
Model Transformations Should Be More Than
Just Model Generators

Jon Whittle1 and Borislav Gajanovic2

1 Dept of Information & Software Engineering
George Mason University
jwhittle@ise.gmu.edu

2 Institute for Software Systems Engineering
Technische Universität Braunschweig

b.gajanovic@sse.cs.tu-bs.de

1 Introduction

Model transformations are an increasingly important tool in model-driven de-
velopment (MDD). However, model transformations are currently only viewed
as a technique for generating models (and, in many cases, only code). Little is
said about guaranteeing the correctness of the generated models. Transforma-
tions are software artifacts and, as such, can contain bugs that testing will not
find. This paper proposes that, in fact, model transformations should do more
than just generate models. In addition, they should generate evidence that the
generated models are actually correct. This evidence can take the form of pre-
cise documentation, detailed test cases, invariants that should hold true of the
generated models, and, in the extreme case, proofs that those invariants do ac-
tually hold. The hypothesis is that there is enough information in the definition
of a transformation to provide evidence that certain properties of the generated
model are true. Such information is usually left implicit. By making that infor-
mation explicit and annotating the generated model, a consumer of the model
increases his/her confidence that the model does what it is supposed to do.

2 An Example

Autofilter [WS04] is a domain-specific model-to-code generator developed at
NASA Ames Research Center. It generates code used in attitude control sys-
tems and has undergone pilot studies in deep space and spacecraft docking ap-
plications. Given a problem description written in a domain-specific modeling
language, it selects, instantiates and composes a set of domain components that
implement the problem. Given the safety-critical nature of the domain, it is im-
perative that the code generated be correct. In particular, there are dependencies
between the components that must be satisfied in each implementation. In ad-
dition, there are global properties of the generated code that must be satisfied.
Since Autofilter is a highly complex model transformation, it is not cost-effective



to formally verify the transformation using traditional methods. Instead, we pro-
pose that model transformations should generate, along with the model (or code)
that they output, evidence that the model (or code) is correct. This evidence
can then be processed by an independent observer such as a certification body
(e.g., the FAA), code inspection teams, or automated tools.

The top third of Figure 1 is an abstract view of model-to-code transforma-
tions like Autofilter. From now on, we assume that transformations generate
code, but the techniques apply to model generators as well.

Fig. 1. Approaches to Generating Annotations.

3 Two Approaches to Annotating Generated Code

The bottom two thirds of Figure 1 illustrate two possible approaches for an-
notating model transformations so that they generate not only code but also
evidence that the code is correct.

3.1 Annotating the Generated Code Directly

The first approach views evidence annotation as just another form of generation
(see the middle third in the figure). As well as generating code, a transformation
generates assertions, preconditions, postconditions or invariants for each code
fragment generated. These annotations can be independently checked or taken as
formal documentation. Examples might be: loop invariants for array iterations;
class invariants for data classes; protocol invariants for messages. This approach
works well when the evidence concerns low-level aspects of the generated code.
In Autofilter, this approach has been used to annotate generated code with
preconditions on component inputs, such as the fact that a sensor input noise
has a certain characteristic [RVWL03]. It has also been used to provide invariants
about arrays that can be used to prove array bounds safety [DFS04].



3.2 Mapping to the Metamodel

A second approach is to lift the transformation output to the meta-level (see the
bottom third in the figure). For example, consider a statechart code generator
that transforms UML statecharts to Java code. The Java code can be imple-
mented using a variety of techniques — simple case statements, using the State
Pattern etc. – but the metamodel for statecharts will always be the same. If the
transformation generates annotations at the metamodel-level then the output
Java code can be lifted to the metamodel where the annotations can be checked.
For example, a statechart implemented in Java using the State Pattern would
be abstracted to an instance of a statechart metamodel. At this abstracted level,
metalevel annotations can be checked against the statechart. This approach has
been used in Autofilter to check domain-specific constraints that should hold for
the generated code [GWC03].

The first approach results in very detailed annotations at the implementation
level. This allows code-level checking of the annotations but the annotations are
highly coupled with the code implementing the transformation. The second ap-
proach decouples the transformation implementation and the annotations since
the annotations can be specified entirely at the meta-level, and the metamodel
is independent of the particular implementation generated. However, since the
metamodel is more abstract, implementation-level annotations cannot be speci-
fied. Hence, both approaches complement each other.

4 Checking Annotations

So far, we have extended model transformations to provide annotations with the
models that they generate. These annotations are assertions or evidence about
the target model. The annotations can be used in different ways depending on
what level of confidence is required of models generated by the transformation.
At one extreme, the annotations are viewed simply as precise documentation.
At the other extreme, they can be formally proved to hold on each generated
model. In between these extremes, they can be used as the input to various
analysis tools that may not provide full correctness guarantees but can check
some properties. For example, if the annotations are given in JML, the ESC/Java
tool can statically check some of the annotations.

Note that by checking the annotations for each generated model, the trans-
formation itself is being indirectly validated. It is not feasible, in general, to
formally verify transformations because generators are large, complex systems
that may be written in any language. However, it is feasible, for some proper-
ties, to formally verify that those properties hold for a given generated model.
The annotations are key to this. They are crucial stepping stones in a proof for
the property without which the property could not be proved. For example, in
Autofilter, a statistical optimality proof of the generated programs was consid-
ered — namely, that the generated code calculates the optimal estimate (in the
sense of minimization of the mean-squared error) of a given state variable. This



is an important property that is practically impossible to verify using the code
alone because the proof is too complex — as an informal proof, it consists of ten
pages of logical steps; as a machine-checked proof, it is an order of magnitude
larger. In fact, one crucial part of the proof is shown in [RVWL03] to have 2142

choice points, thus providing ample evidence that the proof is never likely to be
obtained automatically by examining the code alone.

However, the proof can be obtained automatically given the set of annota-
tions. Each component comes with an annotation that acts as a stepping-stone
for the proof. Given the annotations, it is possible to reconstruct a proof for the
entire program without the need for any search. Hence, a user of Autofilter can
automatically prove that the code s/he generated is correct for the optimality
property. Of course, for full confidence, the annotations must also be proved.
This was done in the case of the statistical optimality property but might not be
necessary in general — instead, the proof would be marked as modulo assump-
tions captured by the annotations.

Note that this kind of transformation verification is independent of the lan-
guage used to implement the transformation. It could be written in a program-
ming language, as a declarative set of rewrite rules, or even as a XSLT Schema.
Since only the products generated by the transformation, not the transformation
itself, is analyzed, the technique applies to any transformation language.

5 Summary

In previous work, the Autofilter model transformation system was augmented
to provide evidence of correctness with each program that it generates. The
idea can be extended to model transformations in general. Further work is being
undertaken to provide general techniques for capturing annotations in generated
models and proving properties using those annotations as intermediate lemmas.

References

[DFS04] Ewen Denney, Bernd Fischer, and Johann Schumann. Using automated
theorem provers to certify auto-generated aerospace software. In David A.
Basin and Michaël Rusinowitch, editors, IJCAR, volume 3097 of Lecture
Notes in Computer Science, pages 198–212. Springer, 2004.

[GWC03] Emanuel Grant, Jon Whittle, and Rajani Chennamaneni. Checking pro-
gram synthesizer input/output. In 3rd OOPSLA Workshop on Domain-
Specific Modeling, 2003.

[RVWL03] Grigore Rosu, Ram Prasad Venkatesan, Jon Whittle, and Laurentiu
Leustean. Certifying optimality of state estimation programs. In War-
ren A. Hunt Jr. and Fabio Somenzi, editors, CAV, volume 2725 of Lecture
Notes in Computer Science, pages 301–314. Springer, 2003.

[WS04] Jon Whittle and Johann Schumann. Automating the implementation of
Kalman filter algorithms. ACM Transactions on Mathematical Software,
30(4):434–453, December 2004.


