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ABSTRACT whereM, is the so-called the mutual coherence [1]
When seeking a representation of a signal on a redundant M= max [df a; @)
basis one generally replaces the quest for the sparsest mod- 1<izj<m 07

el by an¢; minimization and solves thus a linear program. it th noting that (1) is ind dent of th itud
In the presence of noise one has in addition to replace the is worth noting that (1) is independent of the magnitudes

exact reconstruction constraint by an approximate one. weof the ?ogzero lentrles ng. E;cen:g atble to ;ecovlero t?pt;/v
consider simultaneously several ways to allow for recon- peatrs 0 be only a matter of structure, of angles between
struction errors and detail the optimality conditions of each V€¢'0'S:

of the criterion. We then analyze if these conditions are  NOW ifl;:L;lonre\:vith"eba vector of elxldditiye noisea the
helpful in the implementation of optimization algorithms. OPt'm“m of ( ,)’ sayc” will be generically unique an at-
tained at a basic feasible solution i.e at a point havimgn-

1. INTRODUCTION zero components. One can then reasonably expect that if
is “small” and smaller than the “smallest” non-zero compo-

We consider the case where a signal can be exactly repreNentinz, the optimumz* of (LP) will be quite close ta:,
sented as a linear combination of a small number of ele-With n-[|z[|o additional small components directly induced
ments from an over-complete set of vectors To recover thisPY the noise.
representation in the presence of noise, very specific criteri- A more systematic way to get rid of the noise induced
on that allow for reconstruction errors have to be minimized. Components is however to change the optimization problem
We investigate a whole family of them and indicate how the and to allow for reconstruction errors. Instead of asking

optimization can be made. for anx that satisfiesdz = b one asks for ar such that
Let us first introduce the standard setting and notations |42 — bl < p where both the norm and the boundemain
used in this context. Lel be a (n,m)-matrix withn > to be defined. We therefore consider optimization problems

n and columnsz;, let b denote the observed signal, i.e., a ©f the form
vector that admits an exact sparse representationj say
Axz,. We denotd|z||, the number of non-zero entries in
andz, the reduced dimensional_vector built upon the non- )
zero components af,. Similarly A, denotes the associated with ||z||, = (327" |z,|?)?, the/,-norm of z. Remember
columns inA. We will assumed, to be full rank. One then  that in this context dual norms are such that L = 1, thus
has, e.g. Az, = A,Z,. We will also use the notatiod,, £, and/,, are dual norms whilé, is its own dual. In the ap-
for the remaining columns id and thus decomposé as plications we will mainly consider the cage= 1, 2 andoc.
A=A, A,]. We further assume without loss of generality
that the columna; of A are normalized to one in Euclidean
horm. , 2. OPTIMALITY CONDITIONS

It has been shown in [1, 2, 3, 4] that can be recov-
ered from the observation éf= Az, by solving the linear 2. 1. Previous results

min o], subjectto||Az — ], < p,  (OpY,)

program: o .
min, ||z; subjectto Az =b, (LP) The criterion (Opg) for p = 2 has often been studied recent-
m . ly and the problem then admits several different equivalent
where||z|y = 327" [a;, if forms as for instance

1 1 1
lollo < 501+ 1) & min 3[4z — b3+ hllalli, h>0 (@)



for an adequately chosen paraméierWe will see below  This minimum may not be finite for afl but since we later
that the relation betweeh and p, can be made more or take the maximum inl theses cases can be ignored. The
less explicit. The Lagrangian dual of (3) has a nice physical minimum is finite if and only ifA”d = u for someu €
interpretation [5] O||z||1. From (4), it follows that such a point exists only if
|ATd||,<1 and the contribution of the terms into ¢ or
more precisely)( . ] is then zero.

Similarly, the minimum inc may not be finite for alli.
Since (3) is a convex program, that can actually be trans-|t is finite if and only if \v + d = 0 for somev € )|c||,.
formed into a quadratic program [5, 4] the necessary andsych a point exists only ifd||, < A and the contribution of
SuffiCient Conditions SatiSfied atan Optimum are We” knOWn the terms |m to ¢ is then zZero. The dua' prob|em iS thUS
[5, 4], we do not specify them here since we will recover T . T
them below. It is also known that for (Optvery specif- goa?(dd b= App subjectto [Aldlloc <1, ldlly < A
ic and dedicated optimization algorithms can be developedand taking the maximum with respectXa> 0 leads to the
[9, 10, 11]. Again we will come back to this point below. announced result. a

min ||Az|3 subjectto||A” (Az —b)|o < h

2.2. Optimality conditions

The necessary and sufficient conditions for optimality
of convex programs admit simple forms when one consid-

In order to be able to characterize easily the conditions satis-grs hoth the primal and the dual and one has

fied by the optimum of (Op), we introduce) f () the sub-
differential of a convex functiorf at a pointz, it is a set of
vectors called the sub-gradientsoatz. For f(x) = ||z||,
one has [14]

0 |lzllp = {ulu"z = |||y, [lull, <1} (4)
From the above relation, it follows that
O ||z|l1 = {u|u; = sign(z;)ifz; # 0and|u;| < 1 elsé
dllzll2 = z/||z2

O N|zlloo = {ul || = [|2lloc = ziui 20, |2;] < [|2]lo
= u; =0, [[ully =1if 2 #0,[Jull, < 1elsg
wherezx; is thei-th component of. Note that iff is differ-

entiable at: thendf(x) reduces to the gradient.
Before we proceed let us note that (Qpis a convex

program forp>1 and that it admits thus a dual problem
(DOpt,) that is convex also. To characterize the optimal-

ity conditions of (Opj) we introduce the dual programs.

Lemma 1. The dual of the convex program (Qpis

mé:mbedfppHqu st. |ATd| <1 (DOpt,) O

Proof: We first rewrite (Opf) as

min ||z|; subjectto|c|, < p, and Az —b=c
1‘7 C . . .
the Lagrangian of this problem is then

((Z‘,C,)\,d) = ||Z‘H1+/\(HCHP—pp)—dT(AJ?—b—C), A >0
and definingp(\, d) = min, . {(z,c, A, d), the dual prob-
lem iSmaxAZO’ d (;S(A, d)

In order to evaluate (), d), we first take the minimum
of ¢( . ) with respect tar

min ||z|; —d? Az + ... = minzTu — 2T ATd + ......
x x

Theorem 1. The optima of (Opj) and (DOp}) are re-
spectivelyr andd if and only

Az —b= —p,v and ATd=u (5)
for somew € J||z||; andv € 9||d||, O

Proof: The proof is immediate. Both pointsandd are
feasible and lead to identical costs in both problems]

These conditions are of course equivalent to the opti-
mality conditions of the primal (Op}, we introduced them
because they are in a form that is more adequate for later
use. It is instructive to check it. Since the primal is con-
vex, the first order necessary optimality conditions are also
sufficient. The Lagrangian of the primal is

0z, p) = |zl + p([Az = bllp = pp), 120

and the optimality conditions are thus
u'+pATw = 0, with v’ € d||z||1,w € || Ax—b]|,, >0

To make the link between these conditions and (5) note
that from (4) it follows that|w||, < 1 and w’ (Az — b) =
pp- Then takeu = u, w = —d/||d||; andp = ||d||, to
transform the solutiofz, d, u, v} of (5) into a solution of
the optimality conditions above.

One can also use this opportunity to establishpfer 2,
the link betweerp, in (Opt;) andh in (3). The optimality
conditions for (3) are

AT(Az —b) = hu/ = 0, for some ' € 9||z||;

comparing with (5) fop = 2, and sinced||d||2 = d/||d||2.
it follows that

h = ”Zﬁ where ATd = u, i.e.d = AT Tsign(z)
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3. THE ITERATIVE ALGORITHMS

We will use the two relations in (5) to try to construct some
kind of iterative algorithms that yield the solution to (@)t
in a very economical way.
Note that due to the presenceucdindv the two relations
in (5) are far from defining the optimalandd that can only

equations induces changes in the second part

AT (Az(h) — b) = —hi(h)

= (k) =A Ata+ %ZT(I ~AAY

Since bothi andz remains constant, we have thus com-
pletely defined how the solutiofw(h), u(h)} varies as a

be obtained by an iterative procedure. They neverthelessynction of 7, in the current interval. To define the bound-

carry a lot of information that is helpful if one is interested
in the way the optima: andd or more precisely:(p,) and
d(pp) vary with p,. We will mainly investigate the case
p = 2,00 andl.

3.1. The case p=g=2

This case is far easier to analyze than the others. Thereisn
need to use duality in that case. We have seen thatJOpt

can be rewritten (3) whose optimality conditions are simply

AT(Az —b)+hu=0  forsomeu € d|z|

Assume we have the optimugnz, u} for a givenh we
show how to extend this optimum in an interval around the
currenth. The problem consists in extending the current so-
lution { «, «} which is valid for a specifié to possibly all
the values i, > 0. We will see that the current solution is
easily extendible to a whole interval inaround its current

value, it thus remains to define the boundaries of this inter-
val and to indicate the changes that need to be done in the

expressions of andwu to cross such a boundary and make
them valid in the contiguous interval. At last one needs to
specify how to initialize forh large the procedure to entirely
characterize thalgorithm To solve (3) for a giverk, one
theniinitializes the procedure farlarge, proceeds from in-
terval to interval until the: of interest belongs to the current
interval.

We will need the notations presented in the introduction,
i.e., we split or partition the optimum, we now denote
z(h) to emphasize its dependency bninto its non-zero
components(h) and its zero componenig k) and parti-
tion accordinglyA into 4 and A.

By definition the interval around the currehtis such
that thisz(h)-induced partition remains unchanged within

the interval and the values of the boundaries are those value

of h for which this partition has to be modified.

Using these notations,we rewrite’ (Az — b) + hu = 0
firstasAT (Az(h) — b) + hu(h) = 0 and splitting thesen
equations into two parts, the first associated withis

AT Az(h) — ATb = —h a(h)
sincew(h)=signt(h) is constant over the interval, one has
z(h) = ATb— h(ATA) 'a

which says thatz(h) varies linearly within each interval.
This variation ofz(h) deduced from the first part of the

Q

aries inh of the current interval one monitors the compo-
nents inz(h) to check if a component becomes zero and the
components im(h) to check if a component becomes equal
to £1 whatever happens first.

If a component iz (k) becomes zero, one moves it from
z to z and modifies accordingly the partition dfandw. If
a component ini(h) becomes, sayi-1, one moves the cor-
responding component from to z, and modifies accord-
ingly the partition ofA andwu. the initialization is easy of
the procedure is quite easy since for> || A7b||, the op-
timum is at the origin and the first component to become
non-zero isr; with j = arg max; |al b| and this happens
for h = || ATb||~ which is thus the upper-boundary of the
first interval. These results are known [9, 10, 11, 8].

3.2. The case p=o, =1
The optimality conditions are

Az —b=—pev and AT =u
for someu € 9||z||; andv € 9||0||;

We shall try to derive a algorithm from these equations that
proceeds as for the cage= ¢ = 2. The task is more
difficult.

The first step is to observe both programs (Qpand
(DOpt,,) can be transformed into linear programs and to
use this observation to show that if for the curregt, the
optimumz(ps) hasp < n < m = dim(z) non zero com-
ponents then the same holds genericallyfgr., ). Bothz
and¢ are thus sparse and partitionings above and in a
similar way, we will defindntervalsin p., which are such
that these partitions change only at the boundaries.

Looking at both programs (Og}), (DOpt,,) and at the
thimality conditions, one can deduce thiép., ) varies lin-
early inp., locally, i.e., each component is piecewise linear
and that (p, ) remains constant within eadfiterval.

So far we only considered-induced partitions o in
terms of columns we will now need in additidrinduced
partitions of A in terms of rows. We will partition botlk
(andv) into ¢ andd = 0 and accordingly the rows of (and
A)into A andA.

Assume we have the optimum wu, 6, v for a given
Poo We extend them within an interval in,,. By defini-
tionu =signz(p~. ) andv =sigry remain constant within an
interval, but sincey also remains invariant it follows from
AT§ = u that the whole vecton remains constant.



Introducing the different partitions, we get successively 4. CONCLUSIONS AND PERSPECTIVES

from Az — b = —pocv We have considered simultaneously different optimization

criteria (Op}) that allow to recover sparse representations
in the presence of noise. We have defined the dual problems

- -1 -1

= Z(pc) =A b—pscA v (Dopt,) in the Lagrangian sense and detailed the optimality

1 ) oo conditions satisfied by their optimum (5). Due to the pres-

where we assumd " to exist. Substituting:, it follows  ence of the;-norm in all of these criteria they have some
then fromAz = b — poo, that very specific properties. This has been observed first for the

1 . o casep = 2 where though (Op) or an equivalent criteri-

V(poo) = —b——A A_IQ—FéA_ly on can be transformed into a quadratic program it can be

Peo Peo solved in a far more computationally efficient way by using

In summary ag., varies within the current interval, only it; very specific structure. Our objective was to analyze if a
Z(pso) andu(po.) are varying, all the remaining vectors in  Similar property holds fop = oo or p = 1. For these cas-
z, u, 0, v are invariant. Whem., increases (decreases) €S the criteria can be transformed into linear programs and
two things can happen a componentifp.,) becomes e- though the/;-norm induced specific structure can somehow
qual to+1 or a component i (p~,) becomes zero. The be exploiteditis no clear if a similar benefit can be expected
upper bound (lower bound) of the current interval isphe ~ from it. Further investigations are required.
denotedo, (p1) asso_ciated with the event that hgppens first. 5. REFERENCES
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