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ABSTRACT

In this work the image denoising problem is examined. A com-
mon approach involves transform-domain coefficients manipulation,
followed by the inverse transform. This approach is highlighted by
recently-developed methods that model the inter-coefficient depen-
dencies. However, these methods operate on the transform domain
error rather than on the more relevant image domain one. In this
work we propose a novel denoising method, based on the Basis-
Pursuit Denoising (BPDN) method. Our method combines the im-
age domain error with the transform domain dependency structure,
resulting in a general objective function, applicable for any wavelet-
like transform. We focus here on the Contourlet Transform (CT), a
relatively new transform designed to sparsely represent images. The
superiority of our method over BPDN is demonstrated, thus provid-
ing a more advanced tool for image restoration.

1. INTRODUCTION

In this work we focus on the problem of denoising images contam-
inated by additive white Gaussian noise. Symbolically, letx be the
unknown clean image,n the additive noise andy the observed noisy
image, i.e.y = x + n. Then denoising is defined as retrieving a re-
constructed imagêx, such that̂x ' x. Many recently developed de-
noising methods operate by manipulating the transform coefficients
of the given image. The most common way of such manipulation
is shrinkage, namely performing a look-up-table (LUT) operation
on each coefficient separately [1]. Albeit simple, such approach
ignores the inevitable inter-coefficient dependency. As we turn to
use the more effective redundant transforms, this overlooked depen-
dency further increases.

More advanced methods [2, 3, 4] try to model these dependen-
cies, thus improving the performance while also complicating the al-
gorithm. A drawback shared by these algorithms is their focus on re-
moval of the noise in the transform domain, rather than in the image
domain, which does not guarantee a successful treatment. Counter
to the above algorithms, there exist several methods [5, 6] that relate
the denoising objective directly to the image-domain error, and ob-
tain the denoised image by minimization of a cost function. Never-
theless, their performance is often surpassed by the above transform-
domain techniques.

In this paper we propose a new denoising method, built as a
merge of these two distinct approaches. It minimizes an objective
function containing the measurement error and a prior penalty. This
penalty emerges from an approximate joint probability model for
adjacent transform-domain coefficients, and thus can describe their
inter-dependencies. It is in fact a generalization of the Basis-Pursuit
prior [5], which was also employed in this work for comparison.
This novel method can be easily extended to colored Gaussian noise,
as well as to the reconstruction of noisy and blurred images problem.
Although we concentrate here on the contourlet transform (see be-
low), this method is valid for any wavelet-like transform. In addition,
we adapt the Gaussian-Scale-Mixture (GSM) model [3], originally
developed for steerable wavelets, to contourlets. By comparing the

above mentioned methods, we show that (a) taking into account co-
efficients dependencies is helpful; and (b) the proposed approach
leads to state-of-the-art performance (for a given transform), while
being of manageable complexity and having clearer objective.

2. THE CONTOURLET TRANSFORM

It is well known that many signal processing tasks, e.g. compres-
sion, denoising, feature extraction and enhancement, benefit tremen-
dously from having a parsimonious representation of the signal at
hand. Do and Vetterli have conceived the Contourlet Transform [7]
(CT), which is one of several transforms developed in recent years,
aimed at improving the representation sparsity of images over the
Wavelet Transform (WT). The main feature of these transforms is
the potential to efficiently handle 2-D singularities, i.e. edges, un-
like wavelets which can deal with point singularities exclusively.
This difference is caused by two main properties that the CT pos-
sess: 1) thedirectionality property, i.e. having basis functions at
many directions, as opposed to only 3 directions of wavelets 2) the
anisotropyproperty, meaning that the basis functions appear at var-
ious aspect ratios (depending on the scale), whereas wavelets are
separable functions and thus their aspect ratio equals to1. The main
advantage of the CT over other geometrically-driven representations,
e.g. curvelets [8], is its relatively simple and efficient wavelet-like
implementation using iterative filter banks. Due to its structural re-
semblance with the wavelet transform, many image processing tasks
applied on wavelets can be seamlessly adapted to contourlets.

In our previous work [9], the original CT was employed, as well
as a much more redundant version of it. However, a new version
of contourlets, called the Contourlet-SD [10], was recently supplied
to us. This representation is only up to133% redundant, but nev-
ertheless produces considerably better results than both transforms
previously used. Therefore, throughout this work we employ this
new transform, which will still be denoted by CT.

3. GAUSSIAN SCALE MIXTURE MODEL FOR
CONTOURLETS

The Bayesian Least Squares Gaussian Scale Mixture (BLS-GSM) is
a recently developed method for image denoising [3], which achieves
state-of-the-art results. It is based on statistical modelling of the co-
efficients of a multiscale oriented frame, specifically the Steerable
Wavelet Transform, but can be applied to other transforms as well.
We will first describe briefly the method, then elaborate on its appli-
cation to the CT.

3.1. Description

It has been known for some time that images behave in a non Gaus-
sian fashion, both at the image and the transform domain. This can
be easily observed in the log marginal histogram of a bandpass filter
response for a sample image, as shown in Fig. 1 (left). The histogram
is typical of akurtotic behavior, i.e. a sharp peak at zero, and tails
that decay much slower than a Gaussian of the same variance.
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Fig. 1. Histograms of one subband from the CT ofPeppers(left to
right): log marginal; conditional (each column has been separately
rescaled to fit the display range).

The bandpass filter responses exhibit also non-Gaussian joint
statistical behavior, not only marginal one. Specifically, coefficients
at close spatial positions, scales and orientations, show strong de-
pendencies that cannot be vanished by decorrelation. Firstly, large
coefficients in a bandpass response of a natural image are mostly
clustered together, which is particulary evident near edges. Sec-
ondly, the distribution of a coefficient conditioned by its neighbor
value resembles a bow-tie shape (see Fig. 1, right).

One way of describing both the marginal and the joint statis-
tics of coefficients at the transform domain is by the Gaussian Scale
Mixture (GSM) model [3]. A local neighborhood is represented by
a product of a Gaussian vector and an independent scalar multiplier.
Formally, denotez as a local neighborhood of a reference coefficient,√

α as a positive scalar multiplier andu as a zero-mean Gaussian
vector. Then the basic GSM model assumption isz =

√
αu, where

α is known as thehidden multiplier, since it cannot be observed.
An observed noisy neighborhoodv can be expressed asv =√

αu + w, wherew is the additive noise Gaussian vector, and all
three random variables on the right side of the equation are indepen-
dent. The reference coefficient is reconstructed by the Bayes Least
Squares (BLS) estimate, given by

E{zc|v} =

∫ ∞

0

p(α|v)E{zc|v, α}dα. (1)

After all of the coefficients are modified via Eq. (1), the image is
reconstructed by the inverse transform.

3.2. Application to the CT

Once the neighborhood is defined for a certain representation, the
BLS-GSM method can be employed. To specify a meaningful neigh-
borhood, we need to look first at the structure of the new CT [10].
Each of the two finest scales contains the same number of coeffi-
cients as the image, and thereafter the number of coefficients is di-
vided by four every coarser scale. Independently, the number of
directions is doubled every other finer scale. Hence, there are four
possible parent-child relationships, depending on the scale and the
directional partition. The best results were obtained with neighbor-
hoods that include only a parent and the eight nearest neighbors, and
this choice will be referred to hereunder.

4. ALTERNATIVE DENOISING METHOD

This section describes a novel method for image denoising, which is
basically minimization of a cost function, incorporating a new global
image model. As opposed to recently developed methods, this ap-
proach refers to the image domain error, rather than the transform

domain error. Since minimization of the MSE at the transform do-
main does not translate directly to MMSE at the image domain for
non-orthonormal transforms, a fundamental flaw lies within many
state-of-the-art methods, like the BLS-GSM.

4.1. Formulation

Let us discuss first the Basis-Pursuit De-Noising (BPDN) method,
which was introduced by Chen, Donoho and Saunders [5]. It refers
to the solution of

ẑ = min
z

1

2
‖y − Φz‖22 + λ‖z‖1, (2)

whereΦ represents thesynthesistransform operator,z the coeffi-
cients vector, andλ an adjustable parameter. The reconstructed
image is given bŷx = Φẑ. This is essentially the maximum a-
posteriori probability (MAP) solution, where the transform coef-
ficients are modelled as independentLaplacian random variables.
More specifically, each coefficient is distributed according top(z) ∝
exp(−

√
2

σ
|z|), whereσ is the standard deviation.

This objective function can be generalized somewhat by allow-
ing each coefficientzi to have its own weightλi, and thus we get

ẑ = min
z

1

2
‖y − Φz‖22 +

∑
i

λi|zi|. (3)

With respect to a multiscale transform, such as the Contourlet trans-
form, experiments made on natural images show that coefficients at
different scales and directions have different average standard devia-
tion. Henceσ should depend on the scale and direction, and perhaps
the spatial position as well, which justifies a coefficient dependent
weightλi, as indicated above.

A possible downside of such an approach is the statistical inde-
pendence assumption of different coefficients. As later results will
show, this approach is inferior to the proposed methods, which ex-
plicitly model inter-coefficient dependencies. In developing these
methods, the main challenge arising is how to formulate a global
prior model from the local ones described earlier. However, we must
emphasize that these local models serve only as an intuition, since
they correspond to the analysis operator response, not necessarily to
the underlying distribution.

Sendur and Selesnick [4] suggested the use of a new bivariate
pdf to model the distribution of a coefficient and its parent. They em-
ployed this pdf to construct a MAP-basedbivariateshrinkage rule,
unlike the commonly usedscalar shrinkage rules. We can easily
extend their model to account for the dependencies in a local neigh-
borhood with arbitrary size. Denotez = (z1, z2, . . . , zn), wherezj

is the j-th coefficient in the neighborhood (z1 is the central coeffi-
cient). In addition, denoteσj as the standard deviation ofzj . Then
the joint pdf is given by

p(z) = K exp

(
−a

√∑
j

( zj

σj

)2
)

, (4)

whereK is a normalizing factor, anda ensures thatσj is indeed the
standard deviation ofzj .

To examine the accuracy of the model of Eq. (4), it can be com-
pared with an empirical histogram. Figure 2 shows (in white) the log
joint histogram of a reference coefficient and one of its nearest neigh-
bors, estimated from the finest CT bands of several images. Two
main deviations from the discussed model can be easily observed in
the empirical histogram: 1) The model suggests non-smooth surface
for z = 0, but it is in fact smooth. This can be solved by adding a
small positive constantε into the square root of Eq. (4). 2) The decay
rate diminishes as|z| increases, while the model suggests a constant
decay rate. Rectifying this difference is obtained by decreasing the
power inside the exponent from1/2 to 1/γ (γ > 2). Thus, the
modified model is given by



p(z) = K exp

(
−a

(∑
j

( zj

σj

)2

+ ε

) 1
γ

)
. (5)

Manual fitting between the estimated and the modelled log joint pdf
resulted inε = 2.5 · 10−2, γ = 6 (see Fig. 2).
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Fig. 2. Log joint histogram of two nearest neighbors: empirical
vs. the proposed model in (5). The axes are xlabel=z1 (reference),
ylabel=z2 (neighbor), and zlabel=lnp(z1, z2).

The question arising now is how to extend the local prior model
into a global one. Sendur and Selesnick [4] assumed independent
neighborhoods, to simplify mathematical manipulations. In a simi-
lar fashion, we also embrace the independency assumption. Incor-
porating this supposition into Eq. (2), we get

ẑ = min
z

1

2
‖y − Φz‖22 + λ

∑
i

(∑

j(i)

( zj

σj

)2

+ ε
) 1

γ
, (6)

whereλ is again an adjustable constant. Here we denotez as the
global coefficients vector and{j(i)} as the indices of the coefficients
included in the i-th neighborhood. Note that the outer summation in
Eq. (6) is not made over the lowpass coefficients, since the discussed
dependency model is not valid for these. This method will be de-
noted hereafter BPDN-VAR.

4.2. Variance Estimation

The implementation of the new algorithm requires an estimation of
the variances{σi} from the given data. One common way of esti-
mating the variances is by using coefficients from the reference co-
efficient’s vicinity. Although this estimate makes sense, it is too sen-
sitive to the neighborhood’s size: a small one leads to an unreliable
estimation, while a large one yields slow adaptation to varying char-
acteristics. As a result, the reconstructed images in our experiments
obtained in this method were blotchy, and therefore this method was
abandoned.

An alternative estimation method was introduced by Changet al.
[11] for the WT, though it remains valid for any multiscale transform
like the CT. Consider a subband withM coefficients, and denotēzi

as ap×1 vector containing theabsolute valuesof p neighbors ofzi.
Thecontextof zi is defined as a weighted average of its neighbors’
absolute valuesyi = wtz̄i. The weights vectorw is calculated by
the least squares (LS) estimate over the whole subband, i.e.

wLS = (ZtZ)−1Zt|z|, (7)

whereZ is aM × p matrix with rows{z̄i}, andz is aM × 1 vector
of the subband’s coefficients.

Next, the contexts{yj} in each subband are sorted in an in-
creasing order, and the coefficients{zj} whose context are at most
L values away fromyi are chosen (i.e.2L + 1 coefficients). The
variance estimate ofzi is given by

σ̂2
i = max

{ 1

2L + 1

∑

j(i)

z2
j − σ2

n,i , 0
}

, (8)

whereσ2
n,i is the noise variance at the i-th coefficient (it is in fact

constant over a subband). As Fig. 1 demonstrates, a coefficients’
standard deviation scales roughly linearly with its neighbor’s abso-
lute value. Hence, the above method can be understood as gathering
of coefficients with the same variance, then estimating this variance.
Similarly to Ref. [11], we chooseL = max {100, 0.02M} to guar-
antee reliable estimation along with adaptivity to varying character-
istics, as well asp = 9 (eight spatial neighbors and one parent).

5. EXPERIMENTS

5.1. Implementation Issues

The BPDN-VAR method is specified by several unknown parame-
ters which must be selected:γ, ε, λ and the neighborhood size. As
discussed earlier (Sect. 4.1),γ andε can be set manually to fit the 2-
D joint histogram (see Fig. 2). However, such a choice might not be
suitable for higher dimensional distributions. Moreover, forγ > 2
the objective function in Eq. (6) is not convex, necessitating a se-
quential minimization for increasing values ofγ. Therefore, in this
paper we setγ = 2, although other values will be examined in a
future work. The value ofε must be positive to ensure a smooth
objective function, and also to allow better fitting of the empirical
histogram to the model. On these grounds and based on our experi-
ments we have chosenε = 10−2.

Regarding the neighborhood selection, the choice which led to
the best performance was of a parent and the four nearest spatial
neighbors. For comparison, we will also examine the1 × 1 neigh-
borhood case (i.e. the reference coefficient alone), which will be de-
noted by BPDN-VAR-NN (stands for No-Neighbors). In addition, to
show the effect of spatial adaptivity, a special case of BPDN-VAR-
NN (denoted by BPDN-BAND), where the parameters{σi} are only
subband-dependent, will be tested.

Returning briefly to Eq. (3), and remembering that it corresponds
to the MAP-solution for an independent Laplacian prior model, we
getλi =

√
2σ2

n/σi, whereσ2
n is the noise variance at the image do-

main. Going back to the BPDN-VAR-NN method, the correspond-
ing value ofλ is λ0 =

√
2σ2

n, which turned out to be indeed the op-
timal value performance-wise. However, in the BPDN-VAR method
(see Eq. (6)), each coefficient appears either five, six or nine times
in the summation, depending if it belongs to the finest scale, the
second-finest scale, or any other scale, respectively. Clearly no value
of λ exists such that the ’effective’ weight of each coefficient equals√

2σ2
n/σi. One possible solution is to multiplyσ2

i by (9/5)2 or
(6/5)2 (for the coarsest scales and the second-finest scale, respec-
tively), and also to setλ = λ0/5. We should note that the PSNR
values remain virtually unchanged forλ ∈ [λ0/6, λ0/3], yet better
visual quality was obtained withλ0/3, which was thus chosen.

Following the selection and estimation of the unknown param-
eters, the minimization of the cost function in Eq. (6) can begin.
A work by Elad [1] showed that the BPDN problem (Eq. (2)) can
be solved by iteratively performing simple shrinkage on the coef-
ficients. This work can be easily extended to apply on the BPDN-
VAR-NN method by making a certain modification to the coefficient-
dependent thresholds. Nevertheless, the BPDN-VAR method cannot



be expressed as a series of closed-form LUT operations. This dis-
tinction vastly increases the complexity of the discussed technique,
thus ruling out its use for BPDN-VAR.

After testing many optimization algorithms, we finally decided
to use the Truncated-Newton algorithm with preconditioning [12] for
BPDN-VAR method. More details about the optimization method,
including explicit expressions for the gradient and the hessian’s di-
agonal, can be found in Ref. [13]. In our simulations the PSNR
increased with every multidimensional iteration, until it settled after
about20 iterations.

For further comparison, we have also tested hard-thresholding
(HT), namely zero-forcingzi if it is smaller than a thresholdKσn,i

(see Sect. 4.2 for notations). As in Ref. [7], we setK = 4 for the
finest scale, andK = 3 otherwise. For all of the discussed methods,
we used a directional partition of8, 8, 16 and16 directions (from
coarse to fine).

5.2. Results

Figure 3 displays a comparison between the BPDN-VAR and BLS-
GSM methods, for a200× 200 slice ofPeppers. The corresponding
PSNR values appear in Table 1. Although the PSNR of BLS-GSM
is slightly higher, the visual quality of both methods is similar.

Table 1 summarizes the PSNR results of all of the examined
methods, forσn = 20. This comparison reveals some interesting ob-
servations: 1) Spatial adaptivity improves the performance dramat-
ically, as the comparison between BPDN-BAND and BPDN-VAR-
NN shows. 2) The BPDN-VAR method surpasses BPDN-VAR-NN
uniformly (0.38dB on average). Thus, modifying the prior to ac-
count for the dependencies is worthwhile. 3) BPDN-VAR method
attains roughly the same PSNR as BLS-GSM (merely0.06dB less).

Fig. 3. Denoising results of a200× 200 slice ofPeppers(for σn =
20). From left to right and top to bottom: Original; Noisy; BLS-
GSM; BPDN-VAR.

Table 1. PSNR values for all of the images and methods (σn = 20)
Peppers256 Peppers Lena Barbara

HT 28.21 30.87 31.46 28.36
BPDN-BAND 27.96 30.00 30.30 27.58
BPDN-VAR-NN 29.21 31.14 31.49 29.61
BPDN-VAR 29.43 31.57 32.02 29.94
BLS-GSM 29.27 31.69 32.06 30.19

6. CONCLUSIONS

We have proposed a novel denoising method, by merging the in-
herent transform domain inter-coefficient dependencies into a MAP
framework. The resulting algorithm proved superior to the classic
Basis-Pursuit Denoising (BPDN), which does not account for these
dependencies. Even though the new prior still does not describe ac-
curately the true probability function (because of the neighborhoods
independency assumption), it does provide a step forward in that di-
rection.

As for the future work plan, we mention several topics: 1) test-
ing various values ofγ andε (see Sect. 4.1). 2) Extension to more
general inverse problems such as deblurring. 3) Further modification
of the prior in Eq. (6), in order to better describe the inter-coefficient
dependencies.
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