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Abstract 
 
The goal of Bounded Error Subset Selection (BESS) is to find the 
sparsest representation of an Nx1 vector b using vectors from a 
dictionary A of size NxM, such that the approximation is within a 
distance δ from b. Here δ  is a user defined approximation 
threshold. Specifically, the goal is to find the sparsest vector x 
such that ||Ax – b|| ≤ δ. The BESS is a reformulation of the 
classical subset selection problem. We describe two enumeration 
approaches with bounded complexities that find the optimal 
solution to the BESS problem. In particular, the paper describes 
the first exhaustive enumeration solution to subset selection type 
problems with polynomial complexity. Furthermore, it also 
describes a lower complexity stack decoding approach that finds a 
solution to the BESS problem with a complexity that is 
proportional to that of orthogonal matching pursuit. The 
approaches described here have a markedly better rate-distortion 
behavior than any of the other known solutions to the subset 
selection and BESS problems. 
 
 

1. INTRODUCTION 
 
Sparse signal representation finds application in many 
signal processing areas such as coding, signal restoration, 
direction finding, source localization, and linear inverse 
problems, to name a few. In the subset selection problem 
(SS), it is required to find the best signal representation for 
a signal vector b using an overcomplete dictionary 
represented by the N-dimensional vectors spanning the 
column space of the matrix A. By construction, the number 
of basis vectors M in the dictionary is such that N« M. 
Thus, it is required to find the sparsest vector x (the vector 
x with the minimum number of non-zero solution) such 
that Ax = b. It is known that the SS is a NP-hard [1]. 
Several strategies have been developed for solving the SS 
problem. In particular, the Method of Frame (MoF) finds 
the solution which minimizes the 2-norm of the solution 
vector which is equivalent to minimizing the 2-norm of the 
reconstruction error. However, the MoF does not address 
the sparseness issue [2]. The Basis Pursuit (BP) algorithm, 
which can be solved using linear programming, finds the 
solution that minimizes the L1-norm of the solution vector 
[1]. The BP algorithm produces a reasonably sparse 
solution due to the properties of solutions to L1 
minimization problems [3]. Matching Pursuit (MP) is an 
iterative greedy algorithm in which the signal is iteratively 
decorrelated from the basis vector which has maximum 
correlation with the residual [5]. A variant of the MP called 
                                                                 
 

the Orthogonal Matching Pursuit (OMP) performs an extra 
step of orthogonalization before each iteration [6]. 
However, both MP and OMP are greedy algorithms that 
lack a global optimization criterion. The Best Orthogonal 
Basis (BOB) uses an entropy measure over orthogonal 
bases to provide a near-optimal solution. However, as will 
be seen in the simulation section, BOB fails to find a good 
representation for some signals when they cannot be 
represented in terms of the assumed orthogonal structures.  
 
In this paper, we discuss a variation of the SS problem that 
analyzes a perturbed version of the signal under 
investigation instead of the signal itself. This is a realistic 
assumption due to the presence of noise, masking effect, or 
due to channel distortion. We describe two solutions to the 
reformulated problem with bounded complexities. We 
show that exhaustive enumeration can be done for the 
reformulated problem with polynomial complexity. We 
also describe a lower complexity solution to the problem 
and demonstrate its superior performance when compared 
to any of the known solutions to the SS problem. 
. 
 

2. BOUNDED ERROR SUBSET SELECTION 
 
The Bounded Error Subset Selection (BESS) has been 
introduced by the authors in [8]-[9] as a reformulation of 
the classical subset selection problem. It has been shown 
that by introducing a perturbation vector ε to the signal 
under investigation, b, one can obtain a maximally sparse 
representation of the signal from the overcomplete 
dictionary A. In particular, the goal in BESS is to find the 
sparsest vector x such that ||Ax – b|| ≤ δ for a user defined 
approximation threshold δ. 
 
Two solutions were proposed to the BESS problem in [8] 
and [9]. In [8], the authors consider the case were the 
entries of x are restricted to be integer. In [9], an 
approximate solution is derived by converting the BESS 
problem into a sparse signal representation problem with a 
positivity constraint that is then solved using ordinary 
linear programming. In contrast, the solutions that we 
present here do not convert the problem into a different 
problem. Further, one solution is exact while the other has 
lower complexity and better performance than that of [8]. 
 
In the remainder of this paper, we will use the L2  norm to 
measure approximation errors. Further, with no loss of 



generality, we will assume that the vector b and all columns 
ak  of A have been normalized to each have unit L2 norm. 
 

3. POLYNOMIAL TIME PROCEDURE 
 
The first approach that we present is an exact solution to 
the BESS problem with polynomial complexity. It is based 
on the observation that by looking for an approximation to 
b within δ, we effectively induce a quantization of  the N 
dimensional unit sphere on the surface of which  b lives. 
This affords us the opportunity to implement an exhaustive 
search procedure with polynomial complexity as we 
explain below. 
 
We begin by noting that the sparse signal representation 
problem and BESS can be solved via exhaustive 
enumeration Exhaustive enumeration has exponential 
complexity. For discussion purposes, let us consider the 
following exhaustive search. At step i, the procedure 
produces a list Pi of approximations to b using all the 
subsets of columns of A that were considered up to step i-1 
after we add to each individually the ith column of A. The 
algorithm is initialized with an empty list P0 and an empty 
list of subsets of columns of A used to calculate the  
approximations. It terminates after M steps. 
 
To reduce the complexity of the algorithm, we proceed as 
follows. In addition to the lists Pi, we keep track of two 
additional types of lists. We shall refer to the first type of 
lists as the approximation subsets lists. An approximation 
subset list Σi  is a list of subsets Sn of columns of A that 
were used to compute corresponding approximations in Pi. 
We also keep track of the corresponding orthogonalization 
subsets lists Ωi. Each subset ω n in this list initially is the 
same as the corresponding subset Sn of columns of A that 
was used to produce the corresponding approximation to b 
in Pi.  
 
We expand the lists as follows. Suppose that at step k we 
are dealing with ak the kth column of A. To produce an 
additional approximation by appending ak to an 
approximation subset Sn produced in steps 1 through k-1, 
we add to the approximation corresponding to Sn the 
projection of b onto the component of ak that is orthogonal 
to the orthogonalization subset ωn corresponding to Sn.  
 
We can reduce the complexity of the exhaustive search 
approach by using a trimming procedure. To differentiate 
between the trimmed and un-trimmed lists of 
approximations, we shall use Xi to refer to the trimmed list 
of approximation produced in step i. At the end of each 
step of the exhaustive enumeration algorithm, we trim the 
list Xi  of approximations that we have produced by 
eliminating from Xi any approximation that is within a 
distance δ1 from another approximation that is closer to b 
or uses a smaller number of columns of A. We also update 

the orthogonalization subset corresponding to the 
approximation that we retained by replacing it with the 
approximation subset corresponding to the approximation 
that was eliminated.  Partial pseudo code for the approach 
is listed below. 
 
Calculate  δ1 from δ 
M ← |A| 
L0={} % Li  list of subsets of dictionary vectors ai that were used to 

produce   approximations 
X0={} % Xi  list of approximations bi  
for i ← 1 to M 
 do {Li, Xi} ← Merge-Lists{(Li-1, Li-1 + ai), (Xi-1, Xi-1 + 
ai)} 
       {Li, Xi} ← Trim(Li, Xi,;δ) 
Let b*= A x* be the sparsest approximation to b in A that satisfies 
||b-b*|| ≤ ε 
return b* and x* 
 
 
The modified exhaustive search approach described can be 
shown to provide a solution to the BESS problem and have 
polynomial complexity for any non zero choice of δ. An 
outline of the proofs follows. Suppose that for each 
approximation yi in the untrimmed list Pi there is an 
approximation zi in Xi  such that ||zi-yi||≤ δ1.  It then follows 
from the way the orthogonalization and approximation 
subsets are constructed that if zi  is dropped from Xi, we 
will nevertheless have ||zi+1-yi+1||≤ δ1. Hence, for each 
approximation yi+1 in the untrimmed list Pi+1 there is an 
approximation zi+1 in Xi+1 that is within δ1 of yi+1. This will 
hold true in particular for the optimal approximation y* =b  
in PM. By picking δ1   = δ/M it then follows that the output 
z* of the procedure will be a solution to the BESS problem. 
 
The polynomial complexity of the algorithm follows from 
the fact that the algorithm never has to keep track of more 
than δ -N approximations.  
 

4. STACK DECODING ALGORITHM 
 
The main drawback of the polynomial time procedure is 
that it has a large memory requirement. Specifically, in the 
worst case, it needs to keep track of up to δ -N 
approximations and their corresponding lists of 
approximation and orthogonalization vectors. To alleviate 
this problem, we propose a stack decoding procedure that 
generalizes orthogonal matching pursuit. As we shall see in 
the results section, the procedure yields better rate-
distortion curves than any of the subset selection 
procedures that have been reported in the literature so far. 
 
The stack decoding procedure maps the BESS problem 
onto a tree structure. Each node of the tree represents a 
particular approximation. The depth of a node indicates 
how many vectors were used in the approximation. The 
branches of the tree indicate the vectors that were used to 



obtain the approximation. In particular, the root of the tree 
is zero and corresponds to an approximation that uses no 
column of A. The M children of the root correspond to all 
possible approximations of b that use a single column of A, 
with the branch from the root to its child indicating which 
column of A was used. By expanding each child of the root, 
we reach the depth 2 nodes. These nodes correspond to 
approximations of b that use two columns of A.  Note that 
each of the M children of the root has M-1 children of its 
own. The branch from that child to any of its children 
indicates which column of A was added to get the new 
approximation. By tracing the path from the root to the any 
level 2 node, we recover the 2 columns of A that were used 
to compute the approximation corresponding to the node. 
The exhaustive solution to the BESS problem can 
theoretically be obtained by expanding the tree, level by 
level, up to N levels to get all possible representations of b 
in terms of subsets of columns of A,  or  expanding it until 
an approximation is found with an approximation error less 
than the desired approximation error bound δ. 
 
 To get a manageable algorithm, the stack decoding 
procedure implements an essentially breadth first tree 
search. This is to be contrasted with the mainly depth first 
behavior of the polynomial time exhaustive search 
procedure. It prunes the tree corresponding to the BESS 
problem after extending it by one level using three pruning 
procedures. First, it does not fully expand each node as it 
increases the depth of the tree. It simply retains for each 
node the best K2 of its children, i.e., it retains at most for 
each node K2 additional approximations. Next, it 
implements the pruning approach that is used by the 
polynomial time search algorithm. Specifically, it 
eliminates from the tree any approximation that is within a 
distance δ1 from another approximation that is closer to b 
or is at a higher level (lower depth). Finally, it keeps the 
best K1 approximations, i.e., it trims the tree and keeps only 
the best K1 nodes.  
 
As in all stack algorithms, the cost function that we use for 
selecting which nodes to trim, can play a major role in the 
computational complexity of the procedure and its 
performance. The cost function should measure the 
likelihood that any given path from the root will be on the 
optimal solution. Part of that likelihood can be evaluated 
from the approximation error corresponding to the node at 
the end of the path at any given step. The likelihood of the 
remaining path can be estimated as follows. Suppose that 
we are at  node n*  and have performed k tree expansion 
steps, i.e., the deepest node in the tree is at most at level k. 
Further, let L be an upper bound on the number of levels 
that we intend to use (L<N). We can add to the energy of 
the approximation to b corresponding to n*,  the sum of the 
energy of the projections of b on the closest L-k columns of 
A  to b that are not on the path from the root to node n*. As 
the algorithm proceeds, this calculation of the cost function 
can be refined at the expense of additional memory. This 

follows from the fact that as the algorithm proceeds, it can 
keep track of a subset of energies of all approximations 
with 1, 2,  etc. approximations of b in terms of the vectors 
that have not been used by any of the paths to the best K1 
approximations retained so far.  
 
Note that the complexity of this approach described so far 
is no more than K1 K2 that of orthogonal matching pursuit. 
In our work, we have found that it is enough to take K1 and 
K2 to be 3 to find the optimal approximation to a given 
signal within the specified approximation error.  
 
We have also found that we need to add a backwards 
elimination step  to the procedure to find the sparsest 
possible solution. This is due to the fact that the algorithm 
may end up with an approximation within the desired error 
δ that uses more columns of A than is absolutely needed. 
This behavior is not unlike the behavior seen with normal 
orthogonal matching pursuit. The backwards elimination 
step recursively eliminates from the list of columns of A 
corresponding to the best solution identified by the 
algorithm one column at a time, as long as the resulting 
approximation error does not exceed the desired 
approximation error bound δ.   
 
Finally, note that a variant of the stack decoding is 
guaranteed to find the optimal solution to BESS at the 
expense of variable added memory and computational 
requirements. Specifically, the variant is based on the 
observation that in the worst case, the rate-distortion curve 
corresponding to the optimal solution will be linear in the 
number of vectors ak retained for approximation. Hence, 
the cost function it uses at step k is equal to the square root 
of the square of the approximation error at stage k minus 
(L-k)/L. The procedure then retains all approximations with 
a cost less than δ as opposed to the best K1 approximations. 
The number of approximations it retains will thus change 
from problem to problem and from iteration to iteration for 
a given BESS problem. 
 

5. RESULTS 
 
The proposed algorithm was compared to the well-known 
methods for sparse signal representation, namely, Basis 
Pursuit, Orthogonal Matching Pursuit, and Best Orthogonal 
Basis with L1 entropy. Simulation was performed on 
different signals and different dictionaries derived from the 
Atomizer package [10]. Several signals were analyzed to 
illustrate the advantage of using the proposed algorithm. 
For illustration purpose, Figs. 1 and 2 show the Carbon and 
Doppler signals of [10]. Figs. 3 and 4 display the 
corresponding rate-distortion behavior of the various 
algorithms for the two signals. In Figs. 3 and 4, the 
proposed stack decoding algorithm and that of [9] are 
referred to as “Pruned enumeration” and “BESS” 
respectively. The stack decoding results (“Pruned 
enumeration”) were obtained by setting K1 = K2 = 3 and 



using a cost function equal to the approximation error, i.e., 
not using any approximation error prediction term in the 
cost function. Note the dramatically improved behavior of 
the proposed approach. Note in particular that while OMP 
fails to represent the Carbon signal properly, the proposed 
algorithm was able to represent it using fewer coefficients 
compared to the BOB and BP techniques. Similarly, the 
proposed algorithm succeeded in sparsely representing the 
Doppler signal compared to the other techniques as shown 
in Fig. 2.      
  
 

6. REFERENCES 
 
[1] B. Natarajan, ”Sparse Approximate Solutions to Linear Systems,” 

SIAM J. Comp., Vol. 24, pp. 227-234, Apr. 1995.  
[2] Daubechies I., ”Time-Frequency Localization operators: A Geometric 

Phase Space Approach,”IEEE Trans. on Info. Theory, Vol. 34, No. 4, 
pp. 605-612, July 1988. 

[3] J. J. Fuchs, B. Delyon, “Minimal L1 norm reconstruction of 
oversampled signals”. IEEE Trans. on Info. Theory, vol 46, No 4, p. 
1666-1672, July 2000. 

[4] Chen S., and Donoho D., ”Atomic Decomposition By Basis Pursuit,” 
SIAM J. on Scientific Computing, Vol. 20, No. 1, pp. 33-61, 1998.  

[5] Mallat S., and Zhang Z., ”Matching Pursuit with Time-Frequency 
Dectionaries,” IEEE Trans. on Signal Processing, Vol. 41, No. 12, pp. 
3397-3415, Dec. 1993.  

[6] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, ”Orthogonal 
matching pursuit: Recursive function approximation with applications 
to wavelet decomposition,” in Proc. 27th Asilomar Conference on 
Signals, Systems and Computers, A. Singh, ed., IEEE Comput. Soc. 
Press, Los Alamitos, CA, 1993.  

[7] Coifman R., and Wickerhauser M., ”Entropy-based Algorithms for 
Best Basis Selection,” IEEE Trans. on Info. Theory, Vol. 38, No. 2, 
pp.713-718, March 1992.  

[8] Masoud Alghoniemy and Ahmed H. Tewfik, ”A Sparse Solution to 
the Bounded Subset Selection Problem: A Network Flow Model 
Approach,” Proceedings of the IEEE International Conference on 
Acoustics, Speech, and Signal Processing., Vol. 5, pp. 89-92, May 
2004.  

[9] Masoud Alghoniemy and Ahmed H. Tewfik, “Reduced Complexity 
Bounded Error Subset Selection,” Proceedings of the 2005 IEEE 
International Conference on Acoustics, Speech, and Signal 
Processing., Vol. 5, pp. 725-728, March 2005.  

[10] http://www-stat.stanford.edu/ atomizer.  
 
 
 

 
 

Fig. 1: Carbon signal 
   

 
Fig. 2: Doppler signal. 

 
Fig. 3: Rate Distortion curves for Carbon signal. 

 

 
 

Fig. 4: Rate Distortion curves for Doppler signal. 
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