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Abstract

We introduce a method, called SAGI (Sparsification Algo-

rithm using Greedy Iteration), for making a representation

of a signal more sparse in an over-complete dictionary in a

greedy manner. The sparsification is achieved by iteratively

increasing the magnitude of the largest signal coefficient and

simultaneously reducing the other signal coefficients so as

to maximize the sparsity of the representation while main-

taining invariant the reconstruction of the signal from the

coefficients. Any measure of sparsity can be used with the

method. Two versions are presented. The first, the one-pass

version, considers each coefficient once in order from largest

to smallest. The second, the exhaustive version, only consid-

ers the (n + 1)st largest coefficient if iteratively considering

the n largest coefficients results in no increase in sparsity.

1 Brief Overview

In general, frames provide for a stable and redundant
representation of signals and can be thought of as an
overcomplete dictionary, a generalization of the concept
of a basis [1]. A frame is formally defined as:

Definition 1. F = {~fi, i ∈ I} is a frame if ∃A, B : 0 <
A ≤ B < ∞, such that ∀~x ∈ H, a Hilbert space,

A||~x||2 ≤
X
i∈I

|〈~x, ~fi〉|2 ≤ B||~x||2 (1)

Given a frame F , there exists another (dual) frame

F̃ = { ~̃
fi, i ∈ I} such that for all ~x ∈ H,

~x =
X
i∈I

〈~x, ~fi〉| {z }
ci

~̃
fi (2)

This property is extremely useful as one can represent
the signal without loss of information using the coeffi-
cients, ci.

Often, the set of coefficients can be used to determine
useful attributes of the signal (eg, when the ~fi perform

Fourier analysis) and thus the ~fi are called analysis

functions. Similarly, as the
~̃
fi are used to re-synthesize

the signal from the coefficients, the
~̃
fi are called syn-

thesis functions.
In this work, for simplification of notation and ex-

position, we consider the Hilbert space of signals to be
N -dimensional vectors, ~x = (x1, x2, . . . , xN )T , where

( )T denotes transpose. Then the analysis functions ~fi

are also in CN and we can stack the M analysis vectors
in rows to create an M -by-N dimensional matrix F so
that the analysis process is,

~c = F~x (3)

where ~c is the resulting M dimensional coefficient vec-
tor created by the M analysis vectors. The synthesis
process is then

~x = F̃ T~c (4)

where F̃ is an M -by-N dimensional matrix constructed
by stacking the M synthesis vectors row by row.

As frames yield, in general, redundant representa-
tions, one can choose the coefficients that satisfy Equa-
tion 2 with a secondary constraint in mind. In this pa-
per, we investigate the constraint that the coefficients
be chosen so as to make the representation as sparse
as possible. Sparse representations are desirable in, for
example, coding and source separation algorithms[2; 3].

2 Other Methods

Several methods have been proposed for constructing
the sparsest representation of a signal using the over-
complete dictionary approach, these include Match-
ing Pursuit (MP), Basis Pursuit (BP) and Method Of
Frames (MOF). Let us begin by looking at these.

MP as presented by [4], is a method for generating
an approximate decomposition of the signal that tack-
les the sparsity issue directly. An iterative approach is
used to build up a representation from an initial ap-
proximation ~x(0) = 0 and a residue R(0) = ~x. The
algorithm proceeds as follows: At each iteration k, the
atom from the analysis frame, that yields the highest
inner-product after being projected onto the signal, is
taken. The corresponding coefficient ck = 〈R(k−1), ~fik 〉
is computed. The selected atom is then scaled by its



coefficient and added to current approximation of the
signal i.e. ~x(k) = ~x(k−1) + ck

~fik . The resulting residue
is then updated R(k) = ~x− ~x(k) and the next iteration
is performed.

MP achieves an optimal decomposition when the dic-
tionary is an orthogonal basis i.e. there is no redun-
dancy and hence there is only one possible representa-
tion of the signal. For example if the signal is made up
of only m � n atoms, the mth iteration of the algo-
rithm will yield the sparse structure exactly. Yet when
redundancy is added to the dictionary, it is clear that if
an atom is chosen erroneously in one of the initial steps
due to the multiple possible reconstructions of the sig-
nal, then a less sparse representation of the signal will
be the out come as the following steps are spent com-
pensating for the error.

The BP approach as described in [5], differs from
MP in that the algorithm starts with a set of atoms
that form a feasible basis for the signal and then it it-
eratively improves the basis and hence the sparsity by
swapping one atom in the dictionary for another which
is not in the dictionary . The criterion for selecting the
“swapped-in” atoms is that a minimally sparse repre-
sentation of the signal is constructed whose coefficients
have minimal `1-norm.i.e. ||~c||1 subject to Φ~c = s.

The Moore-Penrose inverse is employed to find the
coefficient vector among all solutions of F̃~c = ~x, with
the minimum `2-norm in MOF discussed in [6]. The fol-
lowing equation is solved for a unique solution denoted
~c†:

~c† = F †~x = (F T F )−1F T ~x (5)

where ~c† is minimized with respect to the `2-norm sub-
ject to F̃~c† = ~x.

The pseudo-inverse F̃ is computed for a given anal-
ysis frame F . This is a one step calculation mini-
mized with respect to the `2-norm as opposed to the
`1-norm used in BP. One of the major disadvantages of
this method is the fact that F T (FF T )−1 may become
computationally infeasible depending on the size of the
given analysis frame F . Secondly, due to the fact that
each atom in the dictionary that is correlated with the
signal, it is usually a member of the solution, the MOF
can yield a sub-maximally sparse representation, due
to the redundancy in the dictionary.

3 SAGI

Explicitly, our goal is to:

Problem 1. For a given ~x, find the ~c such that ~x = F̃~c
and sparse measure s(~c) is minimal.

The typical choice for s is the `p-norm, which we will

denote sp,

sp(~c) =

 
MX

m=1

|cm|p
!1/p

. (6)

When 0 < p < 1, sp is a quasi-norm as it fails to satisfy
the triangle inequality, and we will refer to it as the
`p-score. When p = 0, s0(~c) counts the number of non-
zero entries of ~c, and sp is not even linear with respect
to scalar multiplication.

An alternative measure of sparsity is the Gini in-
dex, which was originally proposed as a measure of
the inequity of wealth distribution in a population[7].
Given coefficient data, ~c = {c1, c2, . . . cN}, we order
from smallest to largest, |c(1)| ≤ |c(2)| ≤ · · · ≤ |c(N)|
where (1), (2), . . . , (N) are the indices of the sorting op-
eration. We define the parameterized-Lorenz curve as,

Lp

„
i

N

«
=

iX
j=1

|c(i)|pPN
k=1 |ck|p

, for i = 0, . . . , N. (7)

Lp is piecewise linear with N + 1 points with support
(0, 1) and Lp(0) = 0 and Lp(1) = 1. With p = 2,
each point on the Lorenz curve (x = a0, y = b0) has
the interpretation that 100 × a0 percent of the sorted
signal coefficients captures 100× b0 percent of the total
signal power and thus the slower the curve rises to 1,
the fewer coefficients are needed to accurately represent
the signal. The area between the Lorenz curve and the
45 degree line will increase as the sparsity of the signal
increases. The area beneath the Lorenz curve is,

A(~c) =
1

2N

NX
n=1

„
L

„
n− 1

N

«
+ L

“ n

N

”«
(8)

and twice the area between the Lorenz curve and the
45 degree, which is known as the Gini index [7], is then
simply,

Gp(~c) = 1− 2A(~c), (9)

which has several nice properties including Gp(~c) = 0
for ~c = (x, x, . . . , x) for constant x 6= 0 and Gp(~c) →
1 for ~c = (x, 0, . . . , 0) as the number of zeros goes to
infinity for constant x 6= 0. As the `p-score decreases
for more sparse solutions, we, in practice, minimize 1−
Gp(~c) for the Gini index measure of sparsity so that
we can still use the general minimization problem as
formulated above.

The sparsification algorithm which we propose below,
is independent of the sparsity measure s and the results
presented in the next section compare the performance
of the algorithm when using either `0.1-score or the Gini
index.

The Sparsification Algorithm using Greedy Iteration
(SAGI) method is based on the following Theorem.



Theorem 1. Given ~x, F, F̃ ,~c such that ~x = F̃ T~c, then
vector ~d,

~di(j, α) =

(
ci − α〈 ~̃fj , ~fi〉 i 6= j

ci − α〈 ~̃fj , ~fi〉+ α i = j
(10)

satisfies the reconstruction equation ~x = F̃ T ~di(j, α) for
all α ∈ R and j ∈ I.

Proof. We can write,

~di(j, α) = ci − α〈 ~̃fj , ~fi〉+ αδi−j (11)

where δi−j is the Kronecker function, δ0 = 1 and δi = 1
for i 6= 0. We have,

F̃ T ~di(j, α) = F̃ T (ci − α〈 ~̃fj , ~fi〉+ αδi−j)

= F̃ T ci − F̃ T α〈 ~̃fj , ~fi〉+ F̃ T αδi−j

= ~x− α
~̃
fj + α

~̃
fj

= ~x

and we are done.

The theorem states that altering the magnitude of
the jth component of the reconstruction can be com-
pensated for by altering the magnitude of all the com-
ponents that are correlated with it. The SAGI method
proceeds as follows, given ~x, F̃ , sparsity measure s, and
threshold α0, set initially J = I (the indices of all syn-
thesis vectors) and ~c = F̃ (F̃ T F̃ )−1~x. Then:

1. While there are remaining components to be con-
sidered J , select,

im = argmaxi∈J(|ci|). (12)

2. Determine the α maximizes sparsity,

αm = argmaxαs(~di(im, α)). (13)

3. Update ~c,
~c = ~di(im, αm). (14)

4. Update the remaining components to be consid-
ered,

J =


J − im α ≤ α0

I − im α > α0
(15)

5. Goto 1.

When the threshold α0 = ∞, the one-pass version
of the algorithm results. When α0 = 0, the exhaus-
tive version of the algorithm results. In both versions,
the method chooses the largest component that has not
been eliminated from consideration and the magnitude
of this component is then altered to maximize sparsity
while maintaining the reconstruction property of the

coefficients by altering the values of the other coeffi-
cients to compensate. Then this component is elimi-
nated from consideration. In the one-pass version, each
component is considered once, in the order of magni-
tude. In the exhaustive version, the jth largest compo-
nent is only considered if the previous j− 1 component
passes each resulted in αm = 0. Thus, the method ’it-
eratively’ and ’greedily’ chooses the largest component
not yet considered and tries to alter it to maximize
sparsity.

For some measures of sparsity, step 3 may have a
closed form solution. However, in general, we determine
αm using Nelder-Mead unconstrained nonlinear mini-
mization, as implemented in MATLAB (fminsearch).

4 Results and Discussion

An initial investigation into SAGI was performed in 2D
space to provide an illustration of the operation of the
algorithm. Four synthesis atoms were randomly gener-
ated by picking random unit norm vectors. A subset
of synthesis vectors (1 or 2) were then ’turned on’ by
setting the corresponding coefficients to 1, and a sig-
nal constructed from the coefficients. This signal, was
passed into SAGI along with the synthesis matrix F̃ and
the algorithm was run with both the `0.1-score and the
Gini index measures of sparsity. For these 2D tests, the
simple and exhaustive versions of SAGI yielded iden-
tical results. The sparsity of the SAGI solution was
compared to the sparsity of the Moore-Penrose solu-
tion and set of coefficients used to generate the signal
(the ’cheat’ solution). As one or two synthesis vectors
were ’on’ for each test, the cheat solution was a four
dimensional vector with 1 or 2 ones and the remaining
values zero. In order to test the stability of the SAGI
solution, the initial coefficients fed into SAGI were set
to a linear combination of the cheat and Moore-Penrose
solution,

~c = (1− β)~ccheat + β~cMP. (16)

Thus, with β = 1, the initial coefficients are the Moore-
Penrose coefficients, which is the starting point for
SAGI as described.

Figure 1 illustrates the average over 20 random tests
of the cost values obtained for SAGI when one synthesis
vector is turned on using the Gini index in the upper
plot and the `0.1-score in the lower plot. Using the Gini
index, the average final cost is equal to the cheat cost.
This indicates that the correct coefficients have been
identified and the sparsest solution has been obtained
(with respect to the Gini index). The average initial
cost increases steadily with β as the initial coefficients
consist of a higher fraction of the Moore-Penrose co-
efficients. In the lower part of the figure the average
final cost is once again equivalent to the cheat cost,



Fig. 1: This figure shows the average final cost, initial
cost and cheat cost obtained when SAGI is per-
formed on a signal which consists of one synthe-
sis atom. The costs in the upper graph were cal-
culated using the Gini index and the `.01-score
was used in the lower plot.

save for the final value of β where the Moore-Penrose
coefficients are the initial coefficients. This means that
SAGI fails to find the sparsest solution when using the
`0.1-score as a measure of sparsity. In both plots a sig-
nificant reduction in cost from the average initial cost
is shown. The sparsity of the solution also varies as
a function of β yet in all cases sparsification has been
achieved.

In Figure 2, the results from the tests with two syn-
thesis atoms turned on are shown. In this case, when
the Gini index is used as a measure of sparsity (up-
per plot), the SAGI coefficients are always more sparse
than both the initial and cheat coefficients. This is not
the case when the `0.1-score is used (lower plot). While
SAGI does increase the sparsity of the solution from
the initial coefficients, on average it does not find a so-
lution as sparse as the two 1’s two 0’s coefficients used
to generate the signals.

5 Conclusions

We have formulated a greedy sparsification algorithm
that iteratively alters the magnitude of the largest co-
efficient not yet considered while compensating so as
to guarantee perfect reconstruction. At each step, the
modification is made so as to maximize the sparsity of
the coefficients. Initial tests on 2D random data show
that the algorithm is perhaps better suited to the Gini
index measure of sparsity, as opposed to the `0.1-score
measure. Further tests and analysis including compar-
ing the method to other techniques are needed to better
understand the algorithm.

Fig. 2: This figure shows the average final cost, initial
cost and cheat cost obtained when SAGI is per-
formed on a signal which consists of two synthe-
sis atoms. The costs in the upper graph were
calculated using the Gini index and the `.01-
score was used in the lower plot.
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