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ABSTRACT

A number of recent approaches to image deconvolution and
denoising in Hilbert spaces consist of minimizing the sum
of a residual energy and of a function promoting a sparse
decomposition in an orthonormal basis. Using convex-
analytical tools, we provide a systematic analysis of this
generic problem. We first present general properties of the
problem, and then propose a flexible forward-backward al-
gorithm to solve it. These results bring together and extend
various results found in the literature and make it possible
to devise new sparsity-promoting restoration schemes. Such
schemes are illustrated via numerical simulations.

1. PROBLEM FORMULATION

We consider the standard problem of restoring an image x
in a real Hilbert space H from the observation of an image

z = Tx + w, (1)

where T : H → H is a bounded linear operator and where
w ∈ H stands for an additive noise perturbation. In many
applications, it is important to obtain a compact represen-
tation of an image, e.g., for such purposes as coding, stor-
ing, or processing. A standard method for obtaining a com-
pact representation of an image x ∈ H is to decompose it
with respect to a family of vectors (ek)k∈K⊂N, and to re-
tain those coefficients in (〈x | ek〉)k∈K with large magni-
tude [2, 5]. This will indeed provide a good approximation
to x if the sequence (|〈x | ek〉|)k∈K is sparse. As observed
in [4], sparsity can conveniently be induced in a variational
setting by penalizing the standard residual term ‖Tx− z‖2
by certain separable functions of the magnitude of the coef-
ficients (〈x | ek〉)k∈K . This observation motivates the fol-
lowing problem formulation.

Problem 1 Let

(i) T : H → H be a nonzero bounded linear operator;

(ii) (ek)k∈K⊂N be an orthonormal basis of H;

(iii) (φk)k∈K be lower semicontinuous convex functions
from R to ]−∞, +∞] such that (∀k ∈ K) φk ≥ 0
and φk(0) = 0.

The objective is to

minimize
x∈H

1
2
‖Tx− z‖2 +

∑

k∈K

φk(〈x | ek〉). (2)

The set of solutions to this problem is denoted by G.

The case when φk ≡ ω| · |2 with ω ∈ ]0, +∞[ in
(2), yields a standard Tykhonov formulation; the case when
φk ≡ ω| · | has been of special interest as a tool to in-
duce sparseness; in [4], the case when, for every k ∈ K,
φk = ωk| · |p, with p ∈ [1, 2] and ωk ∈ ]0,+∞[ is investi-
gated in detail in [4], where an algorithm was also proposed
to solve the resulting problem.

The objective of the present paper is to provide a the-
oretical and numerical investigation of Problem 1. Unlike
the above cited works, our investigation will exploit convex-
analytical tools, which will allow us to obtain in a synthetic
fashion existence, uniqueness, characterization and stability
results on Problem 1, but also more general solution meth-
ods than existing ones. In turn, these results will allow us
to tackle variational formulations that cannot be handled by
current methods, and to obtain more efficient algorithms for
existing formulations.

In Section 2, we discuss proximity operators, which will
play a central role in our discussion. Section 3 is devoted to
deriving some basic properties of Problem 1 and presenting
a numerical algorithm to solve it, along with convergence
results. Numerical applications to sparse image restoration
problems are presented in Section 4.

2. PROXIMITY OPERATORS

Throughout, the underlying image space is a real Hilbert
spaceHwith scalar product 〈· | ·〉, norm ‖·‖, and distance d.
Γ0(H) is the class of all convex lower semicontinuous func-
tions from H to ]−∞,+∞] that are not identically +∞.



The distance from an image x ∈ H to a nonempty
set C ⊂ H is dC(x) = inf ‖x − C‖; if C is closed
and convex then, for every x ∈ H, there exists a unique
point PCx ∈ C, called the projection of x onto C such
that ‖x − PCx‖ = dC(x). The conjugate of a function
f ∈ Γ0(H) is the function f∗ ∈ Γ0(H) defined by

(∀u ∈ H) f∗(u) = sup
x∈H

〈x | u〉 − f(x). (3)

The Moreau envelope of index γ ∈ ]0, +∞[ of a function
f ∈ Γ0(H) is the continuous convex function

γf : H → R : x 7→ inf
y∈H

f(y) +
1
2γ
‖x− y‖2. (4)

For every x ∈ H, the infimum in (4) is achieved at a unique
point denoted by proxγf x. The operator

proxf : H → H : x 7→ arg min
y∈H

f(y) +
1
2
‖x− y‖2 (5)

is called the proximity operator of f . The reader is referred
to [3] for details on these operators and the proofs of the
following results. First, we observe that proximity operators
generalize the notion of a projection operator.

Example 2 Let f be the indicator function of a nonempty
closed convex set C ⊂ H: (∀x ∈ H) f(x) = 0 if x ∈ C;
f(x) = +∞ if x /∈ C. Then γf = d2

C/2γ and proxf = PC .

The next result, known as Moreau’s decomposition prin-
ciple, provides a powerful nonlinear image decomposition
scheme which extends in particular the standard linear de-
composition with respect to two orthogonal vector sub-
spaces. An illustration of this decomposition principle is
shown in Fig. 1.

Proposition 3 Let f ∈ Γ0(H), γ ∈ ]0,+∞[, and x ∈ H.
Then ‖x‖2 = 2γ

(
γf(x) + 1/γ(f∗)(x/γ)

)
and

x = x⊕γ + xªγ , where

{
x⊕γ = proxγf x

xªγ = γ proxf∗/γ(x/γ).
(6)

Moreover, f(x⊕γ ) + f∗(xªγ /γ) =
〈
x⊕γ | xªγ

〉
/γ.

Example 4 Let (pk)k∈K be a sequence in [1,+∞[, let
(ωk)k∈K be a sequence in ]0, +∞[, let

f : H → ]−∞, +∞] : x 7→
∑

k∈K

ωk|〈x | ek〉|pk , (7)

and let x ∈ H. Then proxf x =
∑

k∈K πkek where, for
every k ∈ K, πk is the unique solution of

(∀η ∈ R) (η − πk)(ξk − πk)/ωk + |πk|pk ≤ |η|pk , (8)

Fig. 1. Proximal decomposition (6) with f : (ξk)k 7→∑
k |ξk|3/2 and γ = 7. Top: Original 256 × 256 SPOT5

image x; middle: x⊕γ ; bottom: xªγ .



where ξk = 〈x | ek〉; in particular, πk is given by




sgn(ξk)max{|ξk| − ωk, 0}, if pk = 1;

ξk +
4ωk

3 · 21/3

(
(ηk − ξk)1/3 − (ηk + ξk)1/3

)
,

where ηk =
√

ξ2
k + 256ω3

k/729, if pk =
4
3
;

ξk +
9ω2

k sgn(ξk)
8

(
1−

√
1+

16|ξk|
9ω2

k

)
, if pk =

3
2
;

ξk/(1 + 2ωk), if pk = 2;

sgn(ξk)

√
1 + 12ωk|ξk| − 1

6ωk
, if pk = 3.

Let us note that the formula for pk = 1 gives the
well-known scalar soft-thresholding operation. This type
of thresholder, used in particular in [4, 5] and the references
therein, is therefore a proximity operator.

3. ANALYSIS AND NUMERICAL SOLUTION

We provide some properties of Problem 1 and propose an
algorithm to solve it; details will be found in [3].

Proposition 5

(i) Problem 1 possesses at least one solution if there
exists ρ ∈ ]0, +∞[ and a function c : [0, +∞[ →
[0, +∞[ such that c(0) = 0, limt→+∞ c(t) =
+∞ and, for every (ξk)k∈K in `2(K) such that∑

k∈K |ξk|2 ≥ ρ,

∑

k∈K

φk(ξk) ≥ c

(∑

k∈K

|ξk|2
)

. (9)

(ii) Problem 1 possesses at most one solution if the func-
tions (φk)k∈K are strictly convex or if T is injective.

(iii) Problem 1 possesses exactly one solution if
(∃κ ∈ ]0, +∞[)(∀x ∈ H) ‖Tx‖ ≥ κ‖x‖.

(iv) Let γ ∈ ]0,+∞[. Then x ∈ H solves Problem 1 if
and only if, for every k ∈ K,

〈x | ek〉 = proxγφk
〈x + γT ∗(z − Tx) | ek〉.

Theorem 6 Suppose that G 6= Ø. Let (γn)n∈N be
a sequence in ]0,+∞[ such that 0 < infn∈N γn ≤
supn∈N γn < 2/‖T‖2 and let (λn)n∈N be a sequence in
]0, 1] such that infn∈N λn > 0. Moreover, for every n ∈ N,
let (αn,k)k∈K be a square-summable sequence and suppose

that
∑

n∈N
√∑

k∈K |αn,k|2 < +∞. Fix x0 ∈ H and, for
every n ∈ N, set

xn+1 = xn + λn

( ∑

k∈K

(
πn,k + αn,k

)
ek − xn

)
, (10)

where πn,k = proxγnφk
〈xn + γn(T ∗(z − Txn)) | ek〉.

Then:

(i)
∑

n∈N
∥∥T ∗T (xn − x)

∥∥2
< +∞.

(ii)
∑

n∈N
∥∥proxγnf

(
xn + γnT ∗(z − Txn)

)− xn

∥∥2
<

+∞, where f : y 7→ ∑
k∈K φk(〈y | ek〉).

(iii) (xn)n∈N converges weakly to a point x ∈ G; the con-
vergence is strong if and only if lim dG(xn) = 0.

In (10), αn,k stands for some tolerance in the computa-
tion of proxγnφk

〈xn + γn(T ∗(z − Txn)) | ek〉.
An important instance of the above framework is when

f is given by (7), where (pk)k∈K lies in [1, 2]. Indeed, when
(ek)k∈K is a wavelet basis, there exists a strong connection
between Problem 2 and maximum a posteriori techniques
for estimating x in the presence of white Gaussian noise.
In this context, using suitably subband-adapted values of
pk amounts to fitting an appropriate generalized Gaussian
prior distribution to the wavelet coefficients in each sub-
band. Such a statistical modeling is commonly used in
wavelet-based estimation, where values of pk close to 2 pro-
vide a good model at coarse resolution levels, whereas val-
ues close to 1 should preferably be used at finer resolutions.

Proposition 7 Suppose that f is given by (7) and, if
dimH = +∞, that infk∈K ωk > 0 and supk∈K pk ≤ 2.
Then

(i) Problem 1 possesses at least one solution, and exactly
one if (∀k ∈ K) pk > 1.

(ii) Every sequence (xn)n∈N constructed by (10) con-
verges strongly to a solution to Problem 1 provided
that inf

{
pk

∣∣ k ∈ K, pk > 1
}

> 1 (see Example 4
for the computation of (πn,k)k∈K).

Let us note that in the special case when λn ≡ 1, ‖T‖ <
1, γn ≡ 1, pk ≡ p ∈ [1, 2], and αn,k ≡ 0, Proposition 7(ii)
appears in [4, Theorem 3.1]. We shall exploit the added
flexibility afforded by our results in the next section.

4. NUMERICAL RESULTS

We apply Proposition 7 to the problem of restoring an N ×
N image, where N = 256. The underlying Hilbert space
H is the Euclidean space RN2

. In (1), the original image x
is that shown in Fig. 1 (top), the degraded image z is that
shown in Fig. 2 (top), the operator T represents convolution



with a 7 × 7 uniform blur such that ‖T‖ = 1, and w is a
realization of a zero mean white Gaussian noise with known
variance. The blurred-image to noise ratio is 30.28 dB.

Fig. 2. Top: degraded image; bottom: restored image.

In Problem 1, (ek)1≤k≤N2 is a two-dimensional separa-
ble orthonormal wavelet basis. More precisely, we use a 4-
band wavelet decomposition with the filter bank coefficients
defined in [1, Table VI], over 2 resolution levels. Moreover,
pk takes its values in {1, 4/3, 3/2, 2} in (7).

To illustrate the convergence of the algorithm, we com-
pute the normalized error ||xn − x∞||/||x∞||. We consider
two scenarii: γn ≡ 1 and γn ≡ 1.99. In each scenario, two
subcases are considered: first ωk ≡ ω and pk ≡ 1; then,
for each subband, an adapted value of (ωk, pk) is selected.
Fig. 3 shows a faster decrease of the normalized error for
γn ≡ 1.99 than for γn ≡ 1, regardless of the strategy for
choosing (ωk, pk)1≤k≤N2 . This means that the flexibility

afforded by Proposition 7 in the choice of these parame-
ters can be exploited to accelerate the convergence of the
algorithm. We also observe that the choice of variable val-
ues of ωk and pk over the subbands leads to slower con-
vergence. However, it brings an improvement of 0.25 dB
in terms of signal-to-noise ratio (SNR). The restored image
shown in Fig. 2 (bottom) has been obtained with γn ≡ 1.99
and subband-adapted values of (ωk, pk)1≤k≤N2 . Its relative
error is 14.76 dB, whereas that of the degraded image z is
11.05 dB (the decibel value of the relative error of an image
y is 20 log10 (‖x‖/‖y − x‖)).
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Fig. 3. Normalized error ||xn−x∞||/||x∞||where (i) γn ≡
1 and (ωk, pk) ≡ (ω, 1) (dashed line) or takes on subband-
adapted values (dotted line); (ii) γn ≡ 1.99 and (ωk, pk) ≡
(ω, 1) (solid line) or takes on subband-adapted values (dash-
dot line).
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