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1. INTRODUCTION

Representations which reduce redundancy and estimate latent
variables behind observed data have turned out to be efficient
in machine learning. Most of the representations model each
observation vector as as weighted sum ofN basis functions
an, so that

xt =

N∑

n=1

ansn,t, (1)

wheresn,t is the amount of contribution of thenth basis func-
tion in thetth observation.

There are methods which use fixed basis functions, but re-
cently, many algorithms for the estimation of adaptive repre-
sentations have been proposed, and they have been success-
fully used in several applications. For example, independent
component analysis (ICA) estimates the basis functions by
finding a decomposition in which the gains of each basis func-
tion are statistically independent from each other. Other cri-
teria are, for example, sparseness and non-negativity ofsn,t.

1.1. One-channel audio signals

Because phases are perceptually less meaningful, one-
channel audio signals are often analyzed using a phaseless
mid-level representation, for example power spectrogram,or
the magnitude of the short-time Fourier transform, or, magni-
tude spectrogram. Furthermore, the phases of natural sound
sources often behave very irregularly so that they cannot be
modeled with a simple linear model.

When the model (1) is used, the spectrogram is represen-
tated as a sum of components, each of which has a fixed spec-
trum and a time-varying gain.

2. CONVOLUTIVE SIGNAL MODEL

Linear model (1) models each observation vector indepen-
dently. For example, the order of the observation vectors does
not usually affect the resulting adaptive representation.How-
ever, in many situations there are dependencies between ob-
servations. For example, the observations can be samples ofa

process which evolves slowly over time. By utilizing the de-
pendencies between the observations it is possible to estimate
higher-level latent variables, and gain robustness because of
the utilization of the relations.

An extension of the linear model is a convolutive signal
model. Instead of a static basis functionsan, we add a shift
dimension, to result inD basis functionsaτ

n, τ = 0, . . . , D−

1. The model is written as a convolution between the basis
functions and gains:

xt =

N∑

n=1

D−1∑

τ=0

a
τ
nsn,t−τ (2)

In the case of audio spectrograms, the model has an intuitive
interpretation: the spectrogram is modeled as a sum of repeti-
tions of audio objectsn, each of which has a spectrogramaτ

n

of lengthD frames (D should be significantly smaller than
the number of observations). The non-zero entries of the gain
sn,t describe the locations where the object sets on, and the
gains of each repetition.

In the analysis of one-channel audio signals the model has
been used by Virtanen in [1] and by Smaragdis in [2]. If each
frequency line is considered as an observation instead of each
frame, the same model allows time-varying fundamental fre-
quencies, as proposed by FitzGerald [3]. The model has also
been used to model time-varying images [4], [5], [6].

3. ESTIMATION CRITERIA AND ALGORITHMS

Magnitude and power spectra are non-negative by their defi-
nition. Therefore, it is natural to restrict the spectra of compo-
nents to be non-negative. The components can also be limited
to be purely additive, so that the gains are restricted to non-
negative values. The non-negativity restrictions have turned
out to be sufficient for the estimation of meaningful basis is
several cases. The basis functions and gain can be estimated
by minimizing the reconstruction error between the observa-
tions and the model, which can be measured, for example, us-
ing the Euclidean distance or divergence as proposed by Lee
and Seung [7].

The repetitions of natural sound objects are usually sparse,
so that the gainsn,t being zero can also be assumed to have a



high probability.

4. APPLICATION TO THE SOURCE SEPARATION
OF MUSIC SIGNALS

The discussed methods suit particularly well for the analysis
of music signals, since musical signals contain lots of redun-
dancy. Furthermore, many musical signals can be rather well
be represented with a fixed spectrum and a time-varying gain.
An individual component may represent, for example, all the
equal-pitched notes of an instrument.

We tested several algorithms based on the linear model (1)
and the convolutive model (2) in source separation of music
signals. The algorithms included ICA, non-negative matrix
factorization, and non-negative sparse coding.

Test signals were generated by mixing samples of individ-
ual notes of pitched musical instruments and drums. The sam-
ples were taken randomly from a database which is a combi-
nation of samples from the McGill University Master Sam-
ples Collection [8], the University of Iowa website [9], IR-
CAM Studio Online [10], and the DFH Superior commercial
sample database [11]. The number of samples within each
mixture signal was randomly selected. The number of mix-
ture signals was 300, the length of each being 7 seconds.

The quality of the separation was evaluated by calculat-
ing the signal-to-noise ratio (SNR) between each separated
and original sample. The best algorithm based on the linear
model (1) resulted in average SNR of 6.5 dB, while the best
algorithm based on the convolutive model (2) resulted in aver-
age SNR of 7.2 dB, which suggests that the convolutive model
enables a better separation quality than the linear model.
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