−4

10
−2

10
0

10
2

10
4

Iteration

f −
 f*

CG

SESOP 1 

Truncated Newton 

Figure 1:Sparse tomography: Inaccuracy in objective func-
tion [log scale] with iterations
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Figure 2:Basis pursuit: Inaccuracy in objective function [log
scale] with iterations

Image Convergence Good results
size Method iter time iter time
1282 SESOP 25 5.54 5 1.06

CG 55 8.22 7 1.28
TN 56 7.88 12 5.52

2562 SESOP2 83 74.36 8 8.44
CG 335 211 8 7.18
TN 306 126.99 3 3.68

5122 SESOP2 75 382.23 8 51.7
CG 268 984.15 10 45.13
TN 156 432.18 9 184.15

Table 2: Basis Pursuit de-noising example: Iterations and
CPU runtime [sec] to convergence (‖∇f‖ ≤ 10−4), and to
’good results’ (PSNR reached 0.01dB from the final PSNR).

timal worst-case complexity for smooth convex uncon-
strained problems, low memory requirements and low
computation load per iteration. Unconstrained opti-
mization is a building block for many constrained opti-
mization techniques, which makes SESOP a promising
candidate for embedding into many existing solvers.
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