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ABSTRACT at this point, hence the separation performance may degrade

This paper considers the blind separation of audio sources if no treatment is provided for this. An increasing in the rum
the underdetermined case, where we have more sources tHgr of intersection points degrades the separation quatity
sensors. A recent algorithm applies time-frequency distri  this paper, we propose another algorithm, combining the TF-
tions (TFDs) to this problem and gives good separation petJBSS with subspace projection, that allows an explicitttrea
formance in the case where sources are disjoint in the timgnent of the intersection points. The main assumption used in
frequency (TF) plane. However, in the non-disjoint case, ththis algorithm is that the number of sources simultaneously
reconstruction of the signals requires some interpolagibpn Presentat an intersection pointin the TF plane cannot eéxcee
the intersection points in the TF plane. In this paper, wéhe number of sensors.

propose a new algorithm that combines the abovementioned

method with subspace projection in order to explicitly trea 2. PROBLEM FORMULATION

non-disjoint sources. Another contribution of this pasethie

estimation of the mixing matrix in the underdetermined case2.1. Data model

Lets(t) = [s1(t),...,sn(t)]" representthéV nonstationary
source signals. The source signals are transmitted through

. . . a medium so that an array éf/ linear sensors picks up a

Blind source separation (BSS) considers the recovery of un- . : : :

observed original sources from several mixtures observed Set of mixed signals represented by/rdimensional vector
g (t) = [#1(t), ...,z (t)]". We consider the instantaneous

. . X
the o_utput of a set of sensors. Each mixture cc_)n_talns a ?Omnﬁixing medium that is modeled as follows
bination of the sources that results from the mixing medium

1. INTRODUCTION

between the sources and the sensors. The term “blind” in- x(t) = As(t) + w(t), (1)
dicates that na priori knowledge of the sources and the

medium structure is available. To compensate for this lackvhere A = [a;, ..., ay] is the mixing matrix andw (¢) =

of information, the sources are usually assumed to betstatis [, (1), ... wy,(¢)]” is the observation noise vector. We as-

cally independent. Blind source separation has applicatio syme that anyl/ columns ofA are linearly independent. The
different areas, such as communications, speech progessiyoal of BSS is to recoves(t) from x(t). WhenM < N, the
image processing and biomedical engineering [1]. problem becomes UBSS. L&, and(2, be the TF supports

A challenging problem of BSS occurs when there are morgj e the points of TF plane where the local energy of the con-
sources than sensors, and this is referred toraferdeter-  sjdered sources is non-zero) of two sourge&) and s (t).
minedblind source separation (UBSS). Atime-frequency basgdq, n ¢, = (), the sources are said to be non-disjoint in
UBSS algorithm has been recently proposed in [2, 3] to SUGhe TF plane. The second assumption is that the sources are
cessfully separate speech sources using time-frequeney dhot necessarily disjoint, and in particular, there existast,
tributions (TFDs). This algorithm provides good sepamtio simultaneouslyf} — 1) sources at the same TF point. How-
performance when the sources are disjoint in the TF plane. Hyer, we still assume that there exists for each sourcelsigna
also provides the separation of TF quasi-disjoint soutbes, regionR, in the TF plane where it exists alone, i.e. the energy

is the sources are allowed to have a small degree of overlagf the other sources are negligible at the TF points withén th
ping in the TF plane. However, the intersection points in the;onsidered region.

TF plane are not directly treated. More precisely, a point at

the intersection of two sources is clustered “randomly”¢e b 22 Time-frequency representation
long to one of the sources. As a result, the source that picks
up this point now contains some information from the othefTF signal processing provides effective tools for analgzin
source while the later source loses some information of iteonstationary signals and linear time-varying systemsseh
own. However, for the other source, there is an interferenckequency content varies in time. This concept is a natural



Time-frequency disjoint Time-frequency non-disjoint wheree is a small threshold (typlca”)é, = 005) Then, the

! y ! set of all selected points$}, is expressed by} = Uf.vzl Q;,
/ N \\\ where(); is the TF support of the soureeg(t).
gl o e Under the assumption that all sources are disjoint in the TF
/ \\ domain, (3) is reduced to
0 Qy
/ / Sx(tvf):aiSSi(tvf)av(tvf)Ginv’i:lv"'aN' (6)

frequency f frequency 7

@ (b) where the source STFT vector has been reduced to only the
STFT of the source; ().
Fig. 1. (a)-TF disjoint, (b) TF non-disjoint Now, in [2], the structure of the mixing matrix is particukzs

such it has only 2 rows (i.e. the method uses only 2 sensors)
gnd the first row of the mixing matrix contains all 1. Then, (3)

extension of both the time domain and the frequency domaif
is expanded to

processing, that involves representing signals in a tweedisi-

onal space the joint TF domain, hence providing a distrdvuti S, (t, f)
of signal energy versus time and frequency simultaneously. Sa, (t, f) 1 .. 1 T
For this reason, a TF representation is commonly referred to [3x2 (t, f)} = [all o QQ_N] : ()
as a time-frequency distribution (TFD). TFDs have been ap- ' Sy (t, f)
plied to a wide variety of engineering problems. Specificall
they have been successfully used for signal recovery at lo@"d (6) t©
signal-to-noise ratio (SNR), accurate estimation of tistain- San (1, f)} = { 1 ] S, (t, f),
taneous frequency (IF), signal detection in communication Sea(t, f) azi]
radar processing and for the design of time-varying filter. F which results in
more details on TFDs and related methods, see for example Ay = Say (¢, f). 8)
the recent comprehensive reference [5]. TS ()
The method presented in this paper, uses the Short-TiméFourherefore, all the points for which the ratios on the righnt
Transform (STFT) that is defined as: side of (8) have the same value form the TF supphrof a
m=-+o0o single source, say;(t). Then, the STFT estimate of(¢) is
Se(t, f)= > h(t—m)z(m)e /> Im (2) computed by:
whereh(t) is the Hamming window. St f) = {Swl(ta f), vt f) € Q,
’ 0, otherwise

3. CLUSTER-BASED TF-UBSS APPROACH FOR

DISIOINT SOURCES Finally, the source estimat&(¢) is obtained by converting

S.,(t, f) to the time domain using inverse STFT [8]. For
more details, refer to this paper. It is observed that thecstr
ture of the mixing matrix, as expressed in (7) has some limit-
ing factors. First, the extension of the UBSS method in [2] to
dnore than two sensors is not obvious. Second, the division on

In this section, we briefly review the STFT method in [2],
and propose aluster-based linear TF-UBSS algorithusing
STFT to avoid some of the drawbacks in [2].

First, under the transformation into the TF domain using th

STFT, the model in (1) leads to: f[he right-hand side of (8) is prone to error if the denominato
is close to zero.
Sx(t, f) = ASs(t, f), (3)  To avoid the above mentioned problems, we propose here a
where modified version of the method valid for any number of sen-

m—too sors. This method is now referred to as the cluster-based lin
S, (L, f) = Wit — . —j2nfm 4q) ear TF-U_BSS algorithm. The _clus_term_g method proceeds as
(&) Z (t = m)zi(m)e (4a) follows: first compute the spatial direction vectors by:

Sx(t, f) = 3;1 tf)y e Sen (t, I 4b (2,
( .f) Sz, (¢, f) (t, f)] ( ). V(b f) = Su(t, f) Cwpen, ©
and Ss(t, f) is the N x 1 source STFT vector. To avoid S (2, F)l

processing all TF points (and hence to reduce computationgf, j force them, without loss of generality, to have the first
cost), we apply first a noise thresholding as that for eac-tim entry real and positive.

slice(t, f): Next, we cluster these vectorsimtoclasseC; |i = 1,--- , N},
using thek-mean clustering algorithm [7]. The collection of
all points, whose vectors belong to the cl&ss now forms

st(ta fO)”
max s {||Sx(t, f)|I}

> ¢, thenkeedt, fo), (5)



Table 1. Cluster-based TF-UBSS algorithm

Table 2. Subspace-based TF-UBSS algorithm

. Mixture STFT computation by (4).
. Vector clustering by (9) and [7].

. Mixing matrix and source STFT estimatio
by (10) and (11).

. Source TF synthesis by [8].

the TF supporfl; of the sources;(t). Then, the column vec-
tor a; of A is estimated as the centroid of this set of vectors:

> vt

(t,f)eQ;

(10)

where|C;| is the number of vectors in this class.
Therefore, we can estimate the STFT of each sosu@g (up
to scalar constant) by:

gsl(t7f> = Af{Sx(ta f)7 V(t,f) € in (11)
since, from (6), we have
éf]Sx(thf):é{{al‘SSl(taf)O(SSl(tvf)a V(t,f) € Q.

This algorithm is summarized in Table 1.

4., SUBSPACE-BASED TF-UBSS APPROACH FOR
NON-DISJOINT SOURCES

We propose here to use an appropriate subspace projectiomt¢t, f) such that]|v(t, f) —a;|

estimate the TFDs of the individual sources, under the pre- ) -
feading to a reduced size claSs

viously stated data assumptions. Under the TF non-disjoi
condition, consider a source poift f) € Q at which there
areK contributing sources,, (t), ..., Sa, (t), with K < M.
Then, (3) is reduced to the following

S(t, f) = ASs(t, ), V(t,f)eQ (12)

whereA ands are defined by:
§ = [5a,(1),. .., 50, ()], (13a)
A:[am,...,aak]. (13b)

Let Q4 be the orthogonal projection matrix onto the noise
subspace oA. Then,Q can be computed by:

I N
Qi=I-A (AHA) Af, (14)
We have the following observation:
QAaZ—:(), ie{al?'”’aK}. (15)
Qza; #0, otherwise

1. STFT computation.

2. Single-source point selection; mixing matrix esti

mation by,k-mean algorithm.

sed
).

. For all source points, perform subspace-bag
TFD estimation of sources by (14), (16) and (171

. Source TF synthesis by [8].

If A is known or a priori estimated, then this observation gives
us the criterion to detect the indices, . .., ax; and hence,

the contributing sources at the considered TF pginf). In
practice, to take into account noise, one detects the column
vectors ofA minimizing:

{llQasct. NIl 1A} @6)

{a1,...,ax} = argﬁmin

150 BK

whereAs = [ag,, ..., a5,].
Next, TFD values of thé sources at TF poirt, /) are esti-
mated by:

Ss(t, f) = A¥Si(t, f).

whereA# represents the pseudo-inverseiof

Now, to apply the above procedure, we need to estimate

first. This is performed here by clustering all the spatial di
rection vectors in (9) as for the preview TF-UBSS algorithm.
Then within each clas€’; we estimate the far-located vec-
tors from the centroid (in the simulation we estimate vestor
| > O-SV(gta;gsliI\V(t,f) a

(17)

This is to essentially keep the vectors corresponding td Ehe
regionR; (which are ideally equal to the spatial directian

of the considered source signal). Finally, thecolumn vec-

tor of A is estimated as the centroid 6f.

Table 2 provides a summary of the subspace projection based
TF-UBSS algorithm.

5. SSIMULATIONS AND RESULTS

Simulation results are illustrated in the figures below.hiis t
simulation, we have used uniform linear array\df= 3 sen-
sors. It receives signals frol¥ = 4 independent speech
sources, lasting 8192 samples. In figure 2, the upper line rep
resents the original source signals, the second line reptes
the M mixtures and the bottom one represents the sources
estimates by our algorithm. In figure 3, we compare the per-
formance of our method with the TF-UBSS method of Table 1
(i.e. modified method of [2]). The plots represents the aver-
age normalized MSE (NMSE) of the estimated sources versus
the SNR in dB. For the subspace-based method we have used



K = 2 for all TF points. As can be observed, a signifi
gain is obtained, thanks to our subspace projection.
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Fig. 3. NMSE versus SNR for 4 speech sources and 3 sen-
sors: comparison of the performance of our algorithm with
the modified TF-UBSS

[1]

(2]

(3]
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Fig. 2. Blind source separation example for 4 speech sources

and 3 sensors in instantaneous mixture case: the upper line 5

represents the original source signals, the second lineerep

sents thel/ mixtures and the bottom one represents estimates|g)

of sources by our algorithm.

6. CONCLUSION

[7]

(8]

This paper introduces a new approach for blind separation
of non-disjoint and nonstationary sources using TFDs. The

proposed method can separate more sources than sensors and
provides, in the case of non-disjoint sources, a betterraepa

tion quality than the method proposed in [2]. This method is
based on a vector clustering procedure that estimates the mi
ing matrix A, and subspace projection to separate the sources

at the intersection points in the TF plane.
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