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ABSTRACT

When seeking a representation of a signal on a redundant
basis one generally replaces the quest for the sparsest mod-
el by an`1 minimization and solves thus a linear program.
In the presence of noise one has in addition to replace the
exact reconstruction constraint by an approximate one. We
consider simultaneously several ways to allow for recon-
struction errors and detail the optimality conditions of each
of the criterion. We then analyze if these conditions are
helpful in the implementation of optimization algorithms.

1. INTRODUCTION

We consider the case where a signal can be exactly repre-
sented as a linear combination of a small number of ele-
ments from an over-complete set of vectors To recover this
representation in the presence of noise, very specific criteri-
on that allow for reconstruction errors have to be minimized.
We investigate a whole family of them and indicate how the
optimization can be made.

Let us first introduce the standard setting and notations
used in this context. LetA be a (n,m)-matrix withm >
n and columnsaj , let b denote the observed signal, i.e., a
vector that admits an exact sparse representation, sayb =
Axo. We denote‖x‖0 the number of non-zero entries inx
andx̄o the reduced dimensional vector built upon the non-
zero components ofxo. Similarly Āo denotes the associated
columns inA. We will assumeĀo to be full rank. One then
has, e.g.,Axo = Āox̄o. We will also use the notation̄̄Ao
for the remaining columns inA and thus decomposeA as
A = [Āo ¯̄Ao]. We further assume without loss of generality
that the columnsaj ofA are normalized to one in Euclidean
norm.

It has been shown in [1, 2, 3, 4] thatxo can be recov-
ered from the observation ofb = Axo by solving the linear
program:

minx ‖x‖1 subject to Ax = b , (LP)

where‖x‖1 =
∑m

1 |xj |, if

‖xo‖0 <
1
2

(1 +
1
M

) (1)

whereM , is the so-called the mutual coherence [1]

M = max
1≤i 6=j≤m

|aTi aj |, (2)

It is worth noting that (1) is independent of the magnitudes
of the nonzero entries ofxo. Being able to recoverxo ap-
pears to be only a matter of structure, of angles between
vectors.

Now if b = Axo+ewith e a vector of additive noise, the
optimum of (LP), sayx∗ will be generically unique and at-
tained at a basic feasible solution i.e at a point havingn non-
zero components. One can then reasonably expect that ife
is “small” and smaller than the “smallest” non-zero compo-
nent inxo the optimumx∗ of (LP) will be quite close toxo
with n-‖xo‖0 additional small components directly induced
by the noise.

A more systematic way to get rid of the noise induced
components is however to change the optimization problem
and to allow for reconstruction errors. Instead of asking
for anx that satisfiesAx = b one asks for anx such that
‖Ax− b‖ ≤ ρ where both the norm and the boundρ remain
to be defined. We therefore consider optimization problems
of the form

min
x
‖x‖1 subject to‖Ax− b‖p ≤ ρp (Optp)

with ‖x‖p = (
∑m

1 |xp|p)
1
p , the`p-norm ofx. Remember

that in this context dual norms are such that1
p + 1

q = 1, thus
`1 and`∞ are dual norms whilè2 is its own dual. In the ap-
plications we will mainly consider the casep = 1, 2 and∞.

2. OPTIMALITY CONDITIONS

2.1. Previous results

The criterion (Optp) for p = 2 has often been studied recent-
ly and the problem then admits several different equivalent
forms as for instance

min
x

1
2
‖Ax− b‖22 + h‖x‖1, h > 0 (3)



for an adequately chosen parameterh. We will see below
that the relation betweenh and ρ2 can be made more or
less explicit. The Lagrangian dual of (3) has a nice physical
interpretation [5]

min
x
‖Ax‖22 subject to‖AT (Ax− b)‖∞ ≤ h

Since (3) is a convex program, that can actually be trans-
formed into a quadratic program [5, 4] the necessary and
sufficient conditions satisfied at an optimum are well known
[5, 4], we do not specify them here since we will recover
them below. It is also known that for (Opt2) very specif-
ic and dedicated optimization algorithms can be developed
[9, 10, 11]. Again we will come back to this point below.

2.2. Optimality conditions

In order to be able to characterize easily the conditions satis-
fied by the optimum of (Optp), we introduce∂f(x) the sub-
differential of a convex functionf at a pointx, it is a set of
vectors called the sub-gradients off atx. Forf(x) = ‖x‖p
one has [14]

∂ ‖x‖p = {u|uTx = ‖x‖p, ‖u‖q ≤ 1} (4)

From the above relation, it follows that

∂ ‖x‖1 = {u|ui = sign(xi)ifxi 6= 0 and|ui| ≤ 1 else}
∂ ‖x‖2 = x/‖x‖2
∂ ‖x‖∞ = {u| |xi| = ‖x‖∞ ⇒ xiui ≥ 0, |xi| < ‖x‖∞
⇒ ui = 0, ‖u‖1 = 1 if x 6= 0, ‖u‖1 ≤ 1 else}

wherexi is thei-th component ofx. Note that iff is differ-
entiable atx then∂f(x) reduces to the gradient.

Before we proceed let us note that (Optp) is a convex
program forp≥1 and that it admits thus a dual problem
(DOptp) that is convex also. To characterize the optimal-
ity conditions of (Optp) we introduce the dual programs.

Lemma 1. The dual of the convex program (Optp) is

max
d

bT d−ρp‖d‖q s.t. ‖AT d‖∞ ≤ 1 (DOptp) 2

Proof: We first rewrite (Optp) as

min
x, c
‖x‖1 subject to‖c‖p ≤ ρp and Ax− b = c

the Lagrangian of this problem is then

`(x, c, λ, d) = ‖x‖1+λ(‖c‖p−ρp)−dT (Ax−b−c), λ ≥ 0

and definingφ(λ, d) = minx, c `(x, c, λ, d), the dual prob-
lem ismaxλ≥0, d φ(λ, d).

In order to evaluateφ(λ, d), we first take the minimum
of `( . ) with respect tox

min
x
‖x‖1 − dTAx+ ... = min

x
xTu− xTAT d+ ......

This minimum may not be finite for alld but since we later
take the maximum ind theses cases can be ignored. The
minimum is finite if and only ifAT d = u for someu ∈
∂‖x‖1. From (4), it follows that such a point exists only if
‖AT d‖∞≤1 and the contribution of the terms inx to ` or
more preciselyφ( . ] is then zero.

Similarly, the minimum inc may not be finite for alld.
It is finite if and only if λv + d = 0 for somev ∈ ∂‖c‖p.
Such a point exists only if‖d‖q ≤ λ and the contribution of
the terms inc to φ is then zero. The dual problem is thus

max
λ≥0, d

dT b− λρp subject to ‖AT d‖∞ ≤ 1, ‖d‖q ≤ λ

and taking the maximum with respect toλ ≥ 0 leads to the
announced result. 2

The necessary and sufficient conditions for optimality
of convex programs admit simple forms when one consid-
ers both the primal and the dual and one has

Theorem 1. The optima of (Optp) and (DOptp) are re-
spectivelyx andd if and only

Ax− b = −ρpv and AT d = u (5)

for someu ∈ ∂‖x‖1 andv ∈ ∂‖d‖q 2

Proof: The proof is immediate. Both pointsx andd are
feasible and lead to identical costs in both problems.2

These conditions are of course equivalent to the opti-
mality conditions of the primal (Optp), we introduced them
because they are in a form that is more adequate for later
use. It is instructive to check it. Since the primal is con-
vex, the first order necessary optimality conditions are also
sufficient. The Lagrangian of the primal is

`(x, µ) = ‖x‖1 + µ(‖Ax− b‖p − ρp), µ ≥ 0

and the optimality conditions are thus

u′+µATw = 0, with u′ ∈ ∂‖x‖1, w ∈ ∂‖Ax−b‖p, µ ≥ 0

To make the link between these conditions and (5) note
that from (4) it follows that‖w‖q ≤ 1 and wT (Ax− b) =
ρp. Then takeu′ = u, w = −d/‖d‖q andµ = ‖d‖q to
transform the solution{x, d, u, v} of (5) into a solution of
the optimality conditions above.

One can also use this opportunity to establish, forp = 2,
the link betweenρ2 in (Opt2) andh in (3). The optimality
conditions for (3) are

AT (Ax− b) = hu′ = 0, for someu′ ∈ ∂‖x‖1

comparing with (5) forp = 2, and since∂‖d‖2 = d/‖d‖2,
it follows that

h =
ρ2

‖d‖2
whereAT d = u, i.e.d = ĀT+sign(x̄)



3. THE ITERATIVE ALGORITHMS

We will use the two relations in (5) to try to construct some
kind of iterative algorithms that yield the solution to (Optp)
in a very economical way.

Note that due to the presence ofu andv the two relations
in (5) are far from defining the optimalx andd that can only
be obtained by an iterative procedure. They nevertheless
carry a lot of information that is helpful if one is interested
in the way the optimax andd or more preciselyx(ρp) and
d(ρp) vary with ρp. We will mainly investigate the case
p = 2,∞ and1.

3.1. The case p=q=2
This case is far easier to analyze than the others. There is no
need to use duality in that case. We have seen that (Opt2)
can be rewritten (3) whose optimality conditions are simply

AT (Ax− b) + hu = 0 for someu ∈ ∂‖x‖1

Assume we have the optimum{ x, u} for a givenh we
show how to extend this optimum in an interval around the
currenth. The problem consists in extending the current so-
lution { x, u} which is valid for a specifich to possibly all
the values inh > 0. We will see that the current solution is
easily extendible to a whole interval inh around its current
value, it thus remains to define the boundaries of this inter-
val and to indicate the changes that need to be done in the
expressions ofx andu to cross such a boundary and make
them valid in the contiguous interval. At last one needs to
specify how to initialize forh large the procedure to entirely
characterize thealgorithm. To solve (3) for a givenh, one
then i initializes the procedure forh large, proceeds from in-
terval to interval until theh of interest belongs to the current
interval.

We will need the notations presented in the introduction,
i.e., we split or partition the optimumx, we now denote
x(h) to emphasize its dependency onh, into its non-zero
components̄x(h) and its zero components̄̄x(h) and parti-
tion accordinglyA into Ā and ¯̄A.

By definition the interval around the currenth is such
that thisx(h)-induced partition remains unchanged within
the interval and the values of the boundaries are those values
of h for which this partition has to be modified.

Using these notations,we rewriteAT (Ax− b) +hu = 0
first asAT (Āx̄(h)− b) + hu(h) = 0 and splitting thesem
equations into two parts, the first associated withĀT is

ĀT Āx̄(h)− ĀT b = −h ū(h)

sinceū(h)=sign̄x(h) is constant over the interval, one has

x̄(h) = Ā+b− h(ĀT Ā)−1ū

which says that̄x(h) varies linearly within each interval.
This variation ofx(h) deduced from the first part of them

equations induces changes in the second part

¯̄A
T

(Āx̄(h)− b) = −h¯̄u(h)

⇒ ¯̄u(h) = ¯̄A
T
Ā+ū+

1
h

¯̄A
T

(I − ĀĀ+)b

Since both̄u and¯̄x remains constant, we have thus com-
pletely defined how the solution{x(h), u(h)} varies as a
function ofh in the current interval. To define the bound-
aries inh of the current interval one monitors the compo-
nents inx̄(h) to check if a component becomes zero and the
components in̄̄u(h) to check if a component becomes equal
to±1 whatever happens first.

If a component in̄x(h) becomes zero, one moves it from
x̄ to ¯̄x and modifies accordingly the partition ofA andu. If
a component in̄̄u(h) becomes, say,+1, one moves the cor-
responding component from̄̄x to x̄, and modifies accord-
ingly the partition ofA andu. the initialization is easy of
the procedure is quite easy since forh > ‖AT b‖∞ the op-
timum is at the origin and the first component to become
non-zero isxj with j = arg maxi |aTi b| and this happens
for h = ‖AT b‖∞ which is thus the upper-boundary of the
first interval. These results are known [9, 10, 11, 8].

3.2. The case p=∞, q=1
The optimality conditions are

Ax− b = −ρ∞v and AT δ = u

for someu ∈ ∂‖x‖1 andv ∈ ∂‖δ‖1

We shall try to derive a algorithm from these equations that
proceeds as for the casep = q = 2. The task is more
difficult.

The first step is to observe both programs (Opt∞) and
(DOpt∞) can be transformed into linear programs and to
use this observation to show that if for the currentρ∞, the
optimumx(ρ∞) hasp ≤ n ≤ m = dim(x) non zero com-
ponents then the same holds generically forδ(ρ∞). Bothx
andδ are thus sparse and partitioningx as above andδ in a
similar way, we will defineintervalsin ρ∞ which are such
that these partitions change only at the boundaries.

Looking at both programs (Opt∞), (DOpt∞) and at the
optimality conditions, one can deduce thatx̄(ρ∞) varies lin-
early inρ∞ locally, i.e., each component is piecewise linear
and thatδ(ρ∞) remains constant within eachinterval.

So far we only consideredx-induced partitions ofA in
terms of columns we will now need in additionδ-induced
partitions ofA in terms of rows. We will partition bothδ
(andv) into δ andδ = 0 and accordingly the rows ofA (and
Ā) intoA andA.

Assume we have the optimumx, u, δ, v for a given
ρ∞ we extend them within an interval inρ∞. By defini-
tion ū =sign̄x(ρ∞) andv =signδ remain constant within an
interval, but sinceδ also remains invariant it follows from
AT δ = u that the whole vectoru remains constant.



Introducing the different partitions, we get successively
fromAx− b = −ρ∞v

Āx̄ = b− ρ∞v ⇒ Āx̄ = b− ρ∞v
⇒ x̄(ρ∞) = Ā

−1
b− ρ∞Ā

−1
v

where we assumēA
−1

to exist. Substitutinḡx, it follows
then fromĀx̄ = b− ρ∞v, that

v(ρ∞) =
1
ρ∞

b− 1
ρ∞

Ā Ā
−1
b+ Ā Ā

−1
v

In summary asρ∞ varies within the current interval, only
x̄(ρ∞) andv(ρ∞) are varying, all the remaining vectors in
x, u, δ, v are invariant. Whenρ∞ increases (decreases)
two things can happen a component inv(ρ∞) becomes e-
qual to±1 or a component in̄x(ρ∞) becomes zero. The
upper bound (lower bound) of the current interval is theρ∞
denotedρu (ρl) associated with the event that happens first.

If a component inv(ρ∞) becomes say+1 this mean-
s that the corresponding component inδ, which was zero
becomes positive, the row in̄A for which this happens is
removed fromĀ and added tōA which becomes saȳAa (a
for augmented), it remains to add to this matrix a column
drawn from¯̄Aa to get the new augmented square matrix. To
choose this column one has to solve

min
x
‖x‖1 s.t. Aax = ba − ρ−l va

whereρ−l is just slightly smaller than the lower bound
ρl. By continuity, the optimum forρl would have sayp non
zero components those associated with the columns in¯̄A
while for ρ−l an additional component is just emerging.

If a component in̄x(ρ∞) becomes zero, forρ∞ = ρu,
this means that a component in̄x has to be removed from
the selection, one removes the corresponding columns from
Ā which becomes saȳAr (r for reduced) and in order to
detect the corresponding component inδ that will become
zero we solve

min
δ
‖δ‖1 s.t. ĀrT δ = ūr

again this amounts to remove a line in̄̄A in which one
has already removed a column. We have thus indicated how
to obtain both the boundaries and the modification that need
to be done to cross them, it remains to indicate how to ini-
tialize the procedure again this is easy since forρ∞ > ‖b‖∞
the optimum is at the origin and the first component ofx to
become non-zero asρ∞ isxj with j = arg maxi |ai1,i|with
i1 = arg maxi |bi|.

3.3. The case p=1 and q=∞
A similar analysis can be performed in that case, as forp =
∞ one first draws some information from the fact that both
problems are LP’s and proceeds in a way that is quite similar
to what we did above.

4. CONCLUSIONS AND PERSPECTIVES

We have considered simultaneously different optimization
criteria (Optp) that allow to recover sparse representations
in the presence of noise. We have defined the dual problems
(Doptp) in the Lagrangian sense and detailed the optimality
conditions satisfied by their optimum (5). Due to the pres-
ence of thè 1-norm in all of these criteria they have some
very specific properties. This has been observed first for the
casep = 2 where though (Opt2) or an equivalent criteri-
on can be transformed into a quadratic program it can be
solved in a far more computationally efficient way by using
its very specific structure. Our objective was to analyze if a
similar property holds forp = ∞ or p = 1. For these cas-
es the criteria can be transformed into linear programs and
though thè 1-norm induced specific structure can somehow
be exploited it is no clear if a similar benefit can be expected
from it. Further investigations are required.
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