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ABSTRACT

Unlike the support vector machine (SVM) the rel-
evance vector machine (RVM) explicitly encodes
the criterion of model sparsity as a prior over the
model weights. However the lack of an explicit
prior structure over the weight variances means that
the degree of smoothing is to a large extent con-
trolled by the choice of kernel. This can lead to
severe overfitting (or oversmoothing).

We detail an efficient scheme to incorporate flex-
ible sparsity priors into the RVM and present an
empirical evaluation of the effects of choice of prior
structure on a selection of popular data sets and
elucidate the link between wavelet shrinkage and
RVM regression.

We find that a smoothness prior with symm-
let wavelets yields good performance across a wide
spectrum of problems for low computational costs
as leveraging special properties of wavelets allows
for considerable computational savings.

1. INTRODUCTION

In nonlinear regression a function of interesty is
approximated by a linear combination of input vec-
tor, x, projections onto a (typically fixed) set of
nonlinear basis functions,f�mgMm=1:

y(x) =
MX
m=1

wm�m(x) (1)

Thus provided with a set ofN training input vec-
torsfxngNn=1 and corresponding targetstn the task
is to find theM weightswm that will yield the most
faithful approximation toy.

Writing the targets as anN -vector andwm, the
weights, as anM -vector, (2) is conveniently writ-
ten asy = �w, with design matrix�. Employ-
ing the standard assumption of zero-mean Gaussian
noise in the target observations, we have:

t = y + �; � � N (0; �2IN ): (2)

Demanding a sparse representation in the space
spanned by a suitable set of such basis functions
provides a general strategy to adjust the bias/vari-
ance trade-off in regression problems, as is evinced
by the state-of-the-art results achieved by support
vector machines (SVMs) in a variety of domains
[e.g. Scḧolkopf and Smola, 2002]. An important
additional benefit of sparsity is that it also often
translates into significant computational savings.

1.1. Sparse Bayesian regression

Whilst in SVM regression a desirable level of spar-
sity has to be brought about indirectly by determin-
ing an error/margin parameter via a cross validation
scheme, the Bayesian formulation of the regression
problem in the relevance vector machine (RVM)
[Tipping, 2000, 2001, Faul and Tipping, 2002, Tip-
ping and Faul, 2003] allows for a prior structure
that explicitly encodes the desirability of sparse rep-
resentations.

This is done by complementing the standard like-
lihood function (which follows directly from the
above assumptions):

p(t jw; �2) = (2��2)�N2 e� k(t��w)k2
2�2 (3)

with an ‘automatic relevance determination’ prior



[MacKay, 1992] over the weights:

p(w j�) = (2�)�M2
MY
m=1

� 1
2me� 1

2�mw2m (4)

that has the effect of ‘switching off’ basis functions
for which there is no evidence in the data.

A standard inverse gamma prior is placed over
the noise variance�2:

p(�2) = IG(�2 j a; b) (5)

wherea and b are fixed hyperparameters, usually
set to some uninformative value (a; b = 10�4).

Finally, the values of� and� are determined by
a type II likelihood maximization scheme [Tipping,
2001, Tipping and Faul, 2003].

Unfortunately the RVM in a sense still does not
go far enough in its Bayesian encoding of the spar-
sity constraint — in practice one finds that in spite
of (4), the choice of highly resolving kernels for
data which does not need that many degrees of free-
dom will still result in severe overfitting (see Fig. 1),
so that a crucial aspect of sparsity control (kernel
choice) remains outside the principled probabilis-
tic framework.

Fortunately a strength of Bayesian models is
their inherent extensibility by means of additional
prior structure; here we examine asmoothness prior
for RVM models. See [Girolami and Rogers, 2005]
for another possible avenue: a Bayesian treatment
of kernel construction itself.

1.2. A detailed look at sparsity priors

On its own (4) does not appear to strongly favour
sparsity, but of course the overall effect depends
on the priorp(� j�2). As it is empirically clear
that thep(w) resulting from a uniformp(� j�2)
(henceforwardNone prior) does not enforce spar-
sity strongly enough for flexible kernel types (Fig. 1),
a well-founded, sparser prior over� j�2 is desir-
able.

As our desire for sparsew is ultimately grounded
in beliefs about the complexity and structure of the
signalt, it is in a way natural to work one’s way
backwards, viz to fashion the priorp(� j�2) so that

the mean posterior prediction̂t reflects these be-
liefs.

Given the the posterior over the weights

p(wjt; �; �2) = p(wjt; �2)p(wj�)
p(tj�; �2)

= N (w j�;�) (6)

with

� = (��2�T�+ diag(�))�1 (7)

� = ��2��T t (8)

we obtain

t̂ = �� = (���2��T )t � St (9)

whereS is known as the smoothing matrix. The
smoothing power ofS is typically quantified by its
degrees of freedom given by its trace [Hastie and
Tibshirani, 1990], so

DF = trS =
NX
i=1

(1 + �2�i)�1: (10)

These observations lead Holmes and Denison [1999]
to choose the following prior structure for encoding
sparsity beliefs for the related problem of wavelet
shrinkage:

p(�i j�2) / e�c(1+�2�i)�1 : (11)

Holmes and Denison relate different choices for the
parameterc to different classical model choice cri-
teria:

c
0 None, Bayes Factor
1 AIC , Akaike information criterion

ln(N)=2 BIC , Bayesian information criterion
ln(N) RIC , Risk inflation criterion

Note that basis functions with smaller�i have
greater prior support when the noise is smaller. It
should further be noted that a uniformp(� j�2) as
in the original RVM implementation is just a spe-
cial case of the above smoothness prior withc = 0.

Thus we are left with 4 different weight vari-
ance priors, from least smoothing to most smooth-
ing as follows:None, AIC, BIC, RIC .



No prior with symmlet kernel

No prior with lspline kernel

Figure 1: The effect of kernel choice on the smooth-
ness of the regression result when there is no prior over
�. Legend: dots:datat; dashed line:true signaly; solid
line:predictiont̂. In the classical RVM choosing a flex-
ible symmlet-wavelet kernel results in drastic overfitting
for the Sinc data set (top row left;N=128, SNR=2.0).
To obtain the appropriate level of smoothing for the Sinc
data one has to resort to a different kernel type, such as
lspline. However an lspline kernel cannot resolve the
Bumps data (on the right;N=128, SNR=7.0) at all.

2. IMPLEMENTATION

With theNoneprior and uniformp(�; �) maximiz-
ation of ln p(�; � j t) is equivalent to maximizing
the log marginal likelihoodL(�) = ln p(t j�; �),
which can be efficiently effected by the elegant type
II maximum likelihood scheme described in Faul
and Tipping [2002], Tipping and Faul [2003]. The
key idea is to write

L(�) = L(��i) + `(�i) (12)

in order to separate out the contribution of theith
basis function�i into a term for which the com-
putational effort of maximization scales with the
numberS of basis functions included in the model,
rather than withM , the total number of basis func-
tions.

The addition of the smoothness prior means that
L 6/ ln p(�; � j t), but although the required addi-
tional term requires that the optimal

��i = max�i [`(�i) + ln p(�i; �)] (13)

Smoothness prior with symmlet kernel

Smoothness prior with lspline kernel

Figure 2: The smoothness prior means that enforcing
sparsity is no longer mostly relegated to the choice of
kernel. A symmlet kernel no longer results in drastic
overfitting for the Sinc data set (on the left). The bot-
tom row shows that the smoothness prior typically has
no adverse effect when smoothing is already mandated
by the kernel. The data sets are identical to Fig. 1.

is found numerically, rather than analytically as in
Tipping and Faul [2003], the extension is straight-
forward and has the desired properties. Similar ad-
justments have to be made for the noise reestima-
tion; details will be given in a forthcoming paper.

The RVM with a smoothness prior is also easily
adapted to handle classification problems.

3. RESULTS

As Fig. 2 shows, we find that use of the smoothness
prior typically yields substantial improvements for
tasks where overfitting is a problem due to the multi-
scale resolution of the kernel, while it generally has
no appreciable negative impact when overfitting is
not an issue .

Table 1 shows for a number of standard datasets
the sparsity, measured by the number of included
componentsS, and the MSE between̂t and the true
signaly. Clearly theNoneprior is insufficiently se-
vere to control the sparsity for multiresolution ker-
nels, while the smoothness priors provide sufficient
smoothing and thus permit�2 to be correctly esti-
mated.



Bumps SNR=2.0 (�2 = 0:119)
Kernel Prior S MSE �2MAP

symmlet None 127.0� 0.0 0.127�0.018 0.000�0.000
symmlet AIC 98.1�16.1 0.120�0.021 0.008�0.009
symmlet BIC 13.3� 3.0 0.145�0.023 0.217�0.036
symmlet RIC 4.4� 2.1 0.269�0.061 0.373�0.091

Bumps SNR=7.0 (�2 = 0:010)
Kernel Prior S MSE �2MAP

symmlet None 127.1� 0.3 0.010�0.001 0.000�0.000
symmlet AIC 86.0�10.2 0.009�0.002 0.003�0.002
symmlet BIC 41.0� 5.8 0.019�0.007 0.022�0.009
symmlet RIC 8.5� 1.8 0.165�0.028 0.175�0.031

Sinc SNR=2.0 (�2 = 0:031)
Kernel Prior S MSE �2MAP

gauss None 5.4� 1.0 0.004�0.001 0.033�0.005
gauss AIC 5.5� 1.1 0.004�0.001 0.034�0.006
gauss BIC 5.1� 0.9 0.005�0.001 0.034�0.006
gauss RIC 4.8� 0.8 0.005�0.001 0.034�0.006

symmlet None 127.0� 0.0 0.033�0.005 0.000�0.000
symmlet AIC 75.2�17.2 0.028�0.006 0.004�0.003
symmlet BIC 9.2� 2.0 0.007�0.002 0.031�0.005
symmlet RIC 6.1� 0.3 0.006�0.001 0.036�0.006

Table 1: Empirical comparisons of different priors on
standard datasets. Results are averaged over 10 runs.

4. DISCUSSION

Our results indicate that symmlets with a smooth-
ness prior make an attractive default choice for RVM
regression tasks: the combination is flexible enough
to be suitable for a large variety of signals, requires
no additional kernel parameters to be determined
by cross-validation (e.g. scale for Gaussian ker-
nels) and has attractive computational characteris-
tics resulting from the properties of wavelets (the
matrix-multiplication by kernel columns can be car-
ried out by the mathematically equivalent but much
more efficient discrete wavelet transform – in par-
ticular this implies that noN �M design matrix
needs to be constructed and held in memory; there
are further simplifications due to orthonormality and
numerical robustness also tends to be better than
for many other kernels). This might seem to beg
the question why not just wavelet shrinkage to start
with – of course there are limitations of wavelets
that other types of kernels do not share (the data
must be equally spaced) but the deeper point is that
the RVM updated with a smoothness prior (sRVM)
can be profitably regarded as ageneralizationof

wavelet shrinkage.1

In other words a chief attraction of the sRVM
is that spans a bridge between the RVM and related
methods on the one hand and wavelet shrinkage on
the other, yielding a powerful synthesis.
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1The Holmes and Denison [1999] smoothness prior is di-
rectly suitable for other types of kernels than wavelets because,
unlike most popular wavelet shrinkage priors, it is not level-
dependent. Holmes and Denison reject such level dependence
as inconsistent with the knowledge that noise enters additively
across all components, but there is, in principle, no reason not
to incorporate priors in the RVM that only work in conjunction
with certain kernel types.


