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Abstract

In this paper we investigate how the energy is dis-
tributed in the coefficients vector of various redundant
signal representations of music signals. The representa-
tions are found using Basis Pursuit, Matching Pursuit, Al-
ternating Projections, Best Orthogonal Basis and Method
of Frames, with five different time-frequency dictionaries.
We have applied these methods to music to examine their
ability to express music signals in a sparse manner for
a number of dictionaries and window lengths. The eval-
uation is based on the m-term approximation needed to
represent 90%, 95 %, 99 % and 99.9% of the energy
in the coefficients, also the time consummation for finding
the representations are considered. The distribution of en-
ergy in the coefficients of the representations found using
Basis Pursuit, Matching Pursuit, Alternating Projections
and Best Orthogonal Basis depends mainly on the signal,
and less on the minimization method, the dictionary and
the length of the analysis window.

The results indicate, that the sparseness of the repre-
sentations do indeed tell something about the music sig-
nal, and this is an interesting subject for further investiga-
tion.

1 Introduction
The results presented here are obtained as part of a re-

search project on Automatic Classification of Music. We
are interested in finding sparse representations of music
signals, based on the idea that we can find good features
from a sparse representation of a music signals, that cap-
ture “the nature” or significant elements of each particular
piece of music. This approach is in some sense opposite
compared to other approaches on audio feature extraction
(e.g. [5], [8], [9] and [6]), in that we instead of trying
to detect particular elements in the signal investigate what

a variety of different redundant signal representation can
reveal about the signal.

When applying e.g. a Fourier or Wavelet Transform to
describe a signal, a complete description is achieve which
is (usually) much more sparse, than the original signal,
and more meaningful (intuitive) in terms of what the sig-
nals contains. But even though the description is com-
plete, it is not necessarily good and/or sparse. A mu-
sic signal often have both “pure” frequencies, which are
described best by harmonic functions, and contains ele-
ments, e.g. a drumbeat, which at the onset time is best de-
scribed by wavelets. Therefore we are investigating what
can be achieved in terms of feature extraction by repre-
senting music signals in a redundant set of functions.

The focus of this paper is on the sparseness achieved
when combining different optimization methods with dif-
ferent sets of functions (dictionaries) and signal lengths.

2 Methodology
The music signals are considered to be elements in

R
N . A representation of a signalb ∈ R

N in a dictio-
nary of sizek, is a vectorx ∈ R

k, satisfying

Ax = b, (1)

whereA is ann × k matrix having the atoms in the dic-
tionary as its columns. The vectorx contains thek coeffi-
cients of the representation. When the dictionary contains
more thann elements, this representation is in general
not unique. This on one hand leads to added flexibility
in choice of representation, on the other leads to higher
complexity in finding the possible representations.

Five different minimization methods for finding rep-
resentations as in (1) are applied; Basis Pursuit, BP [1],
which minimizes theℓ1 norm of the coefficient vector.
Matching Pursuit, MP [7], which successively picks the



average off̄90 average off̄99.9

BP AP MP BOB MOF BP AP MP BOB MOF
DCT 0.0178 0.0158 0.0394 0.3097 0.2395 0.5734

DCT, WP 0.0153 0.0192 0.0161 0.5851 0.3244 0.2999 0.2201 3.1065
WP 0.0320 0.0350 0.0304 0.0350 0.5906 0.4033 0.3003 0.2552 0.3011 2.8374
CP 0.0167 0.0184 0.0138 0.0186 0.1620 0.3162 0.2691 0.2033 0.2732 1.8940

WP,CP 0.0155 0.0343 0.0133 0.6647 0.3065 0.3163 0.1849 4.7200

Table 1. The average, over all songs and all window lengths, o f f̄90 and f̄99.9, for the combinations
of dictionary and minimization methods.

atoms with the largest correlation with the signal sub-
tracted the projection on to the former chosen atoms. Al-
ternating Projections, AP, where the signal is decomposed
alternating between the bases of the dictionary each time
picking the most significant atoms. Best Orthogonal Ba-
sis, BOB [10], chooses the best basis among all the bases,
and in the present research best means having the smallest
ℓ1 norm (this method is applied only to CP and WP Dictio-
naries) and Method of Frames MOF [2], which minimizes
theℓ2 norm of the coefficient vector.

The dictionaries applied are constructed from the fol-
lowing three transforms. Discrete Cosine Transform
(DCT), a Wavelet Packet (WP) and a Cosine Packet (CP).
The WP is generated using the coiflet wavelet with filter
length 12. The choice of wavelet is based on the results
in [3], even though the results there are obtained using a
DWT, it is reasonable to assume that not much is gained
in sparseness by increasing the smoothness of the wavelet
beyond the smoothness of the signal, when applied in a
WP. The CP contains locally trigonometric cosine func-
tions generated with a “sine bell”.

The dictionaries applied can be seen in the first column
of Table 1. The DCT is over samples by a factor two in
the first dictionary and the WP and CP are applied with re-
dundancylog

2
(N)-5, corresponding to the firstlog

2
(N)-5

levels. Note that the dictionaries contain many orthonor-
mal bases, which are essential for some of the minimiza-
tion methods.

These three sub-dictionaries describe different ele-
ments in a music signal. The DCT describes frequencies
over the whole time interval, while the CP describes fre-
quencies over local dyadic intervals of the signal. The WP
is good at describing both rapid changes (short duration
events) in the signal, which appears at e.g. a note onset,
and long duration events, without changing representation
[4].

The representation methods are applied on 30 sec. se-
quences from 136 pieces of music, from a number of dif-
ferent genres. The sample frequency is 44.1 kHz, and the
sampling is started 60 sec. after the beginning of the song.
The 30 sec. music sequences are divided into windows of
length 256, 1024, 4096 and 8192 samples (see Figure 1),
corresponding to 6 ms, 23 ms, 93 ms and 186 ms. This

results in respectively 5167, 1291, 322 and 161 analysis
windows.

30 sec. of music

Analysis Windows
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Figure 1. The 30 sec. music sequences are
divided into successive but non overlapping
windows of length 256, 1024, 4096 or 8192
samples.

All the combinations of minimization methods and dictio-
naries (except four combinations, which can be seen im-
plicit in Table 1) are applied with the four different win-
dow lengths on all 136 pieces of music. Which gives 72
different calculation combinations.

The representations are found using already ex-
isting Matlab functions (for references see [1] and
http://www.control.aau.dk/∼alc/Homemade/apro.m),
which have been adjusted to this test setup. The calcu-
lations are performed as distributed computations on a
number of PCs. All calculations for one piece of music is
performed on the same PC, so it is possible to compare
the computation times.

Storing all the coefficients for all the representations re-
quires disc space in the order of tera bytes. Consequently,
we have computed the m-term approximation needed to
represent 90%, 95 %, 99 % and 99.9% of the energy in
the coefficients. It is denotedmβ, whereβ corresponds,
to the fraction of energy. The m-term approximation, will
be represented relative to the window length as

fβ =
mβ

N
,

whereN is the signal length. The average over all the
windows in the 30 sec. music pieces, will be denotedf̄β.

3 Results
In Figure 1 the measures̄f90, f̄95, f̄99 and f̄99.9 are

shown for all combinations of window length, dictionary
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Figure 2. The measure f̄β versus the fraction of energy in the coefficient vector. Each plot corre-
sponds to one song, and results are included for all combinat ions of window length, dictionary and
minimization method, except MOF. The box itself extends fro m the lower quartile value through the
median (middle notch) to the upper quartile value. The whisk ers show the range of the remaining
values, except for outliers which are more than 1.5 × inter-quartile range away from lower or upper
quartile values. Outliers are marked with +. Note, that the s cale on the x-axis is not linear, and the
scale on the y-axis is different for the six plots.

and minimization method except MOF (since thef̄β val-
ues are significantly larger). For̄f90, f̄95 andf̄99 the val-
ues lie fairly close for a particular piece of music. The
fraction of coefficients needed to describe 99.9% of the
energy vary over a larger range, the median vary between
15% and 45% for the six results shown.

To compare the methods an average off̄90 and f̄99.9

for all combinations of minimization methods and dictio-
naries has been calculated over all 136 songs and all win-
dow lengths (see Table 1). Even though the value of the
measurements vary much for the different songs, this do
give meaning, since the distribution of the measures be-
tween the dictionaries and the minimization methods are
very much alike for the different pieces of music.

Figure 3 shows the average computation times (over the
136 different music sequences) for all 72 combinations of
minimization method, dictionary and signal length. The
computation times for the methods BOB and MOF mainly

depends on the dictionary which is in agreement with the
complexityN (see [1]), since the number of windows is
inverse proportional to the window length. The computa-
tion times for the methods MP and BP agree with a com-
plexity ofN log N (see [1]). For AP the computation time
decreases with the signal length, it has not been investi-
gated, but it might be because relatively fewer analysis
operations are needed for longer signals.

The average of the computation times over all music se-
quences and windows lengths, for finding the representa-
tions of a 30 sec. music sequences for all combinations of
dictionaries and minimization methods are shown in Table
2. Even though taking the average over the signal lengths
for MP and BP do not give much meaning, this values still
gives ground for comparing the computation time of the
different minimization methods.

The two dictionaries WP and CP are applied with the
same redundancy, so the large difference in the computa-



Figure 3. The average computation time for
a 30 sec. music sequence. The y axis is
time in seconds, and the x-axis is the 20
combinations of time and dictionary. The
first five corresponds to the five dictionaries
for signal length 256, the next five is the five
dictionaries combined with length 1024 and
so on.

BP AP MP BOB MOF
DCT 1.3498 3.3094 0.0034

DCT, WP 1.9022 0.1030 2.6425 0.0029
WP 0.9940 0.0445 1.9610 0.0038 0.0012
CP 3.1783 0.0557 5.1358 0.0048 0.0053

WP, CP 5.1298 0.1213 5.8201 0.0063

Table 2. The average over the 136 differ-
ent songs, and the four different window
lengths of the computation time (in hours),
for finding the representations of a 30 sec.
music sequences for the combinations of
dictionaries and minimization methods.

tion times for most minimization methods must be due to
the implementations of the dictionaries.

4 Discussion
It can be seen that MP in general performs better than

the other methods, meaning that the energy is contained in
a smaller fraction of the coefficients. The representations
found using MP do not satisfy equation (1), but only de-
scribe (at least) 99% of the energy in the original signal,
hence all “the small” coefficients required to have a com-
plete description of the original signal is left out, which
might give this seemingly better sparseness.

MOF has a tendency to spread out the energy, hence
it often requires more coefficients than the signal length,
and it gets worse, when the redundancy in the dictionary
is increased.

In general the Wavelet Packet performs worse, when it
is not combined with a frequency dictionary, this is due
to the “high concentration” of relative pure frequencies
in music. An advantage is that the computation time is
smaller than for the other dictionaries.

The main difference in the values of̄fβ lies in the sig-
nal, as can be seen in Figure 1. It can be seen that for the
“Nirvana” and “Accept” pieces, the values are in general
high, and for the others which are more mellow, the values
are lower. This indicate, that the concentration of the co-
efficients (or sparseness of the representation) do depend
on which type of music is considered.

The calculation times are of cause too large to use for
any realistic music classification system, but if only the in-
formation for a few seconds (or ms) is needed, which other
audio classification systems indicate ( [5],[9] and [6]), itis
realistic to used these methods when “real time” is not re-
quired.
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